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Abstract
We develop a computational approach for the design of continuous low thrust trans-
fers in the planar circular restricted three-body problem. The use of low thrust
propulsion allows the spacecraft to depart from the natural dynamics and enables
a wider range of transfers. We generate the reachable set of the spacecraft and use
this to determine transfer opportunities, analogous to the intersection of control-free
invariant manifolds. The reachable set is developed on a lower dimensional Poincaré
section and used to design transfer trajectories. This is solved numerically as a dis-
crete optimal control problem using a variational integrator, which preserves the
geometric structure of the motion in the three-body problem. We demonstrate our
approach with two numerical simulations of transfers in the Earth-Moon three-body
system.

Keywords Three body problem · Reachability · Optimal control

Introduction

Designing spacecraft trajectories is a classic and ongoing topic of research. There has
been significant research into the design of orbital transfers for space vehicles. Opti-
mal expenditure of onboard propellant is critical to allowing a mission to continue for
a longer period of time or to enable the launch of a less massive spacecraft. Electric
propulsion systems offer a much greater specific impulse than chemical systems. As
a result, the greatly increased efficiency allows for greater payload mass or extended
duration missions. However, these electric propulsion systems typically have much
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less thrust than their chemical counterparts and therefore orbital maneuvers have a
much longer time of flight. In spite of this drawback, a wide variety of missions, such
as communication and deep space probes, have utilized the unique benefits of low
thrust electric propulsion to great effect [3].

Recent developments in miniature electric propulsion and small satellites now
offer the potential for new research opportunities [6, 9]. The potential for more
demanding missions places an even greater importance on the mission design to
ensure that optimal trajectories satisfy mission requirements [6, 7, 14, 25]. There has
been extensive research focused on the optimal control of spacecraft orbital transfers
in the three-body problem [8, 14, 22, 25]. Within the three-body problem, a space-
crafts feasible region of motion is constrained by its energy, or Jacobi integral. The
addition of low-thrust propulsion offers the potential of reduced transfer transit times
and the ability to depart from the free motion trajectory to allow for increased trans-
fer opportunities. Frequently, insight into the problem or intuition on the part of the
designer is required to determine initial conditions that will converge to the desired
solution due to the inherent nonlinear and chaotic behavior of the three-body sys-
tem [28]. Conventional general-purpose Runge-Kutta integration techniques, such
as those implemented in [8, 22], may fail to preserve geometric properties of the
dynamic system numerically. Variational integrators can allow for reduced compu-
tational effort without any loss of numerical stability or energy drift which exist in
conventional integration schemes.

Objective and Contribution

In this paper, we propose a systematic design method which enables low-thrust
transfers in the planar circular restricted three-body problem. We utilize the concept
of the reachability set to enable a simple methodology of selecting initial condi-
tions to achieve general orbital transfers. The reachable set, defined as the set of all
attainable states subject to the system constraints, allows for the extension of the
previous control-free methods based on invariant manifolds. Defining the reachable
set on a Poincaré section reduces the dimensionality of the system dynamics to the
study of a related discrete update map. Through the use of low-thrust control input,
the reachable set on the Poincaré section is enlarged and enables a larger space of
potential transfers. By iteratively computing the reachable set, and minimizing the
distance to the target on the Poincaré section, we generate general transfer trajec-
tories. With this proposed method, the previous research on control-free trajectories
will be generalized with the addition of low thrust propulsion systems.

In short, the authors present a systematic method of generating optimal trans-
fer orbits in the three-body problem. This paper provides a discrete optimal control
formulation to generate the reachability set on a Poincaré section.

In addition, the use of a geometric integrators ensures numerical stability for
long-duration orbit transfers and maintains this behavior with the addition of small
magnitude control inputs. Our computation of the reachable set allows for a sim-
ple metric of defining optimal trajectories. We avoid the issues inherent in selecting
a valid initial condition for optimization. Rather, we choose a state on the reacha-
bility set which minimizes the distance toward the desired target. We demonstrate
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these capabilities via two numerical examples simulating transfer trajectories in the
Earth-Moon system.

Problem Formulation andMathematical Background

We utilize the planar circular restricted three body problem (PCRTBP) as the basis of
our system definition. It is a popular model in the preliminary analysis of multibody
spacecraft trajectories. In the context of Earth based mission, the PCRTBP affords a
relatively simple dynamic model while still capturing the major third body perturba-
tion of the Moon. In addition, this model allows for a systematic process to define and
exploit Poincaré sections. Furthermore, the 2D solutions afforded by the PCRTBP
are frequently used to gain a qualitative understanding of the trade space of transfers
in the Earth-Moon system. The PCRTBP approach offers insight into the fundamen-
tal dynamical structure while capturing the major dynamic properties of the planar
motion. As a result, this approach is best suited for preliminary trajectories which do
not require large plane changes.

The research in this work utilizes a variety of disparate concepts in dynamics,
control theory, and astrodynamics. As a result, we briefly present some key concepts
in the system model as well as established tools in the three body problem, such as
invariant manifolds and Poincaré sections. In addition, we summarize the derivation
of a variational integrator for the PCRTBP which is used in the subsequent geometric
optimal control formulation.

Planar Circular Restricted Three Body Problem

The Earth is assumed to be the more massive primary, m1, while the Moon is the
second, smaller primary m2. The equations of motion are developed in a rotat-
ing reference frame which allows for much greater insight into the structure of
the dynamics. Following convention, the system is also non-dimensionalized by the
characteristic units of length, mass, and time [14]. As a result, the system can be
characterized by a single mass ratio parameter μ,

μ = m2

m1 + m2
. (1)

In the rotating reference frame the Lagrangian is given by

L = 1

2

(
(ẋ − y)2 + (ẏ + x)2

)
+ 1 − μ

r1
+ μ

r2
, (2)

where the distances r1, r2 ∈ R define the distance from the spacecraft to each primary
and are defined as

r1 =
√

(x + μ)2 + y2, (3)

r2 =
√

(x − 1 + μ)2 + y2. (4)
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Following a straightforward application of the Euler-Lagrange equations, a more
detailed derivation is provided in [28], results in the following equations of motion
defined in the rotating reference frame

[
ṙ

v̇

]
=

[
v

Av + ∇U + u

]
= f (t, x, u) , (5)

where the matrix A and pseudo gravitational potential gradient ∇U are

A =
⎡
⎣

0 2 0
−2 0 0
0 0 0

⎤
⎦ , (6)

∇U =

⎡
⎢⎢⎣

x − (1−μ)(x+μ)

r3
1

− μ(x−1+μ)

r3
2

y − (1−μ)y

r3
1

− μy

r3
2

− (1−μ)z

r3
1

− μz

r3
2

⎤
⎥⎥⎦ =

⎡
⎣

Ux

Uy

Uz

⎤
⎦ , (7)

and the control input is defined as u = [
ux uy

]T ∈ R
2×1 and assumed to be con-

tinuously variable but bounded in magnitude, i.e. uT u ≤ u2
max . The state is defined

as x = [
r v

]T with r = [
x y

]T ∈ R
2×1 and v = [

ẋ ẏ
]T ∈ R

2×1 representing
the position and velocity with respect to the system barycenter, respectively.

Jacobi Integral

There exists a single integral, or constant of motion for the three-body problem [16,
28]. This energy constant is analogous to the total mechanical energy, however it is a
non-physical quantity arising from the problem formulation [28]. Also known as the
Jacobi constant, it is defined as a function of the position and velocity in the rotating
frame and given by

E (r, v) = 1

2

(
ẋ2 + ẏ2

)
− U (x, y) . (8)

Equation 8 divides the phase space into distinct regions of allowable motion based on
the energy level of the spacecraft. Fixing the Jacobi integral to a constant defines zero
velocity curves, which are the locus of points where the kinetic energy, and hence
velocity vanishes. As seen in Fig. 1, the phase space is divided into distinct realms
based on the energy level. In the vicinity of m1 or m2 there exists a potential well. As
the energy level increases there are five critical points of the effective potential where
the slope is zero. Three collinear saddle points on the ê1 axis and two equilateral
points. These equilibrium, or Lagrange points, are labeled Li, i = 1, . . . , 5 and are
shown in Fig. 1. The Jacobi integral is a valuable invariant property of the three-body
system that allows for greater insight into the motion of the spacecraft.

Invariant Manifolds and Poincaré Map

Dynamics systems theory has been applied to the design of control-free maneu-
vers in the restricted three-body problem [14]. As previously introduced in Section
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Fig. 1 Contour plot of Jacobi integral: Zero velocity curves of constant Jacobi integral. A particle with
fixed energy level cannot cross the contour lines and is therefore limited to specific regions of the phase
space

“Jacobi Integral”, there exist five equilibrium points in the equations of motion for the
three-body problem. It has been shown that the local orbit structure near the Lagrange
points gives rise to families of periodic orbits as well as the stable and unstable man-
ifolds of these periodic orbits. This rich structure is globally connected and gives rise
to a dynamical chain which allows trajectories to pass through the phase space [4,
14]. The manifold structure associated with periodic orbits about the L1 and L2
Lagrange points are critical to the understanding of the motion of spacecraft as well
as comets/asteroids. In addition, the stable and unstable manifolds serve as the bound-
aries of the phase space region that allow for the transport between realms in a single
three-body system or between multiple three-body systems. These invariant mani-
folds only exist as a result of the dynamic formulation of the three-body problem in
a rotating reference frame. Invariant manifolds serve as a higher dimensional gener-
alization of the concept of seperatrices from linear systems as applied to the case of
nonlinear systems.

Poincaré maps are a useful tool in the analysis of the flow near periodic orbits in
the three-body problem. We let � define a hypersurface of section chosen such that
all trajectories in the vicinity of a state q ∈ � cross � transversely and in the same
direction. A Poincaré map, P(q) = φ(T ; q), maps the state of a trajectory from
one intersection to the next. Choosing a section in this manner results in a Poincaré
section as shown in Fig. 2. In Fig. 2 we show two examples of periodic trajectories
intersecting the Poincaré section. Periodic solutions will appear as fixed points on the
section, such as q0, q1 in Fig. 2, while stable or unstable trajectories become clearly
visible by viewing successive intersections of the section. This allows for greater
insight into the stability and dynamics of periodic solutions of a dynamic system as a
fixed point on the Poincaré section corresponds to a periodic orbit while movement
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Fig. 2 Diagram of the Poincaré map: Periodic orbits will appear as fixed points on the Poincaré section �.
Stability of periodic orbits is clearly visible on the section as successive intersections approach or depart a
fixed point

on the section is associate with the stability of neighboring trajectories. For example,
Poincaré maps have been used to prove the existence of homoclinic orbits, which
are orbits both forward and backward asymptotic to a single unstable periodic orbit,
and heteroclinic orbits, which join different periodic orbits [4, 13]. These dynamic
features have been shown to play a vital role in the movement of natural bodies as
well as critical for spacecraft missions [7, 18].

Combining invariant manifolds and an appropriate Poincaré section provides a
conceptually simple manner to determine trajectories which connect wide regions
of the phase space. However, the results previously developed are highly case spe-
cific and difficult to generalize to arbitrary transfers. Also, these results are based
on control-free trajectories which rely on the underlying structure of the three-body
system. In addition, transfer orbits along an invariant manifold require large time of
flights which may be undesirable for time critical missions. The addition of low-
thrust propulsion offers the potential of reduced transit times and the ability to depart
from the free motion trajectory to allow for increased transfer opportunities. In this
paper, we formulate an optimal control problem to generate the reachable set of the
spacecraft. We compute the reachable set on an appropriate Poincaré section and use
this to design a transfer trajectory.

Variational Integrator for PCRTBP

Geometric numerical integration deals with numerical integration methods which
preserve the geometric properties of the flow of a differential equation, such as
invariant properties and symplecticity. Variational integrators are constructed by dis-
cretizing Hamilton’s principle rather than the continuous Euler-Lagrange equations.
As a result, integrators developed in this manner have the desirable properties that
they are symplectic and momentum preserving. In addition, they exhibit improved
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energy behavior over long integration periods. A thorough discussion of variational
integrators is provided in [21, 30]. We use this approach to construct a variational
integrator for the PCRTBP with the inclusion of low-thrust propulsion.

Consider the autonomous mechanical system described by the Lagrangian,
L(q, q̇), for the generalized coordinates, q and velocities q̇. The integration of the
continuous Lagrangian along a path, q(t), followed by the system must satisfy Hamil-
ton’s principle, which results in the well-known Euler-Lagrange equations [16]. In
the discrete time scenario, the continuous path q(t), q̇(t), is replaced by a finite dif-
ference approximation over a fixed time step, e.g. q0,

q1−q0
h

, which converges to the
true velocity as h tends towards zero. In this manner, we define a discrete Lagrangian,
Ld(q0, q1, h) which approximates the integral of the true Lagrangian over the time
interval h between q0 and q1 [21].

The discrete equations of motion for the PCRTBP are derived by choosing an
appropriate quadrature rule to discretize the continuous Lagrangian in Eq. 2 [21]. In
this work, we apply the trapezoidal rule to approximate the action integral over a fixed
time interval. The trapezoidal rule allows for a second order accurate approximation
and alleviates the difficulties in applying implicit quadrature schemes. The discrete
Lagrangian for the PCRTBP is given by

Ld = h

2

(
1

2

[(
xk+1 − xk

h
− yk

)2

+
(

yk+1 − yk

h
+ xk

)2
]

+ 1 − μ

r1k

+ μ

r2k

+ 1

2

[(
xk+1−xk

h
−yk+1

)2

+
(

yk+1−yk

h
+xk+1

)2
]

+ 1−μ

r1k+1

+ μ

r2k+1

)
. (9)

Applying a discrete version of the Lagrange-d’Alembert principle allows for inclu-
sion of an external control force on the system [21]. Using Eq. 9 and some
manipulation, gives the discrete equations of motion as

xk+1 = 1

1 + h2

[
hẋk+h2ẏk+xk

(
1+ 3h2

2

)
+ h3

2
yk− h3

2
Uyk

− h2

2
Uxk

]
, (10a)

yk+1 = hẏk + hxk − hxk+1 + yk + h2yk

2
− h2

2
Uyk

, (10b)

ẋk+1 = ẋk − 2yk + 2yk+1 + h

2
(xk+1 + xk) − h

2
Uxk+1 − h

2
Uxk

+ hux , (10c)

ẏk+1 = ẏk + 2xk − 2xk+1 + h

2
(yk+1 + yk) − h

2
Uyk+1 − h

2
Uyk

+ huy . (10d)

The discrete equations of motion are given in the Lagrangian form after applying
the discrete fiber derivative as pxk

= ẋk − yk and pyk
= ẏk + xk . The state is

defined as xk = [
xk yk ẋk ẏk

]T and the control input is u = [
ux uy

]T . This
results in a discrete update map fk : xk → xk+1 which preserves the same properties
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of the continuous-time dynamics in Eq. 5 such as invariants, symplecticity, and the
configuration manifold. The discrete potential gradients are given by

Uxk
= (1 − μ)(xk + μ)

r1k
3

+ μ(xk − 1 + μ)

r2k
3

, (11a)

Uyk
= (1 − μ)yk

r2k
3

+ μyk

r2k
3

, (11b)

Uxk+1 = (1 − μ)(xk+1 + μ)

r1k+1
3

+ μ(xk+1 − 1 + μ)

r2k+1
3

, (11c)

Uyk+1 = (1−μ)yk+1
r1k+1

3 + μyk+1
r2k+1

3 . (11d)

The distances to each primary are defined as

r1k
=

√
(xk + μ)2 + yk

2 , (12a)

r2k
=

√
(xk − 1 + μ)2 + yk

2 , (12b)

r1k+1 =
√

(xk+1 + μ)2 + yk+1
2 , (12c)

r2k+1 =
√

(xk+1 − 1 + μ)2 + yk+1
2 . (12d)

Care must be taken during the implementation of Eq. 10a–d. As Eqs. 11a–d, and
12a–d are defined at both step k and k + 1 they must be evaluated at both time
instances. Equation 10a–d is implemented by first defining an initial state xk and
control uk . The distances and gravitational potential at step k are evaluated from
Eqs. 11a, 11b, 12a and 12b. The discrete update steps in Eqs. 10a, and 10b are eval-
uated to generate xk+1 and yk+1. Next, the distances and gravitational potential at
step k + 1 are evaluated from Eqs.11c, 11d, 12c and 12d. Finally, the update steps
in Eqs. 10c and 10d are evaluated. This results in the complete discrete update map
xk → xk+1 given uk .

Numerical Example

A simulation comparing the variational integrator to a conventional Runge-Kutta
method is presented in this section. A particle is simulated from an initial condition
of x0 = [

0.75 0 0.2 0
]T for tf = 200 ≈ 15 years in the Earth-Moon system.

The variational integrator uses a range of step sizes between 47.2–4720 s while the
Runge-Kutta method uses a variable step size implemented via ODE45 in Matlab.
The step size of the variational integrator is varied to approximately match the run
time required by the conventional ODE45 integrator. Figure 3a shows the trajectory of
the spacecraft in the rotating reference for this comparison. Both integration schemes
result in trajectories that are initially nearly identical.

Figure 3b shows the mean Jacobi integral deviation over the entire simulation time
as a function of computation time. For a given computational effort, in the form of
simulation run time, the variational integrator will provide a smaller energy deviation
as compared to the conventional integration scheme. Over long simulation horizons
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Fig. 3 a Earth-Moon three-body trajectory used for integrator comparison: A stable trajectory is used to
test the variational and conventional integrators. The energy level is high enough to enter the vicinity of the
Moon but not escape the three body system. b Mean Jacobi integral deviation between variational integra-
tor and Matlab ODE45: A range of fixed step sizes are used for the variational integrator to approximately
match the computational time of ODE45

or with the addition of small control inputs the inability of conventional integration
schemes to accurately track the system energy limits the applicability of conventional
techniques in which energy conservation is mandatory for characterizing the solu-
tion space. In spite of this improved energy behavior, the order and design of the
variational integrator still play an important role in the accuracy of the state vector.

This work uses a second order integrator which has improved energy behavior
in comparison to first order integration techniques without a significant increase in
computational demand. The variational integrator is constructed according to a dis-
crete version of Hamilton’s principle, specifically for the given dynamic system,
and it provides long-term structural stability in capturing the effects of low-thrust
propulsion systems. General purpose numerical integrators, such as adaptive step-
size Runge-Kutta methods may yield a more accurate state trajectory depending
on the choice of integration parameters, but at the expense of additional computa-
tional demand and total energy deviations. However, for this preliminary analysis the
variational integrator provides reduced computational demands, as compared with
general-purpose numerical integrators with a similar level of numerical error, and is
useful to characterize and explore the trade space in preliminary mission design sce-
narios. In addition, it has been shown that variable step integrators, such as ODE45
in Matlab, tend to degrade first-order gradient based methods, such as those used
in Section “Optimal Control Formulation” [24]. The presented results are based on
the variational integrator with a fixed time step for numerical simulation and gradi-
ent computation. In summary, this paper utilizes the variational integrator to capture
the long-term effects of low-thrust devices accurately and efficiently. The structural
stability during numerical integration is critical for numerical optimization in the
subsequent developments.
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Optimal Control Formulation for Reachability Set

In this section, an optimal control formulation is presented to determine and design
transfers within the three-body problem. The application of variational integrators to
optimal control problems is referred to as computational geometric optimal control.
Our formulation is based on the concept of the reachability set on a Poincaré section.
This method allows one to easily determine potential transfer opportunities by finding
set intersections on a lower dimensional space and greatly reduces the design process.
The addition of continuous low thrust propulsion extends the control free design
process developed previously and allows for a greater range of potential transfers
with a reduced time of flight.

The numerical examples presented in this section are designed in the context of
the PCRTBP. The dynamic environment has a four dimensional state space and offers
a convenient integration constant in the form of the Jacobi integral. As a result, there
are well defined methods to define and exploit Poincaré sections, which result in
straightforward two-dimensional subspaces of the system. Our approach uses the
Poincaré section to approximate the reachability set on this reduced subspace. As
a result, this approach is more difficult to apply to three-dimensional transfers in
the general three body problem. Poincaré sections in the case of the general six
dimensional state space are significantly more challenging and typically require more
complicated visualization techniques. However, this is an area of active research
and some of the authors future research is aimed at implementing this approach for
non-planar transfer trajectories [15].

Reachability Set

Reachability theory provides a framework to evaluate control capability and safety.
The reachable set contains all possible trajectories that are achievable over a fixed
time horizon from a defined initial condition, subject to the operational constraints
of the system. Reachability theory has been applied to aerospace systems such as
collision avoidance, safety planning, and performance characterization. The the-
ory formally supporting reachability has been extensively developed and is directly
derivable from optimal control theory [19, 20, 29]. More recently, reachability the-
ory has recently been applied to space systems [5, 10, 12]. Computation of the
reachable set for a system involves solving the Hamilton-Jacobi partial differential
equation or satisfying a dynamic programming principle. Analytical computation
of reachable sets is an ongoing problem and is only possible for certain classes
of systems. Typically, numerical methods are used to generate approximations
of the reachability set, but are generally limited by the dimensionality of the
problem.

Computation of reachable sets is critical to space situational awareness, ren-
dezvous and proximity operations, and orbit determination operations. Specifically,
maintaining accurate estimates of a spacecraft state over extended periods is not
trivial. The challenge is increased for multiple spacecraft operating in close prox-
imity or when there are long periods of time between measurements. Coupling the
ability for continuous low-thrust propulsion between measurements increases the
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measurement association complexity. Computing the reachability set given estimated
states and control authorities allows one to better correlate subsequent measurements
or determine sensor pointing regions in the event of a lost spacecraft.

Optimal Control Formulation

In this paper, we seek to approximate the reachability set on a Poincaré section by
solving a related optimal control problem. We choose our Poincaré section in a simi-
lar manner to those used previously for the design of transfers via invariant manifolds.
The Poincaré section is chosen to intersect transversally with trajectories emanat-
ing from the initial orbit. In the case of a periodic orbit the trajectories will cross
the Poincaré section at two distinct fixed points every half period. The main idea is
that the addition of low thrust propulsion allows us to enlarge the set of trajectories
achievable in the Poincaré section. Figure 4 illustrates how, without any control input,
trajectories will intersect with the Poincaré section at xn. However, the addition of
low thrust propulsion allows the spacecraft to depart from the natural dynamics and
intersect the Poincaré section at a different location. We use a cost function to define
a distance metric on the Poincaré section from the control-free intersection to an
intersection under the influence of the control input. Maximization of this distance
along varying directions enables us to generate the largest reachability set under the
bounded control input. In Fig. 4 the reachable set is shown as a circular region on
the Poincaré section. In practice, the reachable set will be of a general shape and also
higher dimensional in the nonplanar case.

Fig. 4 Reachability set on a Poincaré section: Pictorial representation of the reachability set (blue circle)
on the Poincaré section, �. The terminal state, xn, is the intersection without any control input. Adding a
control input allows for the terminal state, xf , to be displaced by some distance/cost J as measured on the
section. We parameterize a specific direction on the section with the angles θd and seek to maximize the
distance between xf and xn. Computation of the maximum distance, or reachability, for a variety angles
gives a discrete approximation of the reachability set. In general, the reachable set can be an arbitrary
shape on the section rather than the circular set depicted
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We define the Poincaré section along the horizontal axis, which is equivalent to
the surface y = 0, and given by

� = {(x, ẋ) | y = 0}. (13)

This is similar to the previous work in determining homoclinic orbits in the three-
body problem [14, 17]. Previous analytical results have shown that homoclinic orbits
intersect transversally in the (x, ẋ) space on the plane y = 0. We seek to compliment
these results with the addition of low thrust propulsion to maximize the reachable set
on the Poincaré section. Placing our section at y = 0 ensures that all trajectories will
intersect our section. An optimal control problem is defined by a cost function

J = −1

2
(x(N) − xn(N))T

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ (x(N) − xn(N)) = φ(x(N), xn(N)) .

(14)
The term xn(N) is the final state of a control-free trajectory while the term x(N) is
the final state under the influence of the control input. Maximization of the distance
between xn and x, on the Poincaré section defined in Eq. 13 at the terminal time
tf = N , is equivalent to the minimization of J defined in Eq. 14. The Poincaré
section is defined through the use of appropriate terminal constraints given by

v1(x(N)) = y(N) = 0 , (15a)

v2(x(N)) = ẋ(N) − ẋn(N)

x(N) − xn(N)
− tan θd = 0 , (15b)

0 ≥ uT u − u2
max , (15c)

where the angle θd defines a direction in which we wish to maximize the reachabil-
ity set on the Poincaré section. The maximum control thrust magnitude is defined
by umax and is non-dimensionalized by the characteristic units of length, mass, and
time. The goal is to determine the control input uk such that the cost function (14) is
minimized subject to the state equations of motion (10a–d) and constraints (15a–c).

Application of the Euler-Lagrange equations allows us to derive the necessary
conditions for optimality [1]. The discrete variational integrator in Eq. 10a–d is used
rather than the continuous time counterpart. This results in a discrete optimal control
problem and the discrete necessary conditions are given as

λT
k+1 = λT

k

(
∂f k

∂xk

)−1

, (16a)

0 = ∂Hk

∂uk

, (16b)

0 = ∂φ

∂xk

T

+ ∂v

∂xk

T

β − λT (N) , (16c)

where the Hamiltonian H is defined as

Hk = λT
k f (xk, uk) , (17)
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and λ ∈ R
4×1 is the costate and β ∈ R

2×1 are the additional Lagrange multipliers
associated with the terminal constraints in Eq. 15a–c. The state dynamics are rep-
resented by f (xk, λk) after substituting (16b) into Eq. 10a–d. This indirect optimal
control formulation leads to a two point boundary value problem with split boundary
conditions. By sweeping the angle θd one can approximate the reachable set on the
Poincaré section subject to the bounded control input.

The costate equation of motion requires the Jacobian of Eq. 10a–d and is given by

λT
k+1 = λT

k

⎡
⎢⎢⎣

f1x f1y f1ẋ
f1ẏ

f2x f2y f2ẋ
f2ẏ

f3x f3y f3ẋ
f3ẏ

f4x f4y f4ẋ
f4ẏ

⎤
⎥⎥⎦

−1

. (18)

The derivation of Eq. 18 is given in Appendix. In addition, the computation of Eq. 18
requires inversion of the Jacobian matrix. This is a computationally expensive opera-
tion that is prone to numerical error and instability. We use Gauss-Jordan elimination
to avoid this inversion in Eq. 18 and determine an explicit update map λk → λk+1.

The optimal control formulation presented in this section results in a two point
boundary value problem (TPBVP). There exist many methods to solve TPBVPs
such as gradient, quasilinearization, and shooting methods [1, 11]. Shooting meth-
ods are common in astrodynamic trajectory design problems and relatively simple to
implement. In the shooting method, initial conditions are varied such that a terminal
constraint is satisfied, similar to the way an archer modifies the bow in order to more
accurately strike a target. Consider the vector of initial conditions, χ = {x0, λ0},
which is varied to satisfy some terminal constraints of the form G(χ) = {xt − xn} =
0. The free variables at the terminal time are computed by propagation of χ over the
selected time horizon. At the terminal time, the constraint vector is calculated and if
not satisfied χ is varied. Rather than numerical integration over the entire time inter-
val, multiple shooting segments the interval into several smaller sub-arcs [27]. This
multiple shooting approach incorporates additional interior constraints but reduces
the sensitivity of the costates along each sub-arc. The use of the multiple shoot-
ing method reduces the sensitivity of changes in the initial costate at the expense of

Fig. 5 Schematic diagram of the multiple shooting method: The complete trajectory is split into a number
of sub-segments, and additional interior constraints are included to ensure state and costate continuity.
Splitting the optimal trajectory into short segments reduces the sensitivity of terminal states to variations
of the initial states
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additional design variables, but has been shown to provide more stable and robust
solutions [23].

In Fig. 5, we show a schematic representation of the multiple shooting procedure.
We split the optimal control horizon into equal length subsegments such that the
length of each segment is k

n
, where k, n are the total number of steps and number of

stages, respectively. Similarly, we divide the state and costate trajectories into n equal
segments. To ensure continuity, additional interior constraints are incorporated as

x−
1 − x+

1 = 0, (19a)

λ−
1 − λ+

1 = 0, (19b)

x−
2 − x+

2 = 0, (19c)

λ−
2 − λ+

2 = 0, (19d)

...

x−
n−1 − x+

n−1 = 0, (19e)

λ−
n−1 − λ+

n−1 = 0. (19f)

Using the multiple shooting method reduces the sensitivity of the terminal states,
x+

i , λ+
i , to variations of the initial states, x−

i−1, λ
−
i−1. As a result, the design vec-

tor χ is augmented with the additional interior initial conditions, x−
i , λ−. Similarly,

the constraint vector is augmented with the additional interior constraints defined
in Eq. 19a. Based on experimentation, we use four stages in our multiple shoot-
ing method. This provided the best performance and convergence stability while
minimizing the difficulties in additional interior constraints. The multiple shooting
algorithm now varies the design vector χ to ensure that the constraints in G(χ) are
satisfied. In this work, we use the Matlab nonlinear solver fsolve to solve the
system of nonlinear equations defined by the multiple shooting algorithm with a con-
vergence tolerance of 1 × 10−5. Within fsolve, we use the trust-region dogleg
solver which makes use of the Powell dogleg procedure for computing a step direc-
tion and magnitude to minimize successive iterations of the solver. All numerical
integration is performed using the discrete variational integrator described in Section
“Variational Integrator for PCRTBP”. The numerical results are specific to the choice
of nonlinear solver, and different tolerances or software tools may result in slight
changes.

Numerical Example

We present two numerical simulations in the Earth-Moon system to demonstrate the
transfer procedure. These simulations enable the spacecraft to depart from the nat-
ural dynamics through the use of low-thrust propulsion. The reachability set on the
Poincaré section allows for a straightforward method of determining transfer oppor-
tunities. The first example is a transfer from a periodic orbit of the L1 Lagrange point
to a fixed orbit of the moon. This example uses a single iteration of the reachable set
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computation in the design of the transfer. The second example is a transfer from geo-
stationary orbit of the Earth to a period orbit of L1. This examples demonstrates the
ability to extend the reachability process to multiple iterations, to allow for a much
larger and more general transfer. With both examples it is possible to depart from the
vicinity of the Earth to a Moon orbit via a series of reachable sets defined on Poincaré
sections. The numerical examples presented in this section satisfy the necessary con-
ditions for local optimality and obtaining a globally optimal solution is considered
beyond the scope of this paper.

Periodic Orbit transfer

The first objective is to design a transfer trajectory from a planar periodic orbit about
the L1 Lagrange point to a bounded orbit in the vicinity of the Moon. The target
region is created by choosing an initial condition of x0 = [

1.05 0 0 0.35
]T with

μ = 0.0125. The target set is propagated over a period of t = 20 in non-dimensional
units which corresponds to approximately 1.5 years. Figure 6 shows that the target
set remains in the vicinity of the Moon, or m2, in the rotating reference frame. This
type of orbit would be useful for a variety of mission scenarios. For example, a series
of communication satellites could be placed in this type of orbit. The bounded tra-
jectories of the vehicles and constant line of sight to both the Moon and the Earth
would allow for constant communication for future manned missions and potential
habitats. The initial set is a planar periodic orbit about L1, which is generated using
the process of differential correction of a linear approximation [14].

As a source for comparison, the method of using invariant manifolds, introduced in [14],
is implemented. As described in Section “Invariant Manifolds and Poincaré Map”,

0.8 1 1.2

-0.1

0

0.1

Fig. 6 L1 periodic orbit transfer to orbit of the Moon: Example scenario demonstrating the initial and
target orbit. Without the low-thrust propulsion, the spacecraft is constrained to the initial periodic orbit.
We determine the reachability set to find a transfer trajectory to the target orbit about the moon
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these invariant manifolds are the set of trajectories that either asymptotically arrive
or depart the periodic orbit. We generate the unstable manifold associated with the
initial planar periodic orbit. We numerically propagate the unstable manifold forward
in time until the trajectories intersect the Poincaré section y = 0. Figure 7a shows
the unstable invariant manifold generated from the initial L1 periodic orbit. The blue
points in Fig. 7b are the intersections of the target Moon orbit and the Poincaré
section. The two circular regions are the ascending (right) and descending (left) inter-
sections of the target orbit and Poincaré section. The green points in Fig. 7b are
intersections of the unstable manifold from Fig. 7a with the Poincaré section y = 0.
Only a single branch of the invariant manifold intersects with the ascending region of
the target orbit. There are no intersections of the invariant manifold with the descend-
ing region of the target orbit. The numerical values associated with the green points
denote the required time of flight along the invariant manifold in non-dimensional
units. The required travel time for a transfer using the unstable invariant manifold is
approximately tf ≈ 3.1 non-dimensional time units.

Next, we determine the reachability set with addition of a low-thrust control input
over a fixed time horizon. In Section “Reachability Set on the Poincaré Section”,
we demonstrate the effect of variations in the choice of maximum control bound
and terminal time. While Section “Transfer to Periodic Orbit” show a specific exam-
ple of a transfer design process using the intersection of the reachability set on the
Poincaré section. The analysis presented in the following sections define a maximum
magnitude of the thrust as um and assume that the trust can be directed arbitrar-
ily within the plane. This model is representative of many spacecraft which have a
body fixed thruster and attitude control system. Assuming a fully actuated space-
craft model allows us to decouple the translation and rotational dynamics of the
spacecraft.

(a)
(b)

Fig. 7 Invariant manifold transfer: An example transfer using the invariant manifolds is shown in both the
position and Poincaré spaces. The control free transfer from the initial periodic orbit to the target orbit
result in a long time of flight. In addition, the manifold only intersects the target orbit on the ascending or
far side of the moon
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Table 1 Combinations for tf
and um used to generate the
reachability sets in Fig. 8

tf um

1.24 0.05

1.30 0.25

1.37 0.5

1.44

Reachability Set on the Poincaré Section

From the initial state on the periodic orbit, a series of optimal trajectories are gener-
ated to determine the reachable set. The multiple shooting approach is implemented
to solve the optimal control problem. We divide the time horizon into two equal
length segments. The state trajectory is initialized using the free trajectory of the
periodic orbit. Similarly, the costate trajectory is initialized from an initial guess of
λ0 = [ −1 −1 −1 −1

]T and propagated using the discrete equations of motion

in Eq. 18. This results in the initial guess of the design vector χ = [
λ0 x−

1 λ−
1 β

]T
.

This design vector is then varied to ensure that the necessary conditions of optimality
and the interior point constraints are satisfied. Table 1 shows the range of terminal
times, tf , and maximum control bound, um, which are used to investigate their effect
on the subsequent reachable set on the Poincaré section.

The angle θd in Eq. 15a–c is varied to select a different direction along the
Poincaré section to maximize. We discretely vary the angle over the range 0◦ ≤ θd <

360◦ to approximate the reachability set of the spacecraft. Choosing a new angle θd

corresponds to a different direction as well as a new optimal control problem which is
again solved using the multiple shooting approach laid out previously. Each optimal
control solution, corresponding to a discrete value of θd , is solved using fsolve as
described earlier. Each solution on the reachability set is computed in approximately
2 min on a desktop computer using an 3.4 GHz Intel i7-3700. The intersection of
the optimal trajectories as well as those of the target Moon orbit with the Poincaré
section are shown in Fig. 8.

Figure 8 shows the reachabilty set for twelve combinations of tf and um listed
in Table 1. With a small maximum control bound, um = 0.05 shown using square
markers, the reachable set is not dramatically changed from that of the no control
solution. The reachable set is denoted using square markers on the left most portion of
Fig. 8b. Variations of tf are indicated using different colors and also demonstrate that
this parameters has a smaller impact than changes in um. Increasing the control bound
to um = 0.25 and um = 0.5 shows that the reachable set progressively approaches
the target set.

The reachable sets presented in Fig. 8 are highly dependent on the initial condition,
terminal time, and maximum control bound. This example demonstrates that increas-
ing the um results in a larger displacement between the controlled and uncontrolled
trajectories. The reachable set is enlarged from a single point, as shown in Fig. 7b
by the black point, to a larger region as shown in Fig. 8b. The choice of um, tf and
initial condition all combine to change the resulting reachability set.
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(a) (b)

Fig. 8 Variation of tf and um on the reachability set. Colors, {red}, blue, green, yellow}, are used note
increasing tf while markers, {circle, square, cross}, are used to denote increasing um. Increasing the max-
imum control bound has a large effect and enables the reachability set to intersect the target manifold.
Increases in tf are less critical and have minimal impact on the distribution of the reachability set on the
Poincaré section

Transfer to Periodic Orbit

Here we use the results of the preceding section to demonstrate one specific exam-
ple of a transfer designed using the reachability set. The acceleration limit is chosen
as umax = 0.75 ≈ 2 mm s−2 in the Earth-Moon system. Assuming a fixed space-
craft mass of 500 kg, this model defines a maximum thrust of approximately 1 N.
Currently, the NASA NEXT xenon thruster is able to provide approximately 0.25 N
of thrust, and a cluster of such engines could be used to provide the desired thrust
used in this work [26]. The trajectories are generated from a fixed initial state of
x0 = [

0.8156 0 0 0.1922
]T over a fixed time span of tf = 1.4. This initial state

lies on the initial periodic orbit and the time of flight is equivalent to one half period
of the initial periodic orbit.

The optimal trajectories, under the influence of the control input u, are plotted in
red in Fig. 9a. Initially, the spacecraft is assumed to lie on the periodic orbit. As a
result, the intersection of this periodic orbit with the Poincaré section are two points
corresponding to the two crossing of the orbit. We show the control-free intersection,
xn, of the periodic orbit on the Poincaré section in Figs. 7b and 9b The use of the
continuous low thrust propulsion expands the reachable set to region bounded by the
red markers in Fig. 9b. The reachable set is an ellipsoidal region with a major axis
aligned along θ ≈ 70◦ as compared to a fixed point without any control input.

Figure 9b shows that the reachable set and those of the descending target region
intersect. As both regions are discretely approximated a linear interpolation is used
to determine the exact intersection state on the Poincaré section. This intersection
generates a partial target state of xt , ẋt and y = 0 from the Poincaré section. Using
the energy level of the target region, defined by Eq. 8, and the intersection state we
can calculate the final component ẏ. This results in a complete target state xt which
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(a)

(c) (d)

(e)

(b)

Fig. 9 L1 Reachability set transfer: The low thrust propulsion is used to approximate the reachability set
starting from the initial periodic orbit over a fixed time horizon. The reachability set is shown in Fig. 9a
and b in both the position and Poincaré space respectively. From this reachability set we chose a trajectory
which intersects the target orbit and it is shown in Fig. 9c. The optimal control to achieve this transfer is
shown in Fig. 9d

lies on the reachable set and on the target orbit. Due to the use of low-thrust propul-
sion, there is a change in Jacobi energy during the transfer as the vehicle transitions
between the initial and final periodic orbits. This behavior is demonstrated in Fig. 9e
as the vehicles experiences an increase in energy transitioning towards the target
followed by a decrease to arrive at the target.
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A final optimal trajectory is generated such that the x(N) = xt . This transfer
serves to satisfy a required boundary condition to ensure a continous trajectory to the
target. The reachability set, and the intersection on the Poincaré section, are used to
generate a partial target state for the transfer. Due to the difference in Jacobi energy,
a final optimal transfer is computed to satisfy the desired target state. This transfer
trajectory is denoted by the green path in Fig. 9c. The optimal control input is shown
in Fig. 9d. The spacecraft achieves the desired target while satisfying the bounded
control input. The Jacobi energy integral, computed using Eq. 8, is shown in Fig. 9e.
Figure 9e shows that the vehicle begins with an energy level equal to the periodic
orbit and arrives at the target orbit with the appropriate energy. The first half of the
transfer is associated with and increase in energy as the control is used to transition
towards the target orbit which is followed by a energy decrease to the target orbit.
This roughly corresponds with the expected optimal solution of a bang-coast-bang
type orbital transfer [11]. Convergence statistics associated for this transfer are shown
in Table 2.

A transfer along the invariant manifold requires on average tf ≈ 3.1 as com-
pared to tf ≈ 1.4 for a transfer using low thrust propulsion and the reachable set.
This long time of flight is typical of transfers using invariant manifolds. The unsta-
ble invariant manifold traverses a large region of the phase space and is dependent
on the system dynamics. In addition, the invariant manifolds asymptotically arrive
and depart from the periodic orbit. As a result, it may take an arbitrarily long period
of time to depart from the vicinity of the periodic orbit. In addition, only a small
portion of the invariant manifold intersects with the target Moon orbit. In contrast,
the low thrust control input we are able to enlarge the reachability set from a sin-
gle point, xn associated with the periodic orbit, to a larger ellipsoidal region shown
in red in Fig. 9b. This achieves an intersection with the target orbit with a much
lower time of flight as compared to the invariant manifold method. In addition, by
generating the reachability set we are able to compute the required control input to
exactly intersect the target orbit. This avoids having to compute and accomplish a
secondary impulsive maneuver to transition from the invariant manifold to the target
orbit.

Geostationary Transfer

There are many situations where a more complicated and extensive orbital transfer is
desired. In this section, we present a simulation of transferring from a geostationary

Table 2 Convergence statistics
for the periodic orbit transfer Metric Value

fsolve objective 6.03 × 10−15

fsolve major iterations 9

fsolve first order optimality 1.88 × 10−13

Optimal cost 2.09 × 10−31

Execution time 1.49 s
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orbit to a periodic orbit about the L1 Lagrange point. From this location, it is possible
to transition to the Moon, as shown in Section “Periodic Orbit transfer”, or beyond
the Earth-Moon system through the use of invariant manifolds [14]. This type of low
energy transfer would be most suitable for unmanned spacecraft transitioning from
the Earth to the Moon. The long time of flight would make such a transfer unsuitable
for manned missions due to life support constraints. Future proposals for permanent
lunar spacecraft and bases will require frequent supply missions to remain viable.
Transfers from the Earth to the Lagrange points, through the use of low-thrust electric
propulsion, offer an additional and potentially shorter time of flight in comparison to
the low-energy transfers which utilize solar perturbations.

Section “Periodic Orbit transfer” demonstrated the capability of determining an
orbital transfer after locating the intersection of the reachability set and a target orbit.
However, it may not be possible to achieve an intersection on the Poincaré section
after a single iteration. Since the spacecraft has an upper bounded control input and
time of flight the reachability set is finite in size. As a result, we present a method of
performing several iterations of the reachability set computation. A straightforward
method is presented which allows for a series of reachability sets to be computed
which progressively move the trajectory towards the target. In this manner, it is pos-
sible to determine more complicated transfers by a simple selection of states from
the reachability set. This affords a systematic method of determining general transfer
trajectories in the three body problem.

It is possible to design arbitrary transfers using either a direct optimization or
invariant manifold based approach. The direct optimization method transforms the
optimal control problem into a nonlinear programming problem. Instead of solving
the Euler-Lagrange equations the state and control histories are parameterized and
solved through any number of mathematical programming methods. However, due
to this parameterization only an approximate solution, which approximates the true
optimal solution in the limit, is feasible. On the other hand, our method applies an
indirect optimization method. The necessary conditions for optimality are computed
and directly solved in generating the reachability set. The use of the reachability
set also avoids the issues of selecting a valid initial condition. We select a state
on the maximum reachability set which minimizes the distance toward the target.
This straightforward approach achieves an optimal trajectory and is used to generate
general transfers.

The invariant manifold method is difficult to apply to general orbital transfers.
The manifolds are associated with periodic orbits in the three-body system. In this
case, an appropriate periodic orbit must first be determined prior to generating the
invariant manifold. Furthermore, there is no guarantee that the invariant manifold
will pass through a desired region of space. For example, in the Earth-Moon system
the unstable manifolds of periodic orbits about L1 do not pass close to the Earth, but
rather are beyond the geostationary orbit altitude. In addition, determining the inter-
sections between various invariant manifolds is not trivial. It requires an appropriate
Poincaré section and the generation of several invariant manifolds. There is no clear
method of selecting the periodic orbits required based on the type of transfer desired.
Determining an intersection between these invariant manifolds generally requires
extended flight times, involving several orbits of the primaries, before an appropriate

The Journal of the Astronautical Sciences (2019) 66:1–31 21



intersection is found. As a result, it is difficult to generalize this method to arbitrary
transfers in the three-body problem.

This numerical simulation demonstrates the ability of the our approach to deter-
mine more general transfer trajectories in the PCRTBP. We use multiple iterations
of the reachability set to achieve a more complicated transfer. In this manner, it is
possible to design arbitrary transfers which are not possible using a single reach-
ability computation. Initially, it is assumed that the spacecraft lies on a circular
geostationary orbit in the non-dimensional Earth-Moon three-body system. While
the geostationary orbit is not a typical “parking orbit” for most spacecraft missions
it serves as a convenient altitude to demonstrate our approach. The geostationary
orbit about the Earth is transformed into the rotating reference frame of the Earth-
Moon three body problem. In addition, we non-dimensionalize the initial state to find
x0 = [

0.0972 0 0 3.0010
]T as the initial condition of the spacecraft on the geo-

stationary orbit. It is desired to transfer to a periodic orbit about the L1 Lagrange
point. The periodic orbit is defined by the initial condition

[
0.8057 0 0 0.2982

]T .
The initial and target orbits are illustrated in Fig. 10. In Fig. 10, the initial orbit is
located in the center of the figure and centered about m1 while the target periodic
orbit is determined about the L1 Lagrange point. Instead of determining a transfer
directly between the geostationary orbit and the periodic orbit, we seek to instead
transfer to the stable manifold of the periodic orbit. This stable manifold will then
asymptotically approach the target orbit without any further control input. Once on
the manifold, the spacecraft will coast in an uncontrolled fashion and asymptotically
arrive at the desired periodic orbit.

We first generate the stable invariant manifold associated with the periodic orbit in
order to determine our target set. The stable manifold is propagated to the Poincaré

Fig. 10 Geostationary to L1 transfer: Representation of the initial and target orbits for the reachability
transfer. Vehicle is assumed to begin on the geostationary orbit about m1 and will transfer to the periodic
orbit about L1
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section at y = 0, which is denoted by the horizontal black line in the position space
visualizations given in Figs. 11, 12 and 13a. The stable manifold is denoted by the
green trajectories which span the majority of the phase space. In addition, we plot
the intersection of the stable manifold with the Poincaré section with green markers.
The initial orbit and the stable invariant manifold do not intersect and the transfer
objective is to enlarge the reachability set to include the stable manifold.

Next, we compute the reachable sets originating on the geo-stationary orbit and
subject to the maximum control constraint. The multiple shooting approach is used
to solve the optimal control problem with two segments. For the first reachability set
computation, the initial geostationary orbit is used to initialize the multiple shooting
algorithm. We use the same initial guess of λ0 as in Section “Periodic Orbit transfer”
and propagate over the fixed time horizon of the period of the geostationary orbit to
initialize λ−

i .
The first reachable set is computed beginning on the geostationary orbit at it’s

intersection with the Poincaré section and we again assume a upper bound on the
thrust magnitude of umax = 0.75. The reachable set is generated by varying the angle
0◦ ≤ θ < 360◦ in Eq. 15a–c defined on the Poincaré section. This allows us to
approximate the set of states that are achievable in the (x, ẋ) space. The intersection
of the first reachable set with the Poincaré section is shown in Fig. 11b in red. While
the reachable set does not intersect the stable manifold, it does reduce some of the
distance in the ẋ dimension. From this reachable set, we chose a trajectory which
minimizes the distance towards the stable manifold, which is shown in Fig. 11b by
the black marker. The distance on the Poincaré section between the reachable set and
the stable manifolds is defined as the function d,

d(x(N)) =
√

(x − xt )
2 + (ẋ − ẋt )

2.

From the reachable set, the trajectory which minimizes d is used to initialize the next
iteration. The minimum trajectory is also shown in Fig. 11a and is used to initialize
the following stage. Over the relatively short time horizon of the geostationary orbital
period, the reachability set remains quite close to the initial orbit. However, the addi-
tion of the control input has increased the velocity component of the trajectory. It is
this velocity change that is subsequently exploited to generate the transfer trajectory.

The minimum trajectory from the first iteration of the reachability set is used to
initialize the following stage. From the terminal state of the first iteration, the second
reachability set is computed and displayed in Fig. 11c and d. The second reachability
set is shown on the Poincaré section in Fig. 11d. This iteration greatly decreases the
distance in the x component between the trajectory and the target, at the expense of
a small deviation in the ẋ component. In Fig. 11c, the first stage trajectory is shown
in red while the additional stage is shown in blue, which demonstrates the decrease
in the x component.

With each reachable set we move the controlled trajectory closer to the target sta-
ble manifold. Figures 11 and 12 shows all of the intermediate reachability iterations
to transfer between the initial orbit and the stable invariant manifold. The final reach-
able set intersects the stable manifold of the periodic orbit. A final fixed terminal
time and terminal state optimal transfer is finally used to arrive at the stable manifold.
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(c)

(e)

(g) (h)

(f)

(d)

(b)

Fig. 11 Stage 1-4 reachability sets: The first four reachability sets visualized in both the position (left)
and Poincaré space (right). The minimum trajectories from the preceding stages are shown in red, while
the next stage is shown in blue. The transfer goal is to generate a complete trajectory from the initial
geostationary orbit to the L1 stable manifold, with an eventual arrival at the L1 periodic orbit
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Fig. 12 Stage 5-8 reachability sets: The last four reachability sets visualized in both the position (left)
and Poincaré space (right). The minimum trajectories from the preceding stages are shown in red, while
the next stage is shown in blue. The transfer goal is to generate a complete trajectory from the initial
geostationary orbit to the L1 stable manifold, with an eventual arrival at the L1 periodic orbit
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(e)
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Fig. 13 Geostationary to L1 periodic orbit transfer: Complete transfer from the geostationary orbit to the
stable manifold

The optimization statistics for the final transfer are shown in Table 3. The complete
transfer trajectory, after eight iterations, is shown in Fig. 13. Combining these tra-
jectories results in the powered portion of the transfer from the geostationary orbit
to the stable manifold. Each iteration systematically moves the reachable set towards
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Table 3 Convergence statistics
for the geostationary orbit
transfer

Metric Value

fsolve objective 1.42 × 10−11

fsolve major iterations 18

fsolve first order optimality 7.2 × 10−11

Optimal cost 4.30 × 10−25

Execution time 2.62 s

the stable manifold. Furthermore, the optimal control formulation is simplified as
each iteration is initialized using a simple distance metric on the Poincaré section.
Figure 13a and b shows the resulting trajectory, with the final trajectory shown in red
which ensures the intersection with the stable invariant manifold. Figure 13c shows
the Poincaré section with the minimum reachable state from each iteration. Each iter-
ation seeks to decrease the distance to the stable manifold on the Poincaré section.
Furthermore, these minimum states serve to initialize each subsequent stage of the
transfer. This method provides a systematic and simple methodology to determine
transfer trajectories. Instead of relying purely on numerical optimization to find an
appropriate trajectory, our method instead utilizes the reachability set to determine
suitable trajectories. Once at the stable manifold, no further control input is required
and the vehicle will coast towards the target periodic orbit. Figure 13d shows the
control input during the powered portion of the transfer. We utilize the same space-
craft assumption of 500 kg from Section “Periodic Orbit transfer” which gives a
maximum thrust of approximately 1 N. The spacecraft maintains a bounded control
magnitude during the transfer to the stable manifold. Figure 13e shows the evolu-
tion of the Jacobi energy over the transfer. Each stage of the transfer serves to raise
the energy level of the vehicle. After eight stages the reachability set intersects the
stable manifold and a demonstrates that a transfer is achievable. The final optimal
control drives the vehicle towards the target manifold with the appropriate energy
level.

This numerical example demonstrates the ability to link several computations of
the reachability set to enable a more general transfer. We use eight iterations of
computing the reachability set in order to transfer from the geostationary orbit to
the stable manifold. The example shows a transfer between an initial geostation-
ary orbit and the stable manifold associated with a periodic orbit. This approach
allows for a larger class of potential transfers which leverage the capabilities of
low-thrust propulsion systems. However, the presented approach does not offer a
optimal solution in terms of energy/fuel usage. The reachability sets are computed
on the lower dimensional Poincaré section. As a result, the repeated intersections
of the trajectory with the Poincaré section results in a fuel inefficient transfer. Fur-
thermore, the issue of discrepancy in the Jacobi integral may become more serious
when multiple reachability sets are interconnected. Nonetheless, we are able to apply
the proposed approach for the challenging case where the reachability set is not
sufficiently close to the invariant manifold of the target orbit. Consequently, this
example illustrates a straightforward method to depart from the natural dynamics
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and transfer to a large region of the phase space that is not accessible via invariant
manifolds alone. The presented idea of connecting reachability sets can be further
studied to address the aforementioned issues of optimality and mismatch of the Jacobi
integral.

Conclusions

In this paper, we construct a systematic approach which combines the concepts of
reachability sets and Poincaré sections to generate orbital transfers between planar
periodic orbits in the three-body problem using low-thrust propulsion systems. The
Poincaré section allows for trajectory design on a lower dimensional phase space
thereby reducing the complexity and search space. The approximation of the reach-
ability set enables a simple methodology for the selection of good initial parameters
which will allow for convergence of the optimal control formulation. The combina-
tion of these two concepts allows the engineer to capture the characteristics inherent
in the three-body problem. Additionally, we utilize geometric integrators to effi-
ciently capture the long-term effects of low-thrust on the system dynamics. Our
approach enables the computation of orbital transfers within the three-body problem
but does not guarantee optimality of the resulting transfer. Instead, the resulting trans-
fers will require no excessive control inputs as it is formulated as a deviation from
the control-free trajectory. The presented approach allows for a systematic method to
determine and generate orbital transfers in the three-body problem using low-thrust
propulsion.

There is additional research to extend these results to more general transfer sce-
narios in future work. The incorporation of fourth body perturbations, such as the
Sun in the Earth-Moon system, offers an additional method of increasing the reach-
able set with the combined use of the solar perturbation and low-thrust propulsion.
In addition, the assumed acceleration magnitude is currently beyond the capabilities
of current electric propulsion systems and future research is aimed at investigat-
ing smaller magnitude control inputs. Furthermore, this analysis did not consider
the effect of variable mass on the optimal control solution. This will result in
a more complicated optimal control problem and is a focus of future research.
Finally, Lyapunov control theory, which has previously been applied to the two-
body problem, is being investigated in the hope of designing closed loop control
schemes for this three-body scenario [2]. The addition of attitude dynamics and real-
istic pointing constraints would also significantly improve the applicability of this
work.
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Appendix: Costate Equations of Motion

The development of the costate equations of motions begins with determining the
second order partial derivatives of the gravitational potential. Due to the symmetry
of partial derivatives only three terms are required and are given by

Uxxk
= (1 − μ)

[
1

r3
1k

− 3 (xk + μ)2

r5
1k

]
+ μ

[
1

r3
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, (20)
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[
1

r3
2k

− 3y2
k

r5
2k

]
, (21)
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. (22)

The gradient of Eq. 10a is given as

f1x = 1
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[
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2
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, (23b)

f1ẋ
= h
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, (23c)

f1ẏ
= h2
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. (23d)

The gradient of Eq. 10b is given as

f2x = h − hf1x − h2

2
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, (24a)

f2y = −hf1y + 1 + h2

2
− h2

2
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, (24b)

f2ẋ
= −hf1ẋ

, (24c)

f2ẏ
= h − hf1ẏ

. (24d)

The gradients of Eqs. 12c and 12d are given as

∂r1k
p
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(
(xk+1 + μ)2 + ykp

2
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2 [
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The second order partial derivatives of the gravitational potential at k+1 are given
as

∂Uxxk+1
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The gradient of Eqs. 10c and 10d are given as
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= −2f1ẋ
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These gradient equations are in a cascade type structure. Equations 27a–d and
28a–d are functions of Eqs. 10c and 10d. As a result, the accuracy of the Jacobian
will tend to decrease as the first order approximation errors accumulate.
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