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Abstract
The relative hovering of satellites in highly elliptic orbits (HEO), as one of the most crucial
space operations, ismodeled and analyzed in this paper. The proposedmodeling is based on
the new perturbed relative dynamics equations, uses the time-varied parameters depending
on the motion of the target satellite. This proposed model considered the dynamic air drag,
oblateness of Earth (including all zonal harmonics coefficients) and the Lunar perturbation
as an inclined third-body disturbing effect on both follower and target orbits. The non-
simplified relative motion model has been obtained by employing the Lagrangian mechan-
ics principals and completed along with the target satellite’s motion characteristic. Then the
required thrust for relative hovering mission has been obtained without any simplifications
to ensure the accuracy of long-duration flight analyses. To validate the presented model,
another model has been built as an ECI based Relative Motion (ERM) model. Then,
according to effective parameters on hovering mission design around HEOs such as the
eccentricity and inclination of the target obit, the fuel consumption, optimal positioning of
the follower, maximum required thrust, and the appropriate time to perform the operation,
several examples are provided. Furthermore, the hybrid IWO/PSO algorithm has been used
to find the location and the minimum/maximum amounts of thrust force.

Keywords Hovering analysis . Inclined third-body. Perturbed relativemotion . Lunar
perturbation . High elliptic orbits
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New on-orbit servicing space missions such as inspection, refueling, upgrading and the
repairing require a high degree of precision in modeling and computations [1]. These
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missions can be accomplished with high reliability if the follower is assumed to remain
stationary relative to the target satellite. Accordingly, the space hovering problem has
been studied in recent years by adopting a new approach as relative hovering of two
spacecraft. The aim of relative hovering is to keep the velocity and acceleration of the
controllable satellite zero in the relative frame attached to the centroid of the target [2].
Also, this article is focused on hovering around a highly elliptic orbit. Therefore, it is
necessary to include the effects of Moon as a perturbing body, oblate Earth and the air
drag as a non-conservative force.

The early studies in the field of hovering were dedicated to controlling a spacecraft
near a celestial body [3]. In this problem, the spacecraft should be controlled in such a
way that it hovers at a specific position relative to the celestial body [4, 5]. The major
complexity of this situation is that the spacecraft is affected by the gravitational forces
of the Sun as well as the target asteroid [6]. In relative hovering of two spacecraft,
several issues such as relative position control, relative attitude control, fuel consump-
tion, and the determination of a suitable hovering position are taken into account. Wang
et al. [7] employed a dynamic model to simulate the hovering operation in an elliptical
orbit. Dang et al. [8] investigated the problem of hovering from the standpoint of
finding a suitable hovering position to minimize the control effort and fuel consump-
tion. He also presented a kinematic model for the perturbed state of J2 but employed
unperturbed models for studying the hovering problem. By designing an LQR control-
ler, Zhang et al. [9] analyzed the hovering control for an elliptic Keplerian orbit based
on the frozen parameters. With consideration of the Earth’s magnetic field, Huang et al.
[10] obtained the relative motion equations for a Lorentz spacecraft. The Lorenz
spacecraft was assumed as a charged particle in the Earth’s magnetic field. This Lorenz
force can be effectively used in the hovering and configuration problems. Huang et al.
[11] focused on the use of a nonlinear controller for the Lorentz spacecraft in order to
minimize fuel consumption in hovering. The dynamic model was applied in Huang’s
work for unperturbed elliptical orbits. Zhang et al. [6] explored three different kinds of
hovering about the elliptical perturbed orbits. By presenting a state feedback control
scheme for unperturbed circular orbits, Zhou [12] proposed a Multi-objective feedback
control based on HCW dynamic model for orbital transfer and hovering upkeeping.
Huang [13] proposed a nonlinear controller for a hovering without an actuator in the
radial direction or outside the orbital plane.

The previous studies have not addressed the hovering model in the presence of
perturbed target orbit, which will lead to large error in prolonged missions. Moreover,
the effects of a third-body, air drag and also all zonal harmonics perturbation have not
been examined in relative hovering, even on the follower or target satellite. In this
paper, the main focus is to obtain a proper model for relative motion and hovering in
highly elliptic orbit in long time flight. For high altitudes orbits (higher than the GEO
orbit’s altitude), the Moon effect as a third-body perturbation, will be the dominant
disturbing force. Therefore, it is necessary to consider the influences of the Moon in
this work.

The Moon gravity, as third-body perturbation on hovering mission, has not been
formulated and investigated yet. The effect of a third-body on absolute motion of a
satellite has been extensively studied [14–17]. Prado [18] presented a simple model for
applying the third-body effect on the motion of a satellite that was based on the
restricted three-body problem. In previous works like as [19–21], for simplification,
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the X-Y plane was introduced as a third-body’s orbital plane instead of the equatorial
plane of the main-body. Later, Ortore [22] expanded the third-body gravity function as
a Legendre polynomial up to second order, and analytically established the absolute
equations motion of satellite with consideration of inclined third-body. Nevertheless,
the perturbation effect of an inclined third-body on the relative motion of a spacecraft
has attracted any attention. However, the third-body effect on the relative motion of
satellites has been studied in only a very few research works. By employing Prado
model, Roscoe [23] investigated the effect of a third-body in the relative motion for the
first time.

In this study, the hovering problem is modeled based on the non-simplified relative
motion equations of satellites. In view of the previous works, the relative motion
equations are divided into two kinematic [24–26] and dynamic [27, 28] categories.
With this regards, dynamic equations in the form of a set of differential equations are
considered here. The dynamic equations are appropriate for configuration, navigation,
guidance, control and optimization problems. Schweighart [29] obtained a model for a
circular reference orbit with consideration of J2 perturbation. However, due to the
linearity of this model, its precision reduced when the relative distances become large.
Huang [30] presented a new J2 perturbed nonlinear model based on Lagrangian
mechanics. Also, Wei [31] presented a linear relative dynamic model in the presence
of the J2 perturbation. It should be noted that, deriving these models was more
complicated than Zhou’s model, and involved some simplifications.

The relative hovering mission under the perturbation effects, including the
disturbing third-body, air drag and Earth’s oblateness has not been investigated so
far. Also, in the previous models, the hovering equation was obtained for undisturbed
target orbits. Therefore, the previous models are only valid for short-duration hovering
in low-altitude orbits. The presented model considers the perturbing effects of Moon’s
gravitation, Earth’s oblateness and the effect of drag force on the orbits of target and
follower satellites in order to provide a suitable model for high-altitude and highly-
eccentric orbits. To derive the relative motion equations, first, the perturbed target
satellite’s motion is developed based on the six hybrid orbital elements which are
introduced in the presence of third-body [32, 33]. Then, by applying the Lagrangian
mechanics, the new relative motion equations are derived with consideration of air
drag, Earth’s oblateness (all zonal harmonics) and Moon’s gravitation perturbation. The
comparison between this model and the former models indicates that the proposed
model has a higher accuracy in long-duration flights. Also, to clearly validate the
presented model, another model is introduced as the ERM model. Since the fuel
consumption is one of the key issues in relative hovering operations, the IWO/PSO
hybrid algorithm is applied to obtain the proper position of follower. Fuel consumption
with regard to the hovering position, mission duration and different eccentricities of the
target satellite are also investigated. Finally, the perturbation effect of Moon’s gravita-
tion on hovering position is examined.

The Dynamic Model of Relative Hovering

Figure 1 shows the configurations of two satellites in a hovering mission. Both satellites
are affected by oblate Earth, air drag, and Lunar perturbation. The center of the relative

508 The Journal of the Astronautical Sciences (2019) 66:506–536



coordinate is located at the mass center of the target satellite to measure the position and
velocity of follower at all times. This rotating frame generally rotates about the cross-
track direction (z-axis), and experiences another rotation about the radial direction (x-
axis) when the perturbations are applied. Also, the LVLH frame [34] does not sense any
rotation around the along-track direction (y-axis). The x-axis is directed from the
Earth’s center towards the target, and the z-axis is normal to the orbital plane [35].
Also, the y-axis completes the coordinate system. Besides, the motion of the target
satellite in the geocentric coordinates is expressed by the X, Y, Z components. The ECI
coordinate system is an Earth-fixed frame and it does not rotate with the Earth. The
origin of the ECI frame is located at the Earth’s center, and its X-Y plane is the Earth’s
equatorial plane and the Z-axis is directed towards the North Pole. In addition to, a
perifocal frame [36] has been used to express the motion of Moon relative to Earth. It is
fixed and centered at the focus of the Moon’s orbit around Earth. Its xy plane is the
plane of the Earth-Moon system, and its x-axis is directed from the focus through the
periapsis of Lunar orbit.

The implementation of the relative hovering operation means to keep the controlla-
ble satellite stationary relative to the target, respect to the LVLH frame. The hovering is
based on two factors: first, keeping the relative position of the controllable satellite
constant and second, keeping the relative speed of the controllable satellite always
equal to zero in LVLH coordinate [12]. Therefore, the follower has to utilize a various
amount of energy continuously depending on hovering position. The amount of fuel
consumption is one of the most fundamental and key parameters in designing space
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missions. Therefore, in this paper the optimal relative position of the follower for
achieving the minimum fuel consumption is investigated.

In this section, the relative hovering model is developed for the case of a
target spacecraft in a perturbed highly elliptic orbit. First, the perturbed non-
linear equations of motion of target are developed by six hybrid orbital
elements and then, by employing the principles of Lagrangian mechanics, the
new relative motion equations are derived. Eventually by achieving the required
thrust, the hovering model becomes completed.

The Exact Nonlinear Dynamics of a Satellite in a Perturbed Highly Elliptic Orbit

With consideration of the oblate Earth, air drag and Lunar perturbation, the motion
equations of the target on highly elliptic orbits are obtained by proposed hybrid
orbital elements. These elements (r, vx, i, h, θ,Ω) represent the distance from the
Earth’s center r = |r|, velocity in the radial direction, inclination, angular mo-
mentum h ¼ r � ṙj j, argument of latitude, and the right ascension of ascending
node, respectively.

r˙ ¼ vx ð1Þ

v˙ x ¼ −
μ
r2

þ h2

r3
−ψ−C Vak k h−ωer2ci

� �
−κm xm−

μm

d3
r ð2Þ

h˙ ¼ −rχcθsθ−C Vak k h−ωer2ci
� �

−κm ymr ð3Þ

θ˙ ¼ h
r2

þ rχc2i sθ
hsi

þ C Vak kωer2cis2θ
2h

þ r
h
cisθ
si

κm zm ð4Þ

i
⋅ ¼ −

rχcicθ
h

−
C Vak kωer2sic2θ

2h
−
r
h
cθ κm zm ð5Þ

Ω˙ ¼ −
rχcisθ
hsi

−
C Vak kωer2s2θ

2h
−
r
h
sθ
si
κm zm ð6Þ

where, in order to better display the equations, C ¼ Cd
A
m

� �
ρ=2 and

κm ¼ μm
1
r3m
− 1

d3

� �
. Also, Re is the Earth radius at the equator and μ is the

Earth’s gravitational constant. Va = V −ωe × r is the velocity of the target rela-
tive to the atmosphere. ωe = ωeZ is the vector of Earth’s rotation about itself in
the ECI coordinate system. μm is the gravitational constant of Moon and rm is
the distance between the centers of Earth and Moon.

The motion equations obtained are independent ofΩ (i.e. Eq. 6) and this is due to the
symmetry of the spherical gravitational potential. Therefore, the motion of the target
satellite can be analyzed by using five eqs. (1–5). In addition, these equations are able
to compute the short-term and long-term effect which can influence the hovering
operations.
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Proof Eqs. (1–6)

The LVLH frame rotates with respect to the ECI frame, with the angular velocity vector
of ω = ωxx + ωyy + ωzz. Using the orbital elements of (i, θ, Ω) related to the target
satellite, this rotation vector components are expressed as [37]:

ωx ¼ i
⋅
cθ þΩ

⋅
sθsi ð7Þ

ωy ¼ − i
⋅
sθ þΩ

⋅
cθsi ¼ 0 ð8Þ

ωz ¼ θ˙ þ Ω˙ ci ð9Þ

Furthermore, the unit vectors of the LVLH frame are defined as follows:

x ¼ r=jrj; z ¼ h=jhj; y ¼ z� x ð10Þ

Also, the derivatives of these unit vectors are established as below:

x˙ ¼ ω� x ¼ ωzy ð11Þ

y˙ ¼ ω� y ¼ ωxz−ωzx ð12Þ

z˙ ¼ ω� z ¼ −ωxy ð13Þ

The connecting vector from the Earth’s center to the target orbit shows the target
position as r = rx. By taking the derivative and employing (11–13), the velocity and
acceleration vectors of the target in the relative coordinate system will be obtained [38]:

r˙ ¼ V ¼ vxxþ h
r
y ð14Þ

€r ¼ v˙ x−
h2

r3

� �
xþ ḣ

r
yþ ωxh

r
z ð15Þ

Also, based on Newton’s laws, the motion of the target spacecraft under the perturba-
tions caused by Moon gravity, oblateness of Earth and air drag is expressed as:

€r ¼ −∇U−∇UM þ adrag ð16Þ

where €r is the acceleration vector of satellite, also U and UM are the gravitational
potential functions of Earth and Moon, respectively. Now, the acceleration due to the air
drag and the gradient of gravitation potential of Earth and Moon should be determined.
The air dynamic acceleration is expressed as follows with consideration of the rotation
of atmospheric with the Earth’s rotation [34].
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adrag ¼ −
1

2
Cd

A
m
ρ Vak kVa ð17Þ

In the above equation, Va =V −ωe × r is the velocity of the target relative to the
atmosphere. ωe = ωeZ is the vector of Earth’s rotation about itself in the ECI
coordinate system that must be transformed to the LVLH frame. This transfor-
mation is achieved as follows:

ωe ¼ ωeZ ¼ ωe sθsixþ cθsiyþ cizð Þ ð18Þ

with consideration of Eqs. (14) and (18), the satellite’s velocity relative to air
will have the following form:

Va ¼ vxð Þx− h
r
−ωerci

� �
yþ ωercθsið Þz ð19Þ

Now, to complete of Eq. (16), the gradient of the Earth’s gravitational potential
function that can be written in the form of ~U r;φ;λð Þ ¼ U r; cosφð Þ must be
expressed in LVLH frame as follows:

∇ ~U ¼ ∂ ~U
∂r

r þ 1

r
∂ ~U
∂φ

φþ 1

rsinφ
∂ ~U
∂λ

λ ð20Þ

∇U ¼ ∂U
∂r

r þ 1

r
∂U

∂ cφ
� � ∂ cφ

� �
∂φ

φ ¼ ∂U
∂r

r−
1

r
∂U

∂ cφ
� � sφφ ð21Þ

To express the gradient equations of the potential function in the LVLH frame,
it is necessary to define vectors φ and r in terms of the unit vectors of the
LVLH system. For this purpose, first, the unit vector Z in the ECI coordinate
system is written using the unit components of the spherical and the LVLH
frame as in Eqs. (22–23):

Z ¼ cφr−sφφ ð22Þ

Z ¼ sθsixþ cθsiyþ ciz ð23Þ

With consideration of geometrical relationships among the spherical and LVLH coor-
dinate, the following relation is obtained between the zenith angle, inclination and
argument of latitude [39].

cφ ¼ sθsi ð24Þ

Now, by substituting Eqs. (22–24) into Eq. (21) and knowing relation between unit
vectors r = x, the general form of the Earth’s gravitational potential function in the
LVLH frame will be formed as:
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∇U ¼ ∂U
∂r

xþ 1

r
∂U

∂ cφ
� � cθsiyþ cizð Þ ð25Þ

In this regard, the Earth’s gravitational potential function U can be written by consid-
ering the all zonal harmonic coefficients [40]:

U r; cφ
� � ¼ −

μ
r
þ μ

r
∑∞

n¼2 Jn
Re

r

� �n

Pn cφ
� � ð26Þ

Where cφ = sθ si, and Pn is the Legendre function. To complete the motion equations of
the reference satellite, it is necessary to express the ∇U in the LVLH frame. By
combining Eq. (26) and (25) we will obtain:

∇U ¼ ∂U
∂r

xþ 1

r
∂U

∂ cφ
� � cθsiyþ cizð Þ ¼ μ

r2
þ ψ

� �
xþ χcθsiyþ χcθz ð27Þ

in which

ψ r; cφ
� � ¼ −

μ
r2

þ ∑∞
n¼2 Jn

Re

r

� �n

nþ 1ð Þ Pn cφ
� � ð28Þ

χ r; cφ
� � ¼ 1

r
∂U
∂cφ

¼ μ
r2

þ ∑∞
n¼2 Jn

Re

r

� �n

P
0
n cφ
� � ð29Þ

P
0
n cφ
� � ¼ 1

2nn!
dnþ1

d cφ
� �nþ1 cφ

� �2−1� �n
ð30Þ

After obtaining Eqs. (15), (21) and (17), the motion equation (Eq. (16)) should be
completely expressed in the LVLH frame that needed to express the Moon’s gravita-
tional potential function in the LVLH coordinate. The Lunar gravitational potential
function as a third-body effect is expressed as [41]:

Um ¼ −μm
1

d
−

1

r3m
r:rm

� �
ð31Þ

where μm is the Moon’s gravitational constant, rm is the distance between the centers of
Earth and Moon, and d = |rm − r| is the distance between Moon and target satellite. So,
the gradient of Moon’s gravitational potential function will be as follows:

∇Um ¼ μm

d3
r þ μm

r3m
−
μm

d3

� �
rm ð32Þ
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Regarding vector rm in the LVLH frame as rm = xmx + ymy + zmz, and noting that r = rx,
the gradient of Moon’s gravitational potential function in the LVLH frame can be
shown as:

∇Um ¼ μm

d3
r þ κm xm

� �
xþ κm ymyþ κm zmz ð33Þ

κm ¼ μm
1

r3m
−

1

d3

� �
ð34Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm−rð Þ2 þ y2m þ z2m

q
ð35Þ

By using Eqs. (17), (27) and (33), and considering sφ = Z/r, the right side of Eq. (16)
(i.e., a sum of both the gradient of the gravitational potential function and the acceler-
ation due to atmosphere drag) can be written as:

−∇U−∇Um þ adrag ¼ −
μ
r2

þ ψ−C‖Va‖vx þ μm

d3
þ κmxm

	 


x− χsici þ C‖Va‖
h
r
−ωerci

� �
þ μm

d3
þ κmxm

	 

y− χci þ C‖Va‖ωercθsi þ κmzm
h i

z

ð36Þ

It should be noted that the left side of Eq.(16) has been extracted by twice taking the
derivative of vector r in Eq. (15). Now, by equating Eqs. (15) and (36), referring to Eq.
(16), the mentioned expression can be obtained.

Furthermore, the orbital rate ωz is equal to [31]:

ωz ¼ h
r2

ð37Þ

Also, by comparing Eqs. (15) and (36), the steering rate of orbital plane will be
determined as:

ωx ¼ −
rχ si
h

−
r
h
κmzm−

C Vak kωer2sicθ
h

ð38Þ

Now, the motion equations with hybrid elements (1–6) can be obtained by employing
Eqs. (15) and (36) and using Eqs. (37), (38) and (7–9).

Finally, the time derivative of the rotation components of the LVLH axes relative to
the ECI frame are achieved in Eqs. (39) and (40) by using Eqs. (37), (38) as well as
Eqs. (4) and (5).
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αx ¼ −
ci
rωz

χ˙ þ χvx
r

þ 2χ2sicθ
rωz

� �
−
Cωe

ωz

� ∂‖Va‖

∂t
sicθ−

αz

ωz
‖Va‖sicθ−θ˙ ‖Va‖sicθþ

i‖Va‖cicθ
�
−
rκm

h
ṙ
r
−
ḣ
h

� �
zm−

rκm

h
z˙ m−

r
h
κ˙ mzm

ð39Þ

αz ¼ ω˙ z ¼ −
2vxh
r3

−
χcθsi
r

−
κm

r
ym−

C‖Va‖ h−ωer2cið Þ
r2

ð40Þ

Also, In the above equations, the following expressions are employed:

χ˙ ¼ μvx
r3

∑∞
n¼2 Jn

Re

r

� �n

nþ 1ð Þ P0
n cφ
� �þ μωz

r2
sicθ∑∞

n¼2 Jn
Re

r

� �n

P
00
n cφ
� � ð41Þ

P
0 0
n cφ
� � ¼ d2

dc2φ
pn cφ
� � ¼ 1

2nn!
dnþ2

d cφ
� �nþ2 cφ

� �2−1� �n
ð42Þ

κ˙ ¼ 3
ḋ

d4
−
ṙm
r4m

� �
ð43Þ

d˙ ¼ x˙ m−r˙
� �þ y˙ m þ z˙ m
� �

=d ð44Þ

For completing of equations (1–6), the displacement [xm, ym, zm] and velocity
ẋm; ẏm; żm½ � components of Moon in the LVLH frame must be known. These vectors
are achieved by introducing procedure in Appendix 1.

The Dynamic Model of Relative Hovering in HEO

By considering the perturbation forces including oblate Earth, Moon’s gravity, and air
drag, the required thrust force for hovering operations will be obtained as follows:

Tx j ¼ x j η2j−ω
2
z

� �
−y jαz þ z jωxωz þ χ j−χ

� �
sisθ þ r η2j−η

� �
þ xm κ j−κm

� �þ
μm

d3j
xm þ rμm

1

d3j
−

1

d3

 !
þ C j‖Va‖ y jωz

� �
þ C j‖Vaj‖−C‖V j‖
� �

vx
ð45Þ

Ty j
¼ x jαz þ y j η2j−ω

2
z−ω

2
x

� �
−z jαx þ χ j−χ

� �
sicθ þ ym κ j−κm

� �þ μm

d3j
ymþ

C j‖Vaj‖ x jωz−z jωx
� �þ C j‖Vaj‖−C‖V j‖

� � h
r
−ωerci

� � ð46Þ
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Tz j ¼ −x jωxωz−y jαx−z j η2j−ω
2
z

� �
− χ j−χ
� �

ci þ zm κ j−κm
� �þ μm

d3j
zm

þ C j‖Vaj‖ z˙ j−y jωx

� �
þ C j‖Vaj‖−C‖V j‖
� �

ωe r cθsi
ð47Þ

where ζj, rj, ηj, κj are defined as follows:

χ j ¼
1

r j

∂U
∂cφ j

¼ μ

r2j
∑∞

n¼2 Jn
Re

r

� �n

P
0
n cφ
� � ð48Þ

r j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ x j
� �2 þ y2j þ z2j

q
ð49Þ

η2 ¼ μ
r3

þ ψ
r
−
χ sisθ
r

ð50Þ

η2j ¼
μ

r3j
þ ψ j

r j
−
χ j sisθ
r j

ð51Þ

rjZ ¼ r þ x j
� �

sisθ þ y j sicθ þ z jci ð52Þ

κ j ¼ μm
1

r3m
−

1

d3j

 !
ð53Þ

d j ¼ rm−r j
  ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xm− r þ x j
� �� �2 þ ym−y j

� �2
þ zm−z j
� �2r

ð54Þ

The equations (45–54) are obtained by applying hovering conditions (the relative
position of the follower with respect to the target must be fixed and the time derivative
of the relative position vector calculated in the rotating LVLH frame is zero during the
mission, but the relative velocity and acceleration of the follower relative to the target
measured in the ECI frame are not zero.) in the proposed relative motion equations. To
obtain these proposed equations of relative motion, a Lagrangian approach was adopted
(see Appendix 2 for details). The exact dynamic model of satellites relative motion has
the following form:

€x j ¼ 2y˙ jωz−x j η2j−ω
2
z

� �
y jαz−z jωxωz− χ j−χ

� �
sisθ−r η2j−η

� �
−xm κ j−κm
� �

−

μm

d3j
xm−rμm

1

d3j
−

1

d3

 !
−C j‖Va‖ x˙ j−y jωz

� �
− C j‖Vaj‖−C‖V j‖
� �

vx þ Txj

ð55Þ

516 The Journal of the Astronautical Sciences (2019) 66:506–536



€y j ¼ −2x˙ jωz þ 2z jωx−x jαz−y j η2j−ω
2
z−ω

2
x

� �
þ z jαx− χ j−χ

� �
sicθ−ym

�
κ j−

κm

�
−
μm

d3j
xm−C j‖Va‖ y˙ j−x jωz−z jωx
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The relative motion equations (55–57) are obtained without any simplification, and the
perturbation effects of the Moon, all zonal harmonic perturbation due to the Earth’s
oblateness, and the non-conservative perturbation effect of the air dynamic drag are
considered in deriving the equations. In this situation (derived by Lagrangian principle)
classical orbital elements couldn’t be made effective help to complete the relative
motion equations, but the advantage of hybrid orbital elements is fully cleared in
deriving and completing of relative equations (see Appendix 2 for details). To analyze
the relative hovering mission, it is necessary to use equations (1–6) with equations (55–
57) as well as equations (45–47) simultaneously, so that changes in the orbital elements
of the target orbit are calculated at each time instant, and applied to the hovering model.

Results Analysis

To investigate the relative hovering problem, it is necessary to validate the proposed
dynamic model and it should be compared to other models. Due to the lack of an
appropriate model that consider the perturbations intended in the presented model, the
structure of an ECI based Relative Motion (ERM) model is constructed. To establish
such a structure, the equations of the target and follower satellites should be
written in the ECI frame. Then, by means of a transformation matrix, the
position and velocity vectors of both satellites should be transformed into the
LVLH frame. Finally, by subtracting the position and velocity components of
satellites, the relative position and velocity of the follower satellite will be
obtained as shown in Fig. 2. Due to lack of data, the proposed absolute motion
of target (Eq. 1–6) and relative motion model (Eq. 55–57) will be compared
with the introduced ERM model by considering the perturbation effects. All of
the test cases are performed by constructing a general MATHEMATICA® code
and runs on a personal computer with following properties: Intel(R) Core(TM)
i5–3770 CPU @ 3.40 GHz and 4 GB RAM.

In this paper, the focus of work was on the missions on high eccentric orbits
with low perigee altitude. Therefore, the air drag was considered in modeling.
Moreover, based on [42], the order of magnitude of the main perturbations
acting on objects under the GEO region demonstrated that the oblateness of the
Earth (like as J2) and Lunar perturbation are more important than Sun pertur-
bation and tesseral resonances. Also, lunar perturbation was dominated to the
disturbing force of Sun, thus the Sun gravity effect was ignored to be able to
better study on other perturbation force on hovering mission. However, the
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equations are so general that the Sun perturbation effect can add to introduced
equations in the same way of considering lunar perturbation.

Validating the Motion Model of the Reference Satellite

In this section, the motion model of the reference satellite (1–6) is compared with the
ECI based model (Fig. 2) with consideration of all the perturbation effects. The
presented dynamic model is valid for all the values of eccentricity. In this example, a
highly elliptical orbit is discussed:

a ¼ 23331 km; e ¼ 0:7; i ¼ 10°;Ω ¼ 30°; θ ¼ 30°;ω ¼ 130° ð58Þ

Figures 3 and 4 show the position and velocity components of the reference satellite,
respectively. The difference between the presented model and the ECI based model is
negligible and close to zero. The considered simulation time is equal to 95 h. Further-
more, the accuracy of the proposed model will be maintained for long-term missions as
well.

Moreover, another comparison is conducted between the presented model and
the model introduced in [41], to verify the accuracy of model in prolonged
flight in presence of a third-body perturbation. Figure 5 compares the double-
averaged model and the exact model proposed in this article. As seen in Fig. 5,
the agreements of the eccentricity and inclination obtained by the two models
becomes lower, over time.
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Fig. 2 ERM model building procedure
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In Fig. 5, the exact proposed model of satellite motion by Eqs. (1–6) was compared
with the double-averaged model [41] to show the accuracy of the model in long-time
flight in presence of a third-body perturbation. In Liu’s work, some simplifications
were considered to derive the motion equation of a satellite under inclined third-body
perturbation. Also, the only perturbing force that considered in Liu’s paper was third-
body gravity effect that orbiting in a 6.68o inclined orbit. Furthermore, in double-
averaged model the short-term oscillations are ignored and cause to accumulate of error
in prolonged analyses.

Achieving the exact position of the target orbit in the hovering is undoubtedly one of
the most important issues encountered in long-term missions. The lack of information
about a reference satellite and ignoring its perturbation effects can gradually reduce the
accuracy of the hovering mission evaluations.

Validating the Relative Motion

At this point, the accuracy of the presented relative dynamic model will be evaluated by
the ERM model. The specifications of the target orbit were given in Eq. (58), and the
orbital elements of the follower satellite are as follow:
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Fig. 3 Position components of target satellite in highly elliptical orbit with consideration of zonal harmonics,
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air drag and Lunar perturbation (e = 0.7). (bullet correspond to result based on ECI based model)
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a ¼ 23330 km; e ¼ 0:71; i ¼ 9°;Ω ¼ 29°; θ ¼ 129°;ω ¼ 129° ð59Þ

Also, the initial condition of the follower satellite in the LVLH frame is obtained as
follow:

x ¼ −238:45; y ¼ −234:03;−104:53 km
vx ¼ 0:0195; vy ¼ 0:5266; vz ¼ 0:0864 km=s ð60Þ

To obtain the relative initial values, it is required to solve the ERM equations. Since no
approximations have been considered in obtaining the relative motion equations, these
equations are expected to be valid for prolonged evaluation. Figure 6 shows the
displacement components of relative motion in the presented model (55–57) and the
ERM model (Fig. 2). The results obtained indicate that the two models have very good
agreement with each other. Also, the velocity components of relative motion in both
models are shown in Fig. 7.

Fig. 5 Variation of eccentricity over 400 canonical time units (1737 days) for different initial inclinations,
double-averaged model [41] (dashed-line), the proposed model (solid line)
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Fig. 6 The relative position components of follower satellite in LVLH frame obtained by the ERM and the
presented model



The results obtained confirm that the proposed relative motion model has
good accuracy and the relative hovering model can be derived on the basis of
these equations. Due to the hovering sensitivity and the need for high precision
in long-duration flights, besides the importance of the short-term effects, the
proposed model can be a good basis for analyzing and investigating the
hovering operations.

Minimum and Maximum of Required Thrust

In practice, hovering control requires a continuous consumption of fuel. A
major objective in designing space missions is to reduce the amount of energy
utilized during a mission. Therefore, a proper hovering location must be
determined for a follower in order to minimize fuel consumption. Thus, an
optimization problem is constructed to find the maximum and minimum of
required thrust, their timing and the position of follower satellite. This optimi-
zation problem will be solved by the fast and powerful IWO/PSO hybrid
algorithm [32, 43, 44].

It was assumed that the orbit target has a perigee altitude of ap = 622 km orbital
elements of Ω = 30°, θ = 30°, ω = 130° with all the perturbations. The flight duration in
this simulation is considered equal to 10 orbital periods. The above analyses are carried
out for different eccentricities and inclinations of target orbit with a constant perigee
altitude, so that the effects of inclination and eccentricity on the follower position and
the maximum and minimum required thrust can be observed in the results. The possible
hovering position is given as a sphere around the target with a constant radius of 2 km.
The results obtained are presented in Table 1.

As seen in Table 1, at a constant eccentricity, the maximum thrust increases
up until the 70° inclination and then decreases. Of course, this trend is more
prominent at smaller eccentricities. A careful examination reveals that, at a
constant inclination, the maximum thrust increases slightly with the increase
of eccentricity. Also, the results obtained indicate that the maximum thrust is
generated in the vicinity of perigee. This is due to the fact that the target has a
fixed perigee altitude and at low altitudes, the Earth’s oblateness and air drag
perturbation have a greater effect on the target motion.
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Fig. 7 The relative velocity components of follower satellite in LVLH frame obtained by the ERM and the
presented model



Table 1 IWO/ PSO optimization result for determining maximum and minimum of required thrust per unit
mass of a satellite (N/kg) and their position in different inclination and eccentricity of target satellite with the
constant perigee

e = 0.50 e = 0.60 e = 0.70 e = 0.85

i = 5 Max T (× 106) 10.48 10.94 10.78 12.34

Mod(β, π) 0.581 0.583 0.578 0.577

Mod(α, π) 0.981 1.959 0.031 1.946

Mod(t, τ) 0.983 0.989 0.000 0.981

Min Mod(β, π) 0.580 0.541 0.538 0.519

Mod(α, π) 1.410 1.746 1.881 0.665

Mod(t, τ) 0.176 0.712 0.614 0.907

i = 10 Max T (× 106) 12.48 12.76 13.083 14.05

Mod(β, π) 0.578 0.575 0.572 0.567

Mod(α, π) 0.988 1.085 0.982 0.984

Mod(t, τ) 0.980 0.989 0.985 0.981

Min Mod(β, π) 0.663 0.778 0.988 0.542

Mod(α, π) 1.467 1.613 1.676 1.507

Mod(t, τ) 0.323 0.442 0.497 0.504

i = 30 Max T (× 106) 24.68 24.90 25.23 23.11

Mod(β, π) 0.598 0.596 0.595 0.546

Mod(α, π) 1.074 1.085 1.099 1.043

Mod(t, τ) 0.986 0.989 0.990 0.982

Min Mod(β, π) 0.811 0.778 0.677 0.939

Mod(α, π) 1.617 1.613 1.558 1.637

Mod(t, τ) 0.629 0.442 0.484 0.482

i = 50 Max T (× 106) 37.26 37.45 37.67 31.95

Mod (β, π) 0.597 0.595 0.594 0.580

Mod(α, π) 1.074 1.086 1.100 1.073

Mod(t, τ) 0.989 0.992 0.995 0.000

Min Mod(β, π) 0.590 0.763 0.723 0.903

Mod(α, π) 1.593 1.649 1.660 1.714

Mod(t, τ) 0.768 0.707 0.521 0.507

i = 70 Max T (× 106) 44.05 41.19 44.37 42.85

Mod (β, π) 0.594 0.592 0.590 0.588

Mod(α, π) 1.070 1.082 1.096 1.117

Mod(t, τ) 0.992 0.996 0.001 0.002

Min Mod(β, π) 0.515 0.686 0.638 0.576

Mod(α, π) 1.594 1.803 1.790 1.595

Mod(t, τ) 0.791 0.547 0.366 0.536

i = 90 Max T (× 106) 41.85 41.93 41.92 42.39

Mad (β, π) 0.592 0.590 0.586 0.585

Mod(α, π) 1.067 1.078 1.083 1.106

Mod(t, τ) 0.993 0.998 0.00 0.005

Min Mod(β, π) 0.500 0.499 0.500 0.499

Mod(α, π) 1.590 1.885 1.865 1.641

Mod(t, τ) 0.792 0.476 0.332 0.821
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Angles α, β in spherical coordinates specify the position of follower in the following
way:

x ¼ ρcos αð Þsin βð Þ
y ¼ ρcos αð Þsin βð Þ
z ¼ ρcos βð Þ

ð61Þ

The results obtained indicate that minimum thrust occurs when the follower is located
in the orbital plane of target satellite around the along-track axis. This trend becomes
more regular at the location that required maximum thrust. This means that the
maximum thrust occurs in the vicinity of the x-z plane, closer to the radial axis, and
closer to Earth.

For more investigation on relative hovering distant effect on results, two simulations
were accomplished: first, in Table 2 the results were demonstrated that there was same
behavior in different hovering distance. The generated thrust was decreased with
decreasing the hovering distance. These results are provided in same eccentricity 0.6
and different inclinations.

In the second simulation, in constant inclination 70o and different eccentricities,
effect of relative distance (2, 3, 4 km) on generated thrust was obtained. As shown in
Table 3, there is the same trend in different hovering distance. Also, the required thrust
was increased with increasing the hovering distance.

Another key parameter in the design of a hovering operation is the distribution of
maximum and minimum thrust based on the follower location. The magnitude of the
total thrust is considered as follows:

Tt ¼ Txj j þ Ty
 þ Tzj j� � ð62Þ

For more clarity, in Fig. 8, a group of contours is shown to indicate the distributions of
the thrust required at different times and eccentricities. By getting further away from the
Earth, the magnitude of the needed thrusts diminishes.

The Effects of Eccentricity and the Altitude of HEO Target Orbit on the Required
Thrust

The history of the generated thrust and the effects of eccentricity and perigee altitude of
target orbit will be considered in this section. The orbital elements are similar to the
previous simulation and the hovering position is ρ = (−1, 0, 1) km. Figure 9 shows the
thrusts at three different target orbit eccentricities with constant perigee altitude for one
period of Moon’s orbit. The results indicate that the extreme value of thrust for relative
hovering is required in the radial direction. Also, in the along-track direction, the lowest
value of thrust is required rather than two other directions. Moreover, the amplitude of
the required thrust decreases with the increase of eccentricity and altitude. As shown in
Fig. 9, the pattern of the generated thrust has changed around the apogee.

To evaluate the effect of HEO orbit altitude on the generated thrust, the
altitude of perigee is changed from 20,000 to 25,000 km, while the eccentricity
is kept constant at 0.8. This investigation is carried out for three different kinds
of hovering missions. The R-bar hovering means that the follower satellite is
fixed on the radial axis (x), H-bar hovering demonstrates that the controllable
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Table 2 IWO/ PSO optimization result for determining maximum and minimum of required thrust per unit
mass of a satellite (N/kg) and their position in different hovering distance (e = 0.6)

ρ = 2 km ρ = 3 km

i = 5 Max T (× 106) 10.94 13.41

Mod(β, π) 0.583 0.581

Mod(α, π) 1.959 1.959

Mod(t, τ) 0.989 0.989

Min Mod (β, π) 0.541 0.496

Mod(α, π) 1.746 0.683

Mod(t, τ) 0.712 0.794

i = 10 Max T (× 106) 12.76 21.38

Mod(β, π) 0.575 0.582

Mod (α, π) 1.085 1.042

Mod(t, τ) 0.989 0.995

Min Mod(β, π) 0.778 0.543

Mod(α, π) 1.613 1.498

Mod(t, τ) 0.442 0.475

i = 30 Max T (× 106) 24.90 33.19

Mod(β, π) 0.596 0.593

Mod (α, π) 1.085 1.077

Mod(t, τ) 0.989 0.991

Min Mod (β, π) 0.778 0.612

Mod(α, π) 1.613 1.531

Mod(t, τ) 0.442 0.471

i = 50 Max T (× 106) 37.45 45.68

Mod(β, π) 0.595 0.594

Mod(α, π) 1.086 1.083

Mod(t, τ) 0.992 0.993

Min Mod(β, π) 0.763 0.654

Mod(α, π) 1.649 1.593

Mod(t, τ) 0.707 0.521

i = 70 Max T (× 106) 41.19 52.34

Mod(β, π) 0.592 0.591

Mod (α, π) 1.082 1.078

Mod(t, τ) 0.996 0.997

Min Mod (β, π) 0.686 0.596

Mod (α, π) 1.803 1.629

Mod(t, τ) 0.547 0.519

i = 90 Max T (× 106) 41.93 50.12

Mod(β, π) 0.590 0.589

Mod(α, π) 1.078 1.074

Mod(t, τ) 0.998 0.999

Min Mod (β, π) 0.499 0.499

Mod (α, π) 1.885 1.648

Mod(t, τ) 0.476 0.475
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satellite is located on the cross-track axis (z), and in the V-bar hovering, the
follower satellite is stationary on the along-track axis (y).

With the increase of altitude, the orbit of the satellite will get closer to the Moon at
the apogee point, and the effects of HEO orbit altitude on the generated thrust, becomes
more evident (As seen in Fig. 10).

The Produced Deviation Due to Perturbation Ignorance

In the modeling of hovering missions in highly eccentric orbits, the perturbation effect
of the Moon has to be considered in addition to air drag and Earth’s oblateness. To
demonstrate the Lunar perturbation effect, the required thrust is obtained from a model
without consideration of the Moon. Then this thrust is applied to the complete relative
motion equations with all perturbations. Based on the definition of hovering, the
follower must preserve its desired position by using the resulting thrust. But, when
Moon as the perturbing body is ignored (as shown in Fig. 11), the follower gradually
deviates and cannot keep its position. This demonstrates the need for a high-precision
model for long-duration hovering operations. The deviations from the desired hovering
point in the three directions of the LVLH frame have been calculated based on three

Table 3 IWO/ PSO optimization result for determining maximum and minimum of required thrust per unit
mass of a satellite (N/kg) and their position in different hovering distance (i = 70o)

e = 0.50 e = 0.60 e = 0.70 e = 0.85

ρ = 2 km Max T (× 106) 44.05 41.19 44.37 42.85

Mod(β, π) 0.594 0.592 0.590 0.588

Mod(α, π) 1.070 1.082 1.096 1.117

Mod(t, τ) 0.992 0.996 0.001 0.002

Min Mod(β, π) 0.515 0.686 0.638 0.576

Mod(α, π) 1.594 1.803 1.790 1.595

Mod(t, τ) 0.791 0.547 0.366 0.536

ρ = 3 km Max T (× 106) 47.85 47.98 47.90 48.50

Mod(β, π) 0.594 0.591 0.590 0.585

Mod(α, π) 1.068 1.078 1.096 1.100

Mod(t, τ) 0.993 0.997 0.00 0.00

Min Mod(β, π) 0.673 0.644 0.639 0.545

Mod(α, π) 1.819 1.778 1.625 1.560

Mod(t, τ) 0.470 0.358 0.730 0.517

ρ = 4 km Max T (× 106) 51.85 52.34 52.19 52.93

Mod(β, π) 0.593 0.591 0.587 0.584

Mod (α, π) 1.067 1.078 1.077 1.097

Mod(t, τ) 0.993 0.997 0.00 0.003

Min Mod(β, π) 0.660 0.596 0.616 0.910

Mod(α, π) 1.799 1.629 1.606 1.664

Mod(t, τ) 0.358 0.519 0.664 0.483
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different types of hovering. The same investigation was accomplished to show the
importance of oblate Earth perturbation and the results are presented in Fig. 12.

As shown in Figs. 11 and 12, the greatest amount of deviation has occurred in R-bar
hovering and along-track direction in both simulations. These deviations have belonged
to the duration of mission and characteristic of target orbit. If the eccentricity of orbit

Fig. 8 The pattern of the required thrust at different times and different target orbit eccentricities in hovering
distance of 2 km. Tr(×108) )
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increases, the effect of Moon will be more important. Also, the drift is happened from
the almost initial time of mission due to ignorance of Earth oblateness. From another
view, the distribution of the follower’s deviation from its desired hovering point is
illustrated in Fig. 13 in the anywhere feasible hovering region. These deviations are
occurred due to ignorance of Earth oblateness and Lunar perturbation.
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Comparing the Fuel Consumption

In hovering missions, the fuel consumption is one of the most crucial factors in
designing of such operations. In practice, relative hovering is implemented through
continuous control and fuel consumption. The space missions are planned with the goal
of minimum fuel consumption. So, knowing the amount of fuel consumption based on
the hovering position can greatly help the space mission designers. Here, the amount of
utilized fuel is expressed as Eq. (63) [9]:

ΔV ¼ ∫t ft0 Txj j þ Ty
 þ Tzj j� �

dt ð63Þ

Where t0 and tf indicate the start and end times of the relative hovering, respectively.
Due to the significance and importance of cognizing the pattern of fuel consumption in
different situations, a batch of fuel consumption contours for different target eccentric-
ities are shown in Fig. 14.

These contours indicate that the fuel consumption will be minimized during the time
intervals when the satellite is passing the apogee point. It is shown that as eccentricity
increases, the fuel consumption is decreased in specific time interval.

Conclusion

In this study, the modeling and analyzing of hovering mission about highly
elliptic orbit (HEO) was investigated. In HEOs, depending on the satellite
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altitude, one of the following perturbations was becoming more important. At
very low altitudes, the air drag as a non-conservative force, dominates the
motion of satellites. After that the major perturbation is due to the oblateness
of Earth. By moving away from the Earth (at altitudes higher than the GEO), the
oblate Earth perturbation step down and the Lunar perturbation as a third-body,
put more influence on satellite motion.

To achieve suitable modeling, first, the new motion equations of target
satellite were developed under abovementioned perturbations. Then, by
employing the target orbit equations, the proposed equations were derived for
the relative motion of satellites. Finally, the hovering model was completed by
applying the hovering conditions on the proposed relative equation to obtain the
required thrust. Moreover, an appropriate model was obtained with consider-
ation of short-term orbital effect as well as the target orbit perturbation
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Fig. 13 The distribution of the follower’s deviation after two period of target orbit due to ignorance of zonal
harmonics and Lunar perturbation in different target eccentricities



variations in the relative motion equations. To validate this modeling, another
model was introduced as the ERM (ECI based Relative Motion) model.

By applying the powerful IWO/PSO hybrid algorithm, the location and also
the maximum and minimum values of thrust were obtained for different incli-
nations and eccentricities of target orbit. According to the results obtained, the
maximum amount of thrust generates near the x-z plane closed to the x-axis
and around the perigee. It was demonstrated that the fuel consumption de-
creases with increasing the orbital eccentricity, while the perigee altitude was
kept constant. The perturbation effects of the Moon on the generated thrust
were also investigated and it was shown that the consideration of small
perturbation terms in the hovering equations can lead to large deviations in
the controllable satellite. Finally, the contours of fuel consumption with respect
to the hovering position were presented and analyzed. Base on the results
obtained in the present study, it should be stated that the analysis of the relative
hovering operations about the highly eccentric orbits can play a key role in the
planning of new space missions.

530 The Journal of the Astronautical Sciences (2019) 66:506–536

Fig. 14 Fuel consumption (per unit mass of satellite) distribution at different time intervals and different target
orbit eccentricities



Appendix 1

For completing of absolute and relative equations of motion of target and follower
satellites, the displacement [xm, ym, zm] and velocity ẋm; ẏm; żm½ � components of Moon in
the LVLH frame must be known. These vectors are achieved by introducing procedure:

1- The Lunar classical orbital elements (am, im, em, ωm,Ωm, fm.) are obtained in the
mean ecliptic and mean equinox of date coordinate system from [45]. The Moon’s
orbital elements are provided in the form of time series, and based on some specific
coefficients [36].

2- From classical orbital elements, the position and velocity vectors of the Moon in
the Earth-Moon perifocal frame are obtained by:

rm ¼ hm
μm

1

1þ em c f m
c f mpþ s f mq
� � ð64Þ

r˙ m ¼ vm ¼ hm
μm

−c f mpþ em þ c f m
� �

q
� � ð65Þ

3- the position and velocity vectors of the Moon in the ECI frame is obtained from the
perifocal frame by:

QE
p ¼

cωmcΩm−sωmcimsΩm −sωmcΩm−cωmcimsΩm sωmsΩm

cωmsΩm þ sωmcimcΩm −sωmsΩm−cωmcimcΩm −simcΩm

sωmsim cωmsim cim

2
4

3
5 ð66Þ

rEm ¼ QE
p rm ð67Þ

vEm ¼ QE
p vm ð68Þ

4- Finally, the position and velocity of the Moon in the LVLH coordinate system
(located on the target satellite) can be obtained by:

ΦL
E ¼ −

cθcΩ−sθcisΩ cθcΩ þ sθcicΩ sθsi
sθcΩ−cθsisΩ −sθsΩ−cθcicΩ cθsi

sisΩ −sicΩ ci

2
4

3
5 ð69Þ
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rm ¼ ΦL
E rEm ¼ xm ym zm½ �T ð70Þ

vm ¼ ΦL
E vEm ¼ x˙ m y˙ m z˙ m

� �T ð71Þ

Appendix 2: Proof of relative motion equations

In this appendix, the procedure to obtain the proposed satellite relative motion by
employing of the Lagrangian principle of is briefly summarized.

The Lagrange’s equation used for developing the relative motion model for satellite j
is as follows [46]:

d
dt

∂K j

∂q̇n

� �
−
∂K j

∂qn
þ ∂U j

∂qn
¼ Qn ð72Þ

In this equation, qj ¼ x j y j z j
� �T

is the generalized displacement and q̇ j ¼
x˙ j y˙ j z˙ j
� �T

is the generalized velocity. Kj and Uj are kinetic and potential energy
(per unit mass) for satellite j. Also,Qn represents the sum of the non-conservative forces
(Here, includes the air drag and the control force) applied on controllable
satellite. Now, by exactly computing the potential and kinetic functions for
the jth satellite and the non-conservative forces applied on the jth satellite,
the relative dynamic motion equations of satellite in the LVLH frame can be
derived.

The kinetic energy (per unit mass) for satellite j is obtained by means of:

K j ¼ 1

2
r˙ jr˙ j ¼ 1

2
vx−x˙ j−yiωz
� �2 þ h

r
þ y˙ j þ x jωx

� �2

þ z˙ j þ y jωx

� �2" #
ð73Þ

By substituting Eq. (73) into the first two terms of the Lagrange’s equation (72) will
have:

d
dt

∂K j

∂q̇n

� �
−
∂K j

∂qn
¼

€x j−2y˙ jωz−2y˙ jωz−y jαz þ z jωxωz−r ωzð Þ2 þ v˙ x
� �

€y j þ 2x˙ jωz−2z˙ jωx þ x jαz−y jω
2
z−y jω

2
x þ z jαx þ 2Vx ωzð Þ þ r αzð Þ

€zþ 2x˙ jωz þ x jωxωz þ y jαx−z jω2
x−r ωzωxð Þ

2
64

3
75 ð74Þ
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By using Equations (2), (37), (38) and (40) and substituting into the expression within
parenthesis in Eq. (74), the following expression is obtained:

d
dt

∂K j

∂q̇n

� �
−
∂K j

∂qn
¼

€x j−2y˙ jωz−x jω2
z−y jαz þ z jωxωz−rη2−ζsisθ−C‖Va‖vx−

μm

d3
−κm xm

€y j þ 2x˙ jωz−2z˙ jωx þ x jαz−y jω
2
z−y jω

2
x−z jαx−ζsicθ−C‖Va‖

h
r
−ωerci

� �
−κmym

€zþ 2y˙ jωx þ x jωxωz þ y jαx−z jω2
x−ζci−C‖Va‖ωercθsi−κm zm

2
66664

3
77775
ð75Þ

The sum of gravitational potential functions of satellite j due to the gravitational fields
of Earth and Moon as a third-body is expressed as equation (76):

U j r j; cφ j

� �
¼ −

μ
r j

þ μ
r j

∑
∞

n¼2
Jn

Re

r

� �n

Pn cφ j

� �	 

−μm

1

d j
−

1

r3m
r j rm

� �
ð76Þ

where rj = (r + xj)x + yj y + zj z.
Also, cϕ j

¼ rjZ=r j; and rjz is the projection of satellite j’s position vector on the Z
axis in the ECI frame.

rjZ ¼ r j Z ¼ r þ x j
� �

sisθ þ y jcθsi þ z jci ð77Þ

Therefore, by using Equations (48), (51) and (77) will have:

∂U j

∂qj
¼

η2j r þ xið Þ þ ζsisθ þ κ jxm þ μm r þ xmð Þ=d3j
η2j y j þ ζsicθ þ κ jym þ μmxm=d

3
j

η2j z j þ ζ jci þ κ jzm þ μmzm=d
3
j

2
64

3
75 ð78Þ

At this point, the effects of the non-conservative air drag and control forces should be
considered in the relative nonlinear equations of motion. So in this paper, in addition to
the gravitational effect, the effects of the control force and the air drag have been
incorporated into the Lagrange’s equations as Qn terms. To extract the drag force, the
relative velocity of satellite j should be determined first. This term is expressed as
follows:

V j ¼ V þ ρ j þ ω� ρ j ð79Þ

Vaj ¼ V j−ωe � r j ð80Þ
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Now by using Equations (18) and (78) and substituting into Eq. (79), the velocity
vector of the jth satellite will be obtained:

Va j ¼
vx þ x˙ j−y jωz−ωez jcθsi þ ωey jci

h
r
þ y˙ j þ x jωx−z jωx þ z jωesisθ−ωe r þ x j

� �
ci

z˙ j þ ωey jsisθ þ ωe r þ x j
� �

cθsi

2
664

3
775 ð81Þ

Now, the radial, along-track and cross-track components of non-conservative force can
be obtained with consideration of drag force Fdrag ¼ −C j Va j

�� ��Va j as follows:

Qxj ¼ C j Vaj

�� �� vx þ x˙ j−y jωz−ωez jcθsi þ ωey jci
� �

þ Txj ð82Þ

Qyj ¼ C j Vaj

�� �� h
r
þ y˙ j þ x jωx−z jωx þ z jωesisθ−ωe r þ x j

� �
ci

� �
þ Tyj ð83Þ

Qzj ¼ C j Vaj

�� �� z˙ j þ ωey jsisθ þ ωe r þ x j
� �

cθsi
� �

þ Tzj ð84Þ

Finally, by substituting Equations (75), (78) and (82–84) into Eq. (72) and considering
the conditions of the hovering operation and with consideration of Appendix 1,
Equations (45–47) will be proved.
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