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Abstract
The Sun-Earth triangular Lagrange point, L5, offers an ideal location to monitor
the space weather. Furthermore, L4, L5 may harbor Earth ‘Trojan’ asteroids and
space dust that are of significant interest to the scientific community. No spacecraft
has, thus far, entered an orbit in the vicinity of Sun-Earth triangular points in part
because of high propellant costs. By incorporating solar sail dynamics in the model
representing CR3BP, the concept of a mission to L4, L5 can be re-evaluated and the
total �V can be reconsidered. A solar sail is employed to increase the energy of the
spacecraft and deliver the spacecraft to an orbit about an artificial Lagrange point by
leveraging solar radiation pressure and, potentially, without any insertion �V.

Keywords Multi-body dynamics · Solar sail · Sun-Earth triangular Lagrange
points · Solar radiation pressure · Solar observations · Earth Trojan asteroids

Introduction

Successfully harnessing the solar radiation pressure (SRP) from the Sun can poten-
tially offer unique maneuvering capability to a spacecraft equipped with solar sails.
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The concept of solar sailing relies on photons from the Sun to propel the spacecraft
through the space environment by providing the sail-based spacecraft with continu-
ous acceleration. In 2015, the US-based Planetary Society launched and successfully
unfurled its 32 m2 LightSail. The sail-craft was able to demonstrate the capability to
successfully deploy the sail. Success of JAXA’s IKAROS mission, along with several
small to mid-sized solar sail mission concepts, have renewed interest in solar sailing
[26, 36].

Scientific Interest

With the launch of the International Sun/Earth Explorer 3 (ISEE-3) in 1978, the
near vicinity of the Sun-Earth L1 libration point has been the preferred location for
satellites to monitor space weather. However, as the satellite is positioned along the
Sun-Earth line, observations of Coronal Mass Ejections (CMEs) directed towards the
Earth are not feasible due to occultation [34]. In addition, the observation of Co-
rotating Interaction Regions (CIRs) from the vicinity of L1 is not advantageous since
the time interval between observations and the arrival at Earth is not sufficient to
allow preventative measures to minimize the damage. In recent years, the Sun-Earth
L5 region has been investigated for an Earth-Affecting Solar Cause Observatory
(EASCO) [10]. The triangular point, L5, supplies an ideal location for monitoring the
space weather away from the Sun-Earth line and aids in efficient detection of CMEs
and CIRs [34]. Early detection offers 3-5 days advanced warnings of space weather
that can potentially cause severe damage to telecommunications on Earth.

In addition to providing a unique angle to monitor the Sun and assess space
weather, the equilateral Lagrange points, L4,5, may harbor asteroids and space dust
that are of significant interest to the scientific community. In 2010, NASA’s Wide-
field Infrared Survey Explorer (WISE) spacecraft identified the first Earth Trojan
Asteroid (2010 TK7) in the vicinity of L4 [5]. A near-Earth Asteroid, 2010 SO16, is
currently in the vicinity of Sun-Earth L5 and is possibly a horseshoe companion of
the Earth [4]. The discoveries have opened a window for possible missions and sci-
entific exploration of the bodies themselves as well as the region in the vicinity of
the triangular Lagrange points in search of additional Earth Trojans at both L4 and
L5. The composition of Earth Trojan asteroids can potentially be similar to the rocks
that formed the Earth about 4.6 billion years ago. Examination of such bodies - those
from the time of the birth of the solar system - can shed new light on the composition
of the Earth during its origin and early stages of development.

Objectives

The goal of this investigation is an exploration of the design space for trajectories
from a parking orbit about Earth to the vicinity of artificial triangular Lagrange points
using a solar sail. Prior to incorporating the sail dynamical model in the Circular
Restricted Three-Body Problem (CR3BP), a set of solutions are derived based on
the trajectory requirements. Initial solutions are computed that incorporate multiple
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�Vs to depart the parking orbit around Earth, shift onto a manifold associated with
a periodic orbit near a collinear libration point; the path is directed towards a desired
destination and insert into an orbit in the vicinity of the equilateral Lagrange point,
L4 or L5. Initial investigation aims at a better understanding of the behavior of a
sail-based spacecraft and then leveraging the solar radiation pressure to deliver the
spacecraft to its destination. The analysis addresses the goal of this investigation
through the following objectives:

1. Explore the design space by computing a large set of L1 and L2 orbits and their
associated manifolds.

2. Exploit orbits based on their energy and manifolds that reach the desired
destination, i.e., vicinity of L4 or L5.

3. Incorporate solar sails to maneuver the spacecraft and increase the energy level
by leveraging SRP.

4. Investigate the departure �V from an Earth parking orbit.

By investigating the natural dynamics and flow that exists within the context of
the CR3BP, a preliminary trajectory is designed to depart the vicinity of the Earth,
shift onto a manifold towards the desired target and enter the orbit in the vicinity
of L4,5. The selection of a manifold is based on the target Lagrange point, i.e., L4
or L5, energy level of the desired final orbit around the equilateral Lagrange point
and the time of flight (TOF) to reach the vicinity of the target along the manifold.
An initial departure �V is implemented to depart the parking orbit and leverage a
stable/unstable manifold. Intermediate �V(s) can raise the energy level of the tra-
jectory or serve as a trajectory corrective maneuver. Once the spacecraft reaches the
vicinity of the target destination, a final �V may be necessary to insert into an orbit
about the equilateral Lagrange point. The complete end-to-end trajectory acts as an
initial guess for a corrections process that incorporates a solar sail force model into
the circular restricted three-body problem (SS-CR3BP).

Incorporating the solar sail in the CR3BP potentially lowers the �V requirements
by leveraging the solar radiation pressure. As a part of this effort, the solar sail is
employed to increase the energy of the spacecraft in lieu of energy raising maneuvers
and to deliver the spacecraft to an artificial triangular Lagrange point without any
insertion �V. Once the corrected final path is achieved, the trajectory is optimized to
lower the departure �V from the Earth parking orbit.

Previous Contributions

Trajectory andMission Design to Sun-Earth L4, L5

In recent years, trajectories to Sun-Earth equilateral Lagrange points have been the
focus of a number of applications. With L5 as an ideal location for early detection
and observation of potentially hazardous space weather and the discovery of the first
Earth Trojan Asteroid, 2010 TK7, in the vicinity of L4, the Sun-Earth triangular
Lagrange points have gained interest as candidates for future space missions. The
STEREO (Solar Terrestrial Relations Observatory) mission, consisting of two nearly
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identical spacecraft, was launched in 2006. To enable stereoscopic imaging of the
Sun, one spacecraft orbits ahead of Earth and the other trails behild. The two space-
craft flew past Sun-Earth L4 and L5, respectively, without entering any stable orbit
at either Lagrange points. Detailed analysis of an L5 mission to observe the Sun
and assess the space weather was completed by Lo, Llanos and Hintz [20]. In 2011,
Llanos, Miller and Hintz continued this work and provided navigational analysis for
a mission to L5 [19]. Gopalswamy et al. [11] proposed the Earth Affecting Solar
Cause Observatory (EASCO) mission concept that detailed the scientific issues and
instruments necessary to monitor and understand the CMEs and CIRs. Further anal-
ysis from EASCO was carried out at the Mission Design Laboratory (MDL), NASA
Goddard Space Flight Center and is aimed towards observing the solar maximum
in the year 2025 [10]. The results of the MDL study determined that the EASCO
mission concept is very achievable as a single observatory carrying 10 science instru-
ments. The authors state that the L5 point is the next logical location for obtaining
solar observation of CMEs that direct solar energetic particles towards the Earth and
cause geomagnetic storms. In the following year, Llanos, Miller and Hintz extended
their work to incorporate trajectory design to both L4 and L5 in the Sun-Earth Sys-
tem [17]. The goal was a strategy to study the Sun’s magnetic field from a vantage
point near L5 and search for Earth Trojan Asteroids in the vicinity of L4 and L5.

With the discovery of the Earth Trojan 2010 TK7, the scientific community is
intrigued with the idea of additional, smaller asteroids, and space dust in the vicinity
of the Sun-Earth triangular Lagrange points. The possibility of investigating the bod-
ies that may be similar in composition to the rocks that formed the Earth is also of
interest. Dvorak et al. completed an extensive investigation of the orbit of 2010 TK7
to better understand the motion of bodies in the vicinity of triangular Lagrange points
[7]. Based on their analyses, the authors predict the existence of additional ‘interest-
ing objects’ in the vicinity of the L4 or L5 equilibrium points. In 2013, Llanos et
al. also explored powered heteroclinic and homoclinic connections between the Sun-
Earth Lagrange points L4, L5 and the quasi-satellite orbit about Earth [18]. Such a
transfer trajectory can potentially transfer sample material from the triangular points
to the vicinity of the Earth. A team of scientists from NASA Johnson Space Center
presented their work on a mission concept at the 46th Lunar and Planetary Science
Conference, 2015 proposing an in-situ science and exploration mission to survey the
L4 and L5 regions in the Sun-Earth system [16].

Solar Sails

Exploring solar sails to move throughout the solar system is based on a dynamical
concept for harnessing the energy carried by photons from the Sun in the form of
momentum. Although serious planning to explore the solar system using solar sails
has only gained momentum in last few decades, the concept of harnessing solar radi-
ation pressure (SRP) was first studied in 1873 by James Clerk Maxwell [23]. In 2010,
the first spacecraft to demonstrate solar radiation pressure as a source of propulsion
in flight was launched by the Japanese Space Agency, JAXA. The solar sail space-
craft, Interplanetary Kite-craft Accelerated by Radiation Of the Sun (IKAROS), is
a square sail 20 m in diameter and 7.5 μm thick created from polyimide film. The
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IKAROS sail-craft successfully demonstrated both a propulsive force of 1.12 mN
and attitude control capabilities [25]. Thus, IKAROS delivered a pathway for further
development in the field of solar sail technology.

On May 20, 2015, the Planetary Society successfully launched LightSail–1
(formerly LightSail–A) as a small technology demonstrator aboard an Atlas V
rocket from Cape Canaveral Air Force Station, Florida. The spacecraft successfully
deployed its 5.6 m x 5.6 m solar sail on June 7, 2015 and the test flight was declared a
success [6]. LightSail–2 is currently scheduled to be launched as a secondary payload
aboard the SpaceX Falcon Heavy carrying US Air Force Space Test Program (STP-2)
payload no earlier than October 30, 2018. LightSail–2 launch aims at further enhanc-
ing and demonstrating the sail-based control strategy. Following deployment, SRP
will be leveraged to raise orbit apogee and increase orbital energy of the sail-craft.
It is expected that LightSail–3 will follow with a proposed mission that incorpo-
rates an insertion into an orbit near the Sun-Earth Lagrangian point, L1. LightSail–3
will supply early detection and warning of geomagnetic storms capable of damag-
ing power and communications systems on Earth [3]. Thus, the recent success and
rejuvenation of interest in harnessing the potential of a solar sail has accelerated the
development of the technology. The success of the IKAROS mission and demonstra-
tion by LightSail–A are a significant breakthrough and, thus, interest continues in
further testing and validating of solar sail technology.

Considerable efforts have focused on solar sail behavior in the vicinity of the artifi-
cial collinear Lagrange points, L1 and L2. Baoying and McInnes designed new orbits
associated with these points by incorporating solar sails in their dynamical model [1].
Their work applied knowledge of accurate approximation of ‘halo’ orbits around the
equilibrium points [15]. McInnes and Simmons focused on Sun-centered halo-type
trajectories above the ecliptic plane aided by solar sails [24]. In 2012, Sood further
explored the solar sail applications to widen the design space in the vicinity of artifi-
cially displaced L1 Lagrange points. Samples of offset, hovering periodic orbits are
demonstrated above a displaced L1 equilibrium point and three-dimensional trans-
fers between halo orbits are constructed to exhibit sailing capabilities [31]. Solar
sails have also been proposed for highly non-Keplerian orbits high above the eclip-
tic plane since solar sails are capable of supplying a continuous propulsive force in
the form of SRP from the Sun [35]. Recent work in the Earth-Moon system aims at
investigating the behavior in the vicinity of displaced collinear Lagrange points and
producing solar sail periodic orbits in the CR3BP [13, 30]. Design of solar sail trajec-
tories with applications to continuous surveillance of the lunar south pole have also
been proposed [26, 36]. Research in both the Sun-Earth and Earth Moon system have
primarily been focused in the vicinity of the displaced collinear Lagrange points or
in the form of hovering orbits close to the primaries.

The capabilities of solar sails to reach the triangular Lagrange points have not
yet been exploited for flight. In addition, no spacecraft has reached an orbit about
L4 or L5 due to high propellant costs associated with transfer and insertion into an
orbit about an equilateral Lagrange point [20]. But, solar sails can potentially deliver
a viable mission concept by harnessing SRP for transfer trajectories and insertion
maneuvers around artificial L4 or L5 points. In addition to demonstrating the tech-
nology, trajectory design to triangular points can aid in placing the spacecraft at
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locations from where space weather may be monitored and advance the search for
Earth Trojans as well as offer a platform to sample space dust.

Background: Circular Restricted Three-Body Problem

The motion of an infinitesimal mass, P3, under the gravitational influence of the
two larger primaries, P1 and P2, is investigated by examining the classical Circular
Restricted Three-Body Problem (CR3BP). Casting the problem within the context
of the CR3BP offers the essential features of the motion with some mathematical
advantages. A rotating frame, R, is defined to be consistent with the orbital motion
of the primaries. The dextral, orthogonal set of unit vectors associated with the rotat-
ing frame is denoted as x̂; ŷ; ẑ where x̂ is always directed from P1 to P2. The
position vectors corresponding to the locations of the three bodies, P1, P2 and P3,
relative to the barycenter, are defined as r1, r2 and r3, respectively. The position
vector of P3 relative to P1 and P2 can be expressed as r13 = r3 - r1 and r23 = r3 -
r2, respectively, as represented in Fig. 1. Characteristic quantities, i.e., mass, length,
and time, are defined to generalize the governing differential equations through
nondimensionalization such that

m∗ = m1 + m2 (1)

l∗ = r1 + r2 (2)

t∗ =
√

l∗3

G̃m∗ (3)

where m1 and m2 are the masses of the two primaries, P1 and P2, respectively,
ri is the distance between the system barycenter and the two primaries and G̃ is

Fig. 1 Geometrical definitions in the circular restricted three-body problem
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the dimensional universal gravitational constant. Nondimentional time and relative
position vectors are then expressed in the form [32]

τ = t

t∗
(4)

ρ = r3

l∗
= xx̂ + yŷ + zẑ (5)

d = r13

l∗
= (x + μ)x̂ + yŷ + zẑ (6)

r = r23

l∗
= (x − 1 + μ)x̂ + yŷ + zẑ (7)

μ = m2

m∗ (8)

where ρ, d, r represent the nondimensional position vectors of P3 relative to the
barycenter, P1 and P2, respectively, and μ is the nondimentional mass ratio.

Within the context of the CR3BP, five particular solutions exist in the rotating
frame as depicted in Fig. 2 [8]. These equilibrium solutions, also termed the libra-
tion or Lagrangian points, were first recognized by Joseph-Louis Lagrange in 1772
while investigating the three-body problem [32]. In the 3BP, L1, L2, and L3 are the
collinear libration points, whereas, L4 and L5 are termed as ‘equilateral’ or ‘trian-
gular’ Lagrange points since they form an equilateral triangle with the Sun and the
Earth at the other two vertices. In a physical sense, the five particular solutions rep-
resent the locations where the combined influence from the two primaries, P1 and
P2, on the third body, P3, of negligible mass, are balanced within the context of the
rotating frame.

Fig. 2 Lagrangian points in the circular restricted three-body problem
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Periodic Orbits, Invariant Manifolds and Jacobi Constant

Several fundamental periodic solutions exist in the vicinity of the equilibrium points
that demonstrate their usefulness in trajectory and mission design. Families of pla-
nar and three-dimensional orbits have been investigated over the past few decades [2,
12, 15]. The Lyapunov family of planar orbits in the vicinity of L1 and L2 Lagrange
points appears in Fig. 3a. Although the families comprise of infinite number of peri-
odic orbits, only a finite number of members are illustrated in the figures. In addition
to the sets of symmetric periodic orbits, numerous asymmetric periodic orbits are
also known to exist in the CR3BP [9, 12, 22]. A corrections algorithm is modified to
produce asymmetric periodic orbits in the vicinity of L4 and L5 equilateral Lagrange
points [12, 27]. A set of short period orbits in the vicinity of L4 and L5 appear
in Fig. 3b. Note that the families of periodic orbits illustrated in Fig. 3 are in the
Sun-Earth rotating frame.

In the CR3BP, the periodic orbits in the vicinity of the Lagrange points can either
be stable or unstable. The stability characteristics of an orbit are derived from the
monodromy matrix, M , that is generated by integrating the state transition matrix,
�(τf , τ0), for one orbital period, P , i.e.,

M = �(P, τ0) (9)

The monodromy matrix is a real matrix that possesses three reciprocal pairs of eigen-
values, λi where i = 1 : 6. The dynamical stability information for the periodic orbit
is supplied by the nature of the eigenvalues associated with the monodromy matrix.
For any periodic orbit, the monodromy matrix possesses at least one unit eigenvalue
and produces a reciprocal of unity to complete the pair, i.e., λ1,2 = 1. For a complex
eigenvalue with magnitude equal to unity, the reciprocal is subsequently equal to the
complex conjugate, i.e., λ3,4 = a± ib . Lastly, there is a reciprocal pair of real eigen-
values associated with the stable and unstable modes, i.e., λ6 = 1

λ5
(other than unity).

In case of stable periodic orbits, i.e., family of short-period orbits shown in Fig. 3a,

a b

Fig. 3 Sun-Earth L1, L2 Lyapunov orbits and L4, L5 short-period orbits
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stable and unstable modes do not exist. The eigenvalues of the monodromy matrix
associated with the stable periodic orbits are either pairs of unity or complex conju-
gates. The manifold trajectory is generated by exciting a point on the orbit, X∗

i , along
the 6-D normalized eigenvector, ν, associated with the stable or unstable mode, i.e.,

X = X∗
i ± dν (10)

where d is the step size along the selected stable or unstable eigenvector. The step
size is system-dependent to avoid violating the linear approximation. In the case of
Sun-Earth CR3BP, a typical value of d = 300 km is used as the step size.

A member of the L1 Lypunov family of orbits is illustrated in Fig. 4a. For
visualization purposes, the Earth has been scaled to 20 times its actual size. The
stability analysis revealed the stable/unstable eigenvalues of the monodromy matrix
associated with the orbit. Leveraging the stable and unstable eigenvectors, invari-
ant manifold structures exist that grant passage into and away from the associated
orbit, respectively. Stable and unstable manifolds are computed by perturbing a state
along the direction of stable or unstable eigenvector. Such perturbations result in a
set of stable and unstable manifolds that exhibit asymptotic flow surface to and from
the periodic orbit. A subset of unstable manifolds associated with the Sun-Earth L1
Lyapunov orbit in Fig. 4a appears in Fig. 4b as depicted in magenta. The unstable
manifolds asymptotically depart the Lyapunov orbit and are propagated forward in

a b

Fig. 4 Periodic orbits and unstable manifolds of the Lyapunov orbit



256 The Journal of the Astronautical Sciences (2019) 66:247–281

time for 1800 days (approximately 5 years). The forward propagation demonstrates
their flow approaching the two equilateral Lagrange points and the associated subset
of short-period family of orbits about L4 and L5 are illustrated in purple. To construct
low energy transfers, the invariant manifolds form an important tool in the computa-
tion and design of complex trajectories. However, it is important to note that the L4,
L5 short-period orbits lack stable and unstable eigenvalues, thus, inhibiting the exis-
tence of manifold trajectories that grant passage into and away from the short-period
orbits [29]. Nonetheless, the unstable manifolds associated with the orbit illustrated
in Fig. 4a can be leveraged to arrive in the vicinity of the target short-period orbit.

Within the context of the CR3BP, a unique known integral of motion, i.e., the
Jacobi integral, is defined [32]. The Jacobi constant is a scalar and appears as an
energy-like quantity for a particular orbit. Analysis employing the Jacobi constant is
an effective approach to compute boundaries, orbits, trajectories and transfers [31].
It also forms an important tool in maintaining accuracy in the numerical integration
process. However, the addition of other external forces may eliminate the constant,
yet it still provides a tool to gauge the changes in the energy-like quantity due to
additional forces. The direction in which the Jacobi constant changes can potentially
offer an insight into the pros and cons of additional force, thus, making it possible to
exploit the force in delivering the spacecraft to its final destination and energy level.

Solar Sail Dynamical Model

The concept of harnessing the energy carried by photons from the Sun in the form of
momentum extends the solar sail model into the CR3BP framework. In the develop-
ment of a force model, a mathematical description of the direction of force relative to
the sail orientation is a key kinematic relationship. The quantity of photons encoun-
tered by the solar sail is directly related to the sail orientation with respect to the
direction of photon flow. Thus, the orientation of the sail governs the acceleration

Fig. 5 Solar sail orientation
angle definitions
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produced on the solar sail by the incident and reflected photons. A schematic repre-
sentation appears in Fig. 5. The momentum transfer from the incident and reflected
photons acting on a sail results in a net force that continuously accelerates the vehi-
cle. The reference frame of interest is formed from the unit vector, ẑ, the direction
that remains fixed in both the inertial and the rotating frame, as well as the unit vec-
tor, d̂, along the Sun-sail line. The angle α represents the angle between the Sun-sail
unit direction, d̂, and the direction vector parallel to the surface normal of the sail, n̂.
The angle α is also represented in Fig. 5; α is frequently denoted as the cone angle
or the nutation angle of the solar sail relative to the Sun-sail line. The second angle
in Fig. 5 is represented as the angle γ . The angle γ is defined as the angle between

k̂ and the projection of n̂ onto the plane spanned by k̂ and d̂×ẑ

|d̂×ẑ| . The unit direction

vector k̂ is defined as

k̂ = (d̂ × ẑ) × d̂

|(d̂ × ẑ) × d̂| (11)

In a sense, γ defines the angle by which the plane spanned by the unit vectors, d̂

and n̂ has precessed; thus, the angle γ is also the precession angle or the clock angle.
Based on the currently available technology, the maximum rate of rotation for attitude
control is equal to 0.02 deg/s for a three-axis spacecraft equipped with sails that use
sail panel rotations [37]. This attitude control rate is referenced to offer insight into
the relative time that is required for a desired attitude maneuver. It is vital to note
that if the sail orientation angles, α and γ , remain constant relative to the Sun in the
rotating frame, the orientation will change in the inertial frame. Thus, the hardware
must continually reorient the sail with respect to the inertial frame. To maintain the
orientation of a sail relative to the Sun in the inertial frame, the sail must reorient at
approximately one degree per day to maintain the orientation relative to the Sun over
a one-year period.

The momentum transfer from the incident and reflected photons acting on a sail
result in a net force that continuously accelerates the vehicle. The derivation of the
acceleration due to solar radiation pressure is based on three critical assumptions. For
the current analysis, it is assumed that the solar sail is ideal and flat with a perfectly
reflecting surface, i.e., there is no absorption or refraction but only reflection due
to the incident photons. Thus, all the photons experience perfectly elastic collisions
and “bounce off” the surface of the solar sail. It is also assumed that the source of
photons is the primary, P1, the Sun. The flow of incident photons is parallel to the
Sun-sail line and the resultant force is parallel to the sail surface normal. Considering
the assumptions, the solar sail acceleration is expressed as [23],

asail = ε
2P0

σ
cos2 α n̂ (12)

where ε is the efficiency of the sail that typically ranges between 85% - 90% and P0
is the solar radiation pressure at the distance of 1 AU from the source, i.e., the Sun.
In Eq. 12, the load factor, σ , usually expressed in [g/m2], is defined as the ratio of the
total mass supported by the sail to the total surface area of the sail. The unit vector in
the direction parallel to the surface normal of the sail is represented by vector n̂ and
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is a function of the sail angles, α and γ . A new quantity is also defined as the solar
sail characteristic acceleration, a∗. The characteristic acceleration is the acceleration
at 1 AU and, for the particular orientation, such that the sail angle is equal to zero,
i.e., α = 0o [23], or

a∗ = ε
2 × P0

σ
= ε

2 × 4.56

σ
[mm/s2] (13)

The characteristic acceleration, a∗, serves as a reference value for comparison with
general solar sail accelerations. Consistent with the definition of σ , a characteristic
mass-to-area ratio, σ∗, is defined, such that, equal and opposite force is produced
due to solar radiation pressure at 1 AU, i.e.,

σ ∗ = ε
2 × P0 r13

G̃m1
(14)

Recall that G̃ is the dimensional universal gravitational constant; the quantity r13
is the dimensional scalar distance to the third body, i.e., the solar sail spacecraft,
from the first primary, P1, the Sun; and, m1 is the mass of the first primary, P1. The
introduction of the sail lightness parameter, β, is appropriate as

β = σ ∗

σ
(15)

The sail lightness parameter, also frequently denoted the sail loading parameter, is
the ratio of the acceleration due to the solar radiation pressure to the classical solar
gravitational acceleration[23]. Thus, the solar sail acceleration expression in Eq. 12,
is set equal to one for efficiency, i.e., ε = 1, and is rewritten as

a = β
G̃m1

r2
13

cos2 α n̂ (16)

Now, rewriting Eq. 16 in terms of nondimensional quantities

r̈Sail = β
(1 − μ)

d2
cos2 α n̂ (17)

where r̈Sail is the nondimensional vector acceleration of the solar sail due to solar
radiation pressure. Recall that d is the nondimensional distance of the solar sail from
the Sun. The model for the nondimensional solar sail acceleration in Eq. 17 is now
easily included to augment the equations of motion in the classical CR3BP. Thus, a
mathematical model that incorporates the solar sail dynamics in the CR3BP can be
expressed in a condensed form of the equations of motion for a spacecraft equipped
with solar sail and are written as

ẍ = 2ẏ + �∗
x + aSail−x (18)

ÿ = −2ẋ + �∗
y + aSail−y (19)

z̈ = �∗
z + aSail−z (20)

where �∗
i are the partials of the pseudo-potential, �∗, defined as

�∗ = 1 − μ

d
+ μ

r
+ 1

2
(x2 + y2) (21)
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and aSail−x , aSail−y , and aSail−z are the components of the nondimensional solar sail
acceleration expressed in the rotating frame [31]. The dynamical model represented
in Eqs. 18, 19, and 20 is nonlinear and coupled, thus, no closed-form solution exists.

Solar Sail Trajectory Design

Spacecraft Trajectory Design in the Circular Restricted Three-Body Problem
(CR3BP)

Investigating the design space that meets the mission and science requirements con-
stitutes an integral part of the trajectory design process. Prior to incorporating the
solar sail in the trajectory design process, a good initial guess is desirable. The pro-
cess requires exploring the design space, i.e., the solution space that exists in the
vicinity of the libration points. Each periodic orbit about the libration point has a
Jacobi constant, the only integral of motion known to exist in the CR3BP. The man-
ifolds associated with the libration point orbits provide natural flow to and from the
orbit. The design strategy takes into account the following variables: (1) the Jacobi
constant of the initial and final orbit, (2) the unstable manifold associated with the
initial departure orbit, (3) the departure altitude relative to the Earth, (4) the insertion
location along the final arrival orbit, and (5) the number of revolutions of the final
orbit. In this section, intuitive search strategy is outlined by exploring the available
design space. Flow away from the orbit, along the manifolds, passing the vicinity
of the Earth and departing towards the final destination are investigated. A baseline
discontinuous trajectory is formulated as an initial guess for differential corrections
algorithm.

Selection Criteria – Design Space

The trajectory design process is initiated with the selection of an L1 periodic orbit
based on the Jacobi value of the final desired orbit. However, the orbit selection is not

Fig. 6 Jacobi values for a subset
of L1 and L2 Lyapunov family
with subset of L5 short period
orbits. The “reference number”
is only a place holder for orbits
with varying Jacobi values
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a required step but aids in exploiting possible low cost transfer options that may exist
as the two orbits are of similar energy level. Jacobi values corresponding to a subset
of L1, L2 Lyapunov family and L5 short period orbits are apparent in Fig. 6. Figure 6
shows that, in general, the L5 short period orbits (green) are of higher energy (lower
Jacobi value) compared to the subset of L1 and L2 Lyapunov family of orbits (red
and blue, respectively). For preliminary design analysis, a final orbit in the vicinity
of L5 is selected such that the Jacobi constant of the short period orbit is similar to
that of the L1 and L2 Lyapunov orbits. Thus, orbits corresponding to a Jacobi value
of 2.99995 are selected. In Fig. 7a, L1 and L2 Lyapunov orbits are depicted relative
to the Earth in red and blue, respectively. Though it may visually appear, the two
orbits are not mirror images (equal size) of each other. L5 short period orbit for the
same Jacobi value of 2.99995 is illustrated in Fig. 7b. Note that the size of the L5
short period is two orders of magnitude greater than that of the L1 and L2 Lyapunov
orbits, though the period of all three orbits is close to 1 year.

Trajectory Design Options

Continuing the design process, dynamical properties of manifolds are exploited. The
Jacobi value associated with the manifolds remains conserved and possesses the same
value as that of the orbit within the rotating frame. Employing manifolds to locate
transfer option opens a window to depart from a parking orbit onto a manifold of
either L1 or L2 Lyapunov orbit and reach the vicinity of L4 and L5 to lower the

a b

Fig. 7 L1, L2 Lyapunov orbits and L5 short period orbit for Jacobi value of 2.99995
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mission cost. For each triangular Lagrange point, four possible transfer options are
briefly described that may vary based on the time of flight, �V requirements or the
overall scientific goal of the mission. Transfer options to L4

– L1 unstable manifold to L4: spacecraft departs from Earth parking orbit
along L1 unstable manifold to arrive in the vicinity of final destination orbit
about L4.

– L1 stable manifold to L1 unstable manifold to L4: spacecraft departs from Earth
parking orbit along L1 stable manifold towards the L1 Lyapunov orbit. The
spacecraft may get into an orbit about L1 to carry out scientific experiments
before departing along the unstable manifold towards its final destination orbit
about L4.

– L2 unstable manifold to L4: spacecraft leaves the parking orbit around the Earth
along the unstable manifold associated with the L2 orbit for final destination
orbit about L4.

– L2 stable manifold to L2 unstable manifold to L4: spacecraft departs the Earth
parking orbit along L2 stable manifold towards the L2 Lyapunov orbit. Similar
to option two, the spacecraft may get into an orbit about L2 to carry out scien-
tific experiments before departing along the unstable manifold towards its final
destination orbit about L4.

Similarly, exploiting the Sun-Earth L1 and L2 Lyapunov orbit manifolds, trajectory
design options to the vicinity of second triangular Lagrange point, L5, are listed
below. Transfer options to L5

– L1 unstable manifold to L5: spacecraft departs from Earth parking orbit
along L1 unstable manifold to arrive in the vicinity of final destination orbit
about L5.

– L1 stable manifold to L1 unstable manifold to L5: spacecraft departs from Earth
parking orbit along L1 stable manifold towards L1 Lyapunov orbit. The space-
craft may get into an orbit about L1 to carry out scientific experiments before
departing along the unstable manifold towards its final destination orbit about
L5.

– L2 unstable manifold to L5: spacecraft leaves the parking orbit around the Earth
along the unstable manifold associated with the L2 orbit for final destination
orbit about L5.

– L2 stable manifold to L2 unstable manifold to L5: spacecraft departs the Earth
parking orbit along L2 stable manifold towards L2 Lyapunov orbit. The possi-
bility exists to station the spacecraft in an orbit about L2 to carry out scientific
experiments before departing along the unstable manifold towards its final
destination orbit about L5.

The trajectory design options listed in “Trajectory Design Options” are summa-
rized in Fig. 8. Thus, Sun-Earth Lyapunov manifolds are leveraged to investigate
potential trajectory design options to deliver the spacecraft from the vicinity of the
Earth to an orbit around triangular Sun-Earth Lagrange points.
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Fig. 8 A summary of trajectory design options listed in “Trajectory Design Options”

Differential Corrections and Baseline Trajectory

Exploiting the fundamental solutions (libration point orbits, stable/unstable mani-
folds) of the CR3BP, a baseline trajectory is constructed that acts as an initial guess
in the trajectory design process. The initial guess, a discontinuous trajectory, encom-
passes the following arcs in the design process: (1) parking orbit about Earth, (2)
stable/unstable or a combination of the two manifolds, (3) arrival at the destination
orbit, and (4) insertion into final orbit about the equilateral Lagrange point.

As an example of the trajectory design process, consider the L1 Lyapunov orbit
and the L5 short period orbit depicted in Fig. 7a and b, respectively. Recall, the two
orbits are of the same Jacobi value of 2.99995. Thus, the unstable manifold that orig-
inates from the L1 Lyapunov orbit and is propagated until it reaches the vicinity of
the destination L5 short period orbit is of the same energy level as the two orbits.
Initially, the spacecraft is stationed in a parking orbit around the Earth. The selection
of departure altitude plays an important role in the trajectory design process. As the
goal of the work is to incorporate solar sail in the final model, it is desirable to depart
from an altitude higher than 800 km. At the altitude of 800 km, the solar radiation
pressure and the atmospheric drag are equal. Thus, for the sail to operate efficiently,
the recommended altitude is between 800 to 1000 km [38]. In this formulation, a cir-
cular Earth parking orbit with an altitude of 1000 km is selected. At the departure
location, �V is performed to transfer the spacecraft from the parking orbit onto the
L1 orbit’s unstable manifold. The manifold is propagated until it reaches the vicin-
ity of destination short period orbit about L5. In the example presented with no sail,
a final �V is permitted to get into the final orbit. Thus, the initial guess to the cor-
rections scheme allows performing two �Vs to deliver the spacecraft from the Earth
parking orbit into an orbit about the L5 triangular Lagrange point.

Baseline trajectory design is accomplished through the application of a differen-
tial corrections scheme to a two-point boundary value problem (2PBVP). Algorithm
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based on generalized Newton’s Method is employed that involve constraints and free
variables. A multiple shooting scheme is applied to reduce the effect of local sensi-
tivities by distributing them among the individual arcs, increasing the accuracy and
incorporating relative ease with which constraints can be placed along the trajec-
tory and free variables can be selected. However, integration time is allowed to vary
along each segment, thus, resulting in variable-time multiple shooting algorithm [31].
Distribution of sensitivities may also allow the convergence of solutions that may
not appear using only one arc. The application of multiple shooting scheme enables
placement of constraints at multiple locations along the path rather than just at the
end points. As a test case, it is desirable to maintain the sail-based spacecraft in the
vicinity of L5 for a duration of 5 years. To achieve a given number of revolutions, the
patch point vector is stacked with 5 orbits about the L5 Lagrange point. For the ini-
tial guess, there are 90 arcs resulting in 90 time segments. In close proximity of the
Earth, patch points are added at an interval of 6 days for the first 6 months (30 arcs).
Thereafter, additional patch points are introduced once every 30 days for 2.5 years
(30 arcs). Once the spacecraft enters an orbit about the L5 Lagrange point, patch
points are added once every 2 months for the next 5 years (30 arcs). Note, these are
randomly selected to generate an initial guess.

Mathematical constraints are applied to fix the departure altitude at 1000 km
where application of �V is allowed in the corrections scheme. Position continuity is
enforced along the entire path and velocity continuity is additionally enforced along
the path except at the two maneuver locations. Upon arrival in the vicinity of the des-
tination orbit, the second �V is performed to deliver the spacecraft from the transfer
arc to the final destination about L5. The resultant corrected trajectory is depicted in

Fig. 9 Corrected trajectory from
the Earth parking orbit to the
vicinity of the triangular
Lagrange point, L5, with two
�V maneuvers
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Fig. 9. The tolerance for the convergence criteria is set as 10−9 which is equivalent
to 149.6 m and 0.03 mm/s in dimensional units. Figure 10a and b illustrate close-up
views of the two boxes marked I and II, respectively, in Fig. 9. The trajectory appear-
ing in Fig. 10a corresponds to a departure from 1000 km parking orbit around the
Earth. The location of departure maneuver, �V1, of 3.041 km/s is marked with a red
dot. After the application of the instantaneous maneuver, the spacecraft transfers onto
the manifold arc associated with an L1 Lyapunov orbit towards its final destination
in the vicinity of L5 as depicted in Fig. 10b. Upon arrival, an insertion maneuver of
559 m/s is performed at the location marked by �V2. Thus, the total �V required
for the transfer trajectory is �Vtotal = 3.6 km/s. The total time of flight (TOF) for
the transfer from the Earth parking orbit to arrival in the vicinity of L5 is 2.879 years
(approximately 1036 days).

Solar Sail Trajectory Design to the Vicinity of L4, L5

Preliminary design of trajectories in the SS-CR3BP is typically based on a differential
corrections scheme. A numerical corrections approach from the CR3BP is extended
to incorporate the solar sail angles. The inclusion of the effects of photons on the

a b

Fig. 10 Departure and arrival trajectories with two �Vs in CR3BP
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acceleration of a solar sail based spacecraft increases the complexity associated with
the system model. For trajectory design, a two-point boundary value problem can
be solved using a differential corrections scheme and implementing solar sail angles
as additional design parameters. The corrections scheme is formulated to iteratively
modify the initial states based on the linear estimated information available from the
state transition matrix (STM).

Sail-Based Differential Correction

The inclusion of sail angles offers additional options for formulation of the shoot-
ing scheme. A number of shooting schemes incorporating solar sail angles have been
formulated and presented in previous work [31]. In this work, variable-time multi-
ple shooting scheme is developed in which the trajectory is decomposed into a set
of arcs, identified in terms of n discrete points, denoted as ‘patch-points’, allowing
more flexibility in the corrections process. The overall objective of a multiple shoot-
ing differential corrections algorithm is a complete trajectory that is continuous in
position and velocity. To achieve such continuity, orientation angles associated with
the solar sail are iteratively updated to result in a final converged path. Note that
the orientation angles remain fixed relative to the rotating frame over the integration
time between two patch points. Allowing the integration time, τi , to vary along any
segment, further extends the capabilities of using sail angles in the multiple shooting
scheme, thus, resulting in the formulation of variable-time multiple shooting algo-
rithm. The updated design variable vector, X now includes additional variables, τi .
Thus, X is a (9n−1)×1 vector since there are n−1 integration times corresponding
to n − 1 arcs between n patch points, i.e.,

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1(8 × 1)
...

Xn(8 × 1)

τ1
...

τn−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

Note that Xi is an eight-dimensional vector comprised of three position states, three
velocity states, and two orientation angles. The constraint vector, F (X) is defined to
maintain continuity in both position and velocity states.

F (X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1(τf1)[1 : 6] − X2(τ02)[1 : 6]
X2(τf2)[1 : 6] − X3(τ03)[1 : 6]

...
Xn−1(τfn−1)[1 : 6] − Xn(τ0n)[1 : 6]

||r(τ01)|| − (RE+1000 km
l∗ )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(23)

Continuity is maintained only for the six position and velocity states between each
arc as denoted by [1 : 6]. The sail angles are free to differ between two arcs to
achieve position and velocity continuity between two segments. Recall, r represent
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the nondimensional position vectors of P3 relative to P2 and RE is the radius of
Earth, approximated as 6,371 km. Final constraint in F (X) involves the altitude of
the parking orbit and ensures that the departure altitude of 1000 km above the surface
of the Earth is enforced during the corrections process. Thus, the dimensions of the
constraint vector are (6(n − 1) + 1) × 1 for n − 1 arcs between n patch points and
the additional altitude constraint.

Incorporating sail angles in the multiple shooting algorithm results in modified
Jacobian matrix. Many terms within the DF (X) matrix are recognized as the terms
of the modified STM the φi(τfi

, τ0i
). Supplementing the two orientation angles as

design variables, the STM, φi(τfi
, τ0i

) is a 6 × 8 dimensional matrix. Inclusion of
integration time along each segment as additional design variables and the altitude as
an additional constraints, the DF (X) matrix of dimensions (6(n−1)+1)× (9n−1)

is written in the form

DF (X)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(τf1 , τ01 ) −H 0 0 . . . 0 Ẋ1[: 6, 1] 0 0 . . .

0 φ2(τf2 , τ02 ) −H 0 . . . 0 0 Ẋ2[1 : 6, 1] 0 . . .

.

.

.
. . .

. . .
. . .

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

0 0 . . . φn−1(τfn−1 , τ0n−1 ) −H 0 0 . . . Ẋn−1[1 : 6, 1]
∂||r(τ01 )||

∂ρ
[1, 1 : 3] 0 . . . . . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where H is a 6 × 8 rectangular diagonal matrix with diagonal entries equal to
one. Ẋi[1 : 6, 1] represents the time derivatives corresponding to the position and
velocity states at the end point along the reference segment, Xi[1 : 6, 1]. The last
row of DF (X) matrix holds the partials for the altitude constraint in the columns
corresponding to the initial position state.

Lightness Parameter Selection

The sail lightness parameter, also frequently denoted as the sail loading parameter, is
the ratio of the acceleration due to the solar radiation pressure to the classical solar
gravitational acceleration used to parameterize the solar sail efficiency. Even though
the value for the lightness parameter within the range 0.03 - 0.3 reflects the current
technology capabilities, recent IKAROS mission had β value of approximately 0.001
[33]. McDonald and McInnes conducted a recent review of solar sail technology and
discussed potential short-, mid-, and long-term solar sail missions with applicable
lightness parameter [21]. The lightness number for the short-term, GeoStorm mis-
sion is calculated as β ≈ 0.02 and β ≈ 0.1 for the mid-term Solar Polar Orbiter.
As for the long-term mission goal, β ≈ 0.3 − 0.6 is calculated for the Interstellar
Heliopause Probe. Heiligers and McInnes calculated the β in the range of 0.0388 to
0.0455 for the Sunjammer mission [14]. Therefore, with solar sail technology still in
the developmental stages, analyzing the behavior of solar sails with low sail lightness
parameters may be more useful in near term mission design and analysis.
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Solar Sail Transfer Family to L4 and L5

Trajectory design incorporating a solar sail begins with the selection of a baseline
solution computed in “Differential Corrections and Baseline Trajectory” and plotted
in Fig. 10 as an initial guess to the design process. The goal of using a solar sail is
to lower the �V requirement for the mission by performing a single departure �V
from Earth parking orbit, accelerating the sail using SRP from the Sun, entering and
maintaining the path in the vicinity of destination orbit using the sail itself. Note that,
no insertion �V is performed to arrive at the final orbit around L5. Prior to building
a family of transfer trajectories, an initial value of sail parameter, β value of 0.042 is
arbitrarily selected for preliminary trajectory design. Employing the sail-based differ-
ential corrector and continuation in β, a subset of transfer trajectories are constructed
for β in the range of 0.005 - 0.06 as depicted in Fig. 11a. The range for β is selected
keeping in mind the near-term capabilities in the field of solar sail technology. Two
trajectories for β values of 0.005 and 0.06 are marked. The blue arrow indicates the
direction of increasing β. During the continuation scheme, steps are taken in β in
intervals of 0.001 but for clarity, only a subset of transfer trajectories are plotted in
Fig. 11. A zoomed-in view for the transfer trajectories departing Earth parking orbit
appears in Fig. 11b. Once again, the departure altitude is constrained to be at 1000
km above the surface of the Earth. The red dots mark the location of �Vdeparture for
each trajectory departing from the Earth parking orbit for a specific value of β. Note
that only the initial altitude is constrained and not the initial departure position vector

a b

Fig. 11 Subset of solar sail corrected trajectory with only departure �V maneuver for β = 0.005 - 0.06
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relative to Earth, hence, the departure location is allowed to freely change during the
corrections process as is evident from Fig. 11b.

Similar to the sail-based trajectories that deliver the spacecraft to the vicinity of
Sun-Earth L5, the strategy is extended to generate a family of transfers to the vicin-
ity of Sun-Earth L4. The framework leverages the natural dynamics and flow that
exists in the CR3BP and the solar radiation pressure acting on the sail. A subset of
sail-based transfer trajectories are depicted in Fig. 12 for β in the range of 0.005 -
0.06. Note that the solar sail is leveraged to maintain the trajectories in the vicinity of
L4 without any insertion maneuver, thus demonstrating the capabilities of a solar sail.
The two trajectories for β values of 0.005 and 0.06 are marked in Fig. 12a, and the
blue arrow indicates the direction of increasing β. A zoomed-in view for the trans-
fer trajectories departing the Earth parking orbit appears in Fig. 12b. Once again, the
departure altitude is constrained to be at 1000 km above the surface of the Earth.
The red dots mark the location of �Vdeparture for each trajectory departing from
the Earth parking orbit for a specific value of β. Note that only the initial altitude is
constrained and not the initial departure position vector relative to Earth, hence, the
departure location is allowed to freely change during the corrections process as is
evident from Fig. 11b.

a b

Fig. 12 Subset of solar sail corrected trajectory to L4 with only departure �V maneuvers for β = 0.005 -
0.06
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Transfers to the Vicinity of L5

To investigate the properties associated with the family of transfer trajectories, the
case of L5 is further investigated. Recall the definition of sail lightness parameter as
the ratio of Solar Radiation pressure (SRP) acceleration to the gravitational accelera-
tion, thus, providing a qualitative measure for the solar sail efficiency. As a result of
varying the sail parameter, β for the transfer trajectory, each trajectory is capable of
generating variable SRP with a specific upper bound.

Arrival Criterion The amount of SRP acceleration generated governs the architecture
of the trajectory and duration of time it takes for the trajectory to arrive at the vicinity
of L5. In Fig. 13a, arrival for the subset of transfer trajectories appears for the family
illustrated in Fig. 11a. The dotted-blue circle marks the location of arrival in the
vicinity of the L5 Lagrangian point. The radius of the circle is ≈ 0.04 AU based on
the amplitude of an L5 short period orbit with Jacobi value equivalent to 2.99995 that
was incorporated to find the initial transfer trajectory in the no-sail CR3BP. Three
trajectories with their β values are marked to demonstrate how the flow varies as the
sail parameter, β changes. Trajectories with lower β values (0.005 and 0.01) form
additional ‘cusps’ prior to entering the dotted-blue circle that marks the arrival when
compared to relatively higher β values , i.e. 0.06.

Effects of Sail Parameter on SRP Acceleration The overall behavior of the trajectory,
as it arrives in the vicinity of the Lagrangian point, varies with the change in sail
parameter. It is evident that, for the subset of transfer trajectories, higher values of
β result in trajectories that are closer to the given initial guess. The higher the value
of sail parameter β, the more SRP acceleration the sail-craft is capable of generating
as apparent from Fig. 13b. As the time increases, the sail-craft with higher β values
is able to generate enough acceleration to effectively maintain the spacecraft in the
vicinity of L5 as compared to trajectories with lower β values. As the SRP accel-
eration varies with the β value, the time of flight (TOF) it takes for each trajectory
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Fig. 13 Subset of sail trajectories as they arrive in the vicinity of L5 and the corresponding SRP over time
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to enter the blue circle also changes. The magenta dots in Fig. 13b mark the loca-
tion for a specific transfer trajectory as it reaches the dotted-blue circle. As the β

value decreases, the TOF increases relatively slowly as can be seen for the β values
ranging from 0.06 - 0.015. Conversely, for sail parameter β = 0.005 and 0.01, the
TOF increases by 9-12 months which is also evident from the formation of additional
cusps seen in Fig. 13a. Upon arrival, the spacecraft remains in the vicinity of L5 for
at least 4-5 years to carry out assigned scientific mission. Of course, the duration of
time spent can be altered based on the mission requirements.

Displacement of Traditional L5 Within the context of the CR3BP, Lagrange points
are the equilibrium locations where the net gravitational forces of the two primaries
completely offset the centripetal force in the rotating frame. Physically, such existing
conditions imply that both the velocity and acceleration are zero relative to the rotat-
ing frame. With the addition of the solar sail to the force model of the CR3BP, new
equilibrium solutions emerge in the form of artificial Lagrange points [24]. Thus, for
the transfer trajectories depicted in Fig. 11a, new artificial Lagrange points, L5’ are
evaluated for β ranging from 0.005 - 0.06 and depicted in Fig. 14. With the addi-
tion of SRP acceleration the equilibrium points shift towards the Sun as the value
of sail parameter, β increases. The artificial Lagrange points depicted are for case
corresponding to sail angle, α = 0, i.e., the sail is head-on relative to the Sun-sail
direction. For β = 0, the solar sail model generates a special case for the conditions
corresponding to the classical CR3BP. Traditional L5, that is associated with the clas-
sical CR3BP, is marked by a black dot. With each transfer trajectory, the value of β

is stepped up by 0.005 that results in an equivalent shift of ≈ 200,000 km. For sail
parameter, β = 0.06, the total displacement of the artificial equilibrium point relative
to traditional L5 is ≈ 3 million km (0.02 AU). Thus, a spacecraft in the vicinity of dis-
placed Lagrange point, L5’ can monitor the solar weather from a location relatively
closer than a spacecraft around the traditional Lagrange point, L5.

Fig. 14 Artificial Lagrange
points, L5’ for β = 0.005 – 0.06
relative to traditional Lagrange
point L5
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Jacobi Integral Analysis The single known integral of motion, denoted as the Jacobi
constant, exists in the classical CR3BP. In Solar Sail Circular Restricted Three-Body
Problem (SS-CR3BP), the Jacobi value is no longer a constant. However, investigating
the change in the Jacobi value helps in analyzing the effects of SRP acceleration on
the energy level of the spacecraft as apparent in Fig. 15a. In addition to the β val-
ues in the range 0.005 - 0.06 being investigated in this section, lower values of β =
0.002 and 0.003 are added to help gain insight into the general trend for the change
in Jacobi value over time as the photons continue to bombard the sail-craft. As an
example, for β = 0.003 (light-blue), Fig. 15a shows that the sail-craft is able to
lower the Jacobi value (increase energy) over the duration of the flight. Quantitative
decrease in Jacobi for a specific β value will be discussed in the following section. It
is evident from the general trend that for higher values of sail parameter, β, the varia-
tion in Jacobi is higher. Hence, with higher β values, the energy of the trajectory can
be significantly increased using solar sails.

Non-Optimal Parking Orbit Departures Although the spacecraft builds-up momen-
tum as a result of harnessing SRP from the Sun, an initial boost is provided to insert
the spacecraft onto a path (manifold) towards the destination. The initial boost is
delivered in the form of an impulsive maneuver, �Vdeparture, that is required to
depart from a 1000 km Earth parking orbit as illustrated in Fig. 15b. Note that the
�Vdeparture corresponding to a particular value of β, as depicted in this figure, is
non-optimal. Recall, each transfer trajectory is constructed employing a continuation
in the sail parameter, β. Further analysis in “Local Optimal Departure �V” is carried
out to optimize the solution, thus, lowering the �Vdeparture requirements.

Solar Sail Trajectory Analysis

To understand the behavior of a sail-based spacecraft and gain both qualitative and
quantitative insight, a single transfer trajectory is investigated. Recall that a family
was built by continuation in lower values of sail parameter, β, with a step size of δβ

= 0.001. Taking into consideration the advancement in the solar sail technology, β =
0.022 is arbitrarily selected for further analysis.
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Sail Transfer and Baseline Trajectory The transfer trajectory for the sail parameter
value of 0.022 is extracted and plotted as illustrated in Fig. 16. A baseline trajectory
from CR3BP is used as an initial guess for the sail-based dynamical model. The red
transfer trajectory is the initial guess derived in the CR3BP, whereas, the sail-based
corrected trajectory for β = 0.022 is depicted in light-blue. The departure trajectory
from a 1000 km parking orbit around the Earth is illustrated in Fig. 17a. As a result of
including a solar sail in the dynamical model, only one �V is performed as an initial
boost. The �V is delivered to insert the sail-craft from the Earth parking orbit onto
a trajectory towards the final destination using solar sails. The location of impulsive
departure �V is marked by �Vnew and is equal to 3.0341 km/s. The arrival transfer
trajectories for both the CR3BP and SS-CR3BP are plotted in Fig. 17b. The veloc-
ity discontinuity in the red transfer trajectory (CR3BP) is the location where �V2
was performed to deliver the spacecraft in the vicinity of L5 for the baseline case
(with no sail). As a result of incorporating a solar sail, no insertion �V is required,
as evident from the light-blue transfer trajectory. Also note the displacement of the
artificial Lagrange point, L5’ relative to the traditional Lagrange point, L5. The net
displacement is ≈ 1.05 million km (0.007 AU) towards the larger primary, P1, i.e.,
the Sun as a result of SRP acceleration acting on the sail-craft.

Jacobi Analysis for β = 0.022 Transfer to L5 In the CR3BP, the Jacobi value repre-
sents a constant of motion within the rotating frame. The Jacobi value for a trajectory
is conserved when no additional forces, i.e., �Vs, SRP are taken into consideration.
�V maneuver results in a change in Jacobi constant. Jacobi values for two cases,
no sail and sail-based (β = 0.022) trajectories are shown in Fig. 18. The red line

Fig. 16 Sail based (light-blue)
and no sail (red) transfer
trajectories from the Earth orbit
to the vicinity of L5 in the
Sun-Earth system
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ba

Fig. 17 Solar sail corrected trajectory with one �V maneuver at the departure prior to unfurling the sail
with β = 0.022

Fig. 18 Jacobi analysis of transfer trajectories with no sail (red) and with sail (light-blue) for β = 0.002
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represents the case with no sail in the dynamical model. The first jump of 0.0608 in
the Jacobi value (at Time = 0 years) is representative of a departure �V performed
to leave the Earth parking orbit and is equivalent to �V1 = 3.041 km/s. Note the dis-
continuity added at the top of y − axis for Jacobi value of the departure orbit. The
second jump (at Time = 2.9 years) marks the location where �V2 of 559 m/s is per-
formed to further raise the energy (lower Jacobi by 1.896 ×10−4) of the trajectory to
insert the spacecraft in an orbit about L5 Lagrange point. Thus, in the no sail case,
the required �Vtotal = 3.6 km/s to deliver the spacecraft from a 1000 km parking
orbit to the vicinity of L5. The case exploiting the solar sail technology with β of
0.022 is depicted in light-blue. Only one �V is performed that is delivered at the
initial time to depart the Earth parking orbit marked as �Vnew equivalent to 3.034
km/s. Note, no secondary �V is performed to insert the spacecraft in an orbit about
L5, instead, the solar sail leverages the SRP to increase the energy of the spacecraft
and arrive in a final trajectory about displaced L5’. The TOF for the sail-based space-
craft is 2.92 years (magenta dot) and exceeds the case with no sail by only ≈ 16
days. In this scenario, incorporating solar sails in the dynamical model (SS-CR3BP)
assisted in accomplishing a trajectory solution to an artificial Sun-Earth L5 by
harnessing the SRP. Thus, the use of currently-available solar sail technology signifi-
cantly reduces the required �V to visit the vicinity of Sun-Earth triangular Lagrange
points.

Sail Orientation Angles The magnitude and the direction of the SRP acceleration
generated is governed by the orientation of the sail relative to the Sun-sail line. Within
the context of the SS-CR3BP, two sail angles are defined as clock angle, α and pitch
angle, γ to orient the sail in the rotating frame. For the initial analysis of solar sail,
motion in the x − y plane is investigated that is governed by the clock angle α.
Recall, the algorithm presented incorporates turn and hold strategy in which the sail
maintains a constant orientation along an arc between two successive patch points
relative to the Sun-sail line in the rotating frame. However, from a mission perspec-
tive, it is important to analyze the sail angles from an inertial observer as the sail is
continuously rotating along each arc relative to the Sun. Thus, α is expressed in the
inertial frame by angle ψ relative to the inertial X̂ − axis as depicted in Fig. 19a
undergoing continuous rotation when viewed by an inertial observer. The values for
ψ range between ±180◦ in the inertial frame relative to the X̂ − axis. The rate of
change in the orientation (slope) of the sail in the inertial frame is ≈ 1◦/day. The
discontinuity in the figure is not physical but an artifact of the definition and bounds
of the sail angle, ψ , in the inertial frame. To determine the practicality of the tra-
jectory, it is vital to consider hardware constraints that govern the pointing accuracy
of a sail, turn-rate, and gimbal properties, i.e., maximum gimbal torque, maximum
gimbal angle, and the maximum gimbal rate. The absolute values for the change in
sail orientation angle, |�ψ |, required for the trajectory are illustrated in Fig. 19b
for the duration of 8 years. For a 40 × 40 m2 sail, Wie established a maximum
roll-control torque of ±1.34 × 10−3 N·m and the maximum pitch and yaw-control
torques of ±1.45 × 10−3 N·m that are capable of producing maximum angular
accelerations of ±13.0 × 10−6 deg/s2 and ±28.1 × 10−6 deg/s2, respectively [37].
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Fig. 19 Solar sail orientation angle analysis in the inertial frame

The maximum turn rate for a three-axis stabilized spacecraft was set at 0.02 deg/s.
Thus, the time to reorient the solar sail by a maximum value of |�ψ | = 5.61◦ is ≈
4 minutes 40 seconds. In the Sun-Earth system, the reorientation time span is rel-
atively more acceptable as compared to the Earth-Moon system where the time for
one complete revolution is much smaller.

Local Optimal Departure�V

By incorporating the solar sail dynamics in the CR3BP, corrections scheme is
employed to build a family of transfers from the Earth parking orbit to the vicin-
ity of L5 for various sail parameter, β. Utilization of design tools, such as periodic
orbits, invariant manifolds, the Jacobi value analyses, can potentially deliver low-
cost transfer options, but they do not guarantee an optimal solution. However,
solutions achieved from studying these inherent properties of the CR3BP regime
can assist in formulating a good initial guess for the optimization problem. The
objective is to deliver the spacecraft from an Earth parking orbit to the sail-based
trajectory towards the final destination, L5. The initial �V maneuver (and the only
�V) forms the primary performance measure that directly impacts the fuel require-
ments for the mission. Thus, minimization of the departure �V maneuver is the
main focus for the optimization process based on the transfer trajectory design
requirements.

The general architecture for the optimization process encompasses finding a set
of design variables, X, that can minimize or maximize the objective (cost) function,
f (X) and is subject to equality constraints, F (X) = 0 or inequality constraints,
F (X) ≤ 0. Analysis for a fuel optimal transfer between the Earth parking orbit and
the final destination in the vicinity of displaced Lagrange point, L5’ is formulated as
a minimization problem of a constrained nonlinear multivariable function. Identify-
ing the design variables from Eq. 22, with the objective of minimizing �Vdeparture
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subject to the equality constraint of Eq. 23, F (X) = 0, the optimization problem is
stated as

minimize

f (X) = ∣∣∣∣�Vdeparture

∣∣∣∣2 = (Vx1 − Vxc)
2 + (Vy1 − Vyc)

2 + (Vz1 − Vzc )
2 (25)

subject to F (X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

X1(τf1)[1 : 6] − X2(τ02)[1 : 6]
X2(τf2)[1 : 6] − X3(τ03)[1 : 6]

...
Xn−1(τfn−1)[1 : 6] − Xn(τ0n)[1 : 6]

||r(τ01)|| − (RE+1000 km
l∗ )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= 0 (26)

where

V 1 = [V x1V y1V z1 ]T = X1(τ01)[4 : 6] (27)

V c = [V xcV ycV zc ]T (28)

�V = V 1 − V c (29)

From the definition, V1 is the velocity vector of the first patch point at an initial time,
τ01 . Whereas, Vc is the velocity vector at the departure location of the spacecraft
from the Earth parking orbit. The equality constraints in Eq. 26 are incorporated
to maintain the position and velocity continuity along each arc and the last entry
in the constraint vector enforces the departure from a 1000 km parking orbit. The
design variables consists of three position components, three velocity components,
two angles for each patch point, n, and n−1 integration times between n patch points,
thus, resulting in the design variable vector, X of dimensions (9n − 1) × 1.

The optimization problem is solved using Matlab’s fmincon function that
attempts to find a constrained minimum subject to nonlinear equalities or inequalities
defined in a nonlinear constraint function. Thus, the problem is referred to as con-
strained nonlinear optimization. The process is initialized by providing the solar sail
end-to-end trajectory designed in “Solar Sail Trajectory Analysis” and illustrated in
Fig. 16 (light-blue) as an initial guess with tolerance of 10−9. Applying the described
optimization scheme, the resulting transfer with a local optimal departure maneuver,
�Voptimal , converged in 9 iterations and appears in Fig. 20 along with the initial
guess. The optimization process alters the solar sail trajectory as depicted in magenta
and provides �Voptimal relative to the non-optimal case in light-blue. As expected
with the optimization routine, the overall architecture remains similar to that of a
good initial guess. The departure trajectories from a 1000 km altitude Earth parking
orbit are illustrated in Fig. 21a. The blue trajectory depicts the sail-based depar-
ture from the parking orbit with non-optimal �V. The optimal departure maneuver,
�Voptimal location is marked by a red dot along the parking orbit that delivers the
spacecraft onto the magenta sail-based trajectory. The required change in velocity to
deliver the spacecraft from the Earth parking orbit onto the sail-based transfer arc
is �Voptimal = 3.0060 km/s. In this scenario, the optimization scheme lowered the
departure �V by 28.1 m/s. The arrival in the vicinity of the displaced Lagrange point,
L5’ is illustrated in Fig. 21b for the local optimal and non-optimal departures. As a
result of the optimization process, the TOF for the local optimal case increased by ≈
7 days.
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Fig. 20 Sail transfer trajectories
with optimal (magenta) and
non-optimal (light-blue)
departure �V from the Earth
orbit to the vicinity of L5

a b

Fig. 21 Sail trajectories for β = 0.022 with optimal (magenta) and non-optimal (light-blue) departure �V
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As a part of testing and building on the strategy outlined for applying solar sails to
the trajectory design process and optimizing the departure �V, additional values for
β are tested as listed in Table 1.

The values of β selected are based on current technology capabilities and are
within the range of proposed short-term Geostorm and the Sunjammer missions [14,
21]. The first column identifies the case starting with the converged solution in clas-
sical CR3BP with no sail. Following the no sail case, three transfer trajectories with
different values for the sail parameter, β were converged by a sail-based corrections
scheme and supplied to the optimization routine as an initial guess. Column 3 gives
the maximum absolute value for the change in sail orientation angle, ψ for the sail-
based trajectories. Column 4 is the total time of flight (TOF) for each case to reach
the vicinity of the displaced L5’. Note that the TOF for the no sail case is relatively
lower than the non-optimal sail and the three optimized sail-based trajectories. Col-
umn 5 gives the maneuver requirements in the form of �Vdeparture from the Earth
parking orbit onto the transfer trajectory. From column 6, it is evident that no arrival
�V is needed in the three sail-based cases as contrary to the no sail case that requires
a �Varrival equal to 559 m/s for the spacecraft to insert into an L5 short period
orbit. Thus, by leveraging SRP to maneuver the solar sail, the spacecraft demon-
strates the capability to achieve the desired trajectory in the vicinity of displaced
Lagrange points. Cost comparison is carried out with previous works in the literature.
Lo, Llanos, and Hintz provided preliminary characterization for a typical L5 mis-
sion and gave a case-by-case detailed table for overall performance [20]. The results
achieved in this work on solar sail transfer trajectory design are promising in com-
parison to the data provided by the authors. Comparing the case for the final insertion
into an orbit with approximate amplitude of 0.047 AU, previous authors stated the
�V requirement ranges from 3.74 – 5.01 km/s in the CR3BP.

In the work presented here, incorporating a solar sail in the design scheme enabled
harnessing the SRP to explore trajectory design options to Sun-Earth L4 and L5.
Recall that the departure altitude for this investigation was maintained at an altitude
of 1000 km, taking into consideration the effectiveness of the solar sail and avoid-
ing atmospheric drag. However, the transfer trajectories accomplished with the sail
reflect the advantages of leveraging the SRP to maneuver the spacecraft. Thus, the
overall propulsion requirements in the form of �V can potentially be lowered by

Table 1 Departure �V optimization results for sail parameter, β, values compared to no sail and non-
optimal results

Case β max |�ψ | TOF (years) �Vdeparture (km/s) �Varrival (km/s)

No sail − − 2.88 3.041 559

Non-optimal 0.022 5.61o 2.92 3.0341 0

Optimal 1 0.022 7.62o 2.94 3.006 0

Optimal 2 0.032 5.49o 2.90 2.994 0

Optimal 3 0.042 7.37o 2.90 2.988 0
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incorporating solar sail dynamics in the trajectory design process to the vicinity of
the triangular Lagrange points, L4 and L5. Further cost savings can be achieved by
launching SmallSats and CubeSats as secondary payloads, as currently planned for
the upcoming Near Earth Asteroid (NEA) Scout mission [28].

Conclusions

To summarize, trajectory design options, incorporating solar sail dynamics, from the
Earth parking orbit to the vicinity of triangular Lagrange points are explored. In
particular, one transfer strategy is investigated in depth that utilizes the unstable man-
ifold associated with an L1 Lyapunov orbit to depart from the Earth parking orbit,
arrive in the vicinity of the displaced Lagrange point, L5’ and maintain a trajectory
close to the artificial libration point with the help of the solar sail. The change in sail
angle |�ψ | in the inertial frame delivered promising results for reorientation of the
sail that are within the technological capabilities of today. The optimization scheme
further assisted in investigating the �V requirement to leave the Earth parking orbit.
The trajectory analysis demonstrated that by incorporating solar sail in the dynam-
ical model, solar radiation pressure can be leveraged to maneuver the sail-based
spacecraft. Moreover, solar sails provide cost-effective transfers and trajectory design
options to the vicinity of triangular Lagrange points, thus, enabling solar observations
and exploration of potential Earth Trojans.
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