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Abstract This paper offers a new approach for constructing Kolmogorov - Arnold
- Moser (KAM) tori for orbits in the full potential for a non-spherical planet.
The Hamilton - Jacobi equation is solved numerically by a Newton-Rhapson itera-
tion, achieving convergence to machine precision, and still retaining literal variable
dependence. Similar iteration methods allow correcting the orbital frequencies, and
permit the calculation of the state transition matrix for the full problem. Some initial
numerical examples are offered.

Keywords KAM theorem · Earth satellite · Perturbations

Introduction

The KAM theorem, named after Kolmogorov [1], Arnold [2] andMoser [3] has at last
offered a theoretical answer to the well known “small divisor” problem. But while it
is of major theoretical importance in celestial mechanics, practical applications have
not materialized. This seems to be as true today as it was 50 years ago when M.
Henon [4] first noticed it.

In an earlier effort, Wiesel [5], the current author compared the Von Ziepel method to
a KAM theorem derived method for a simple problem. There were several differences
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between the two methods. First, there do exist perturbations in the coordinates, not
just the momenta as the KAM proof postulated. Second, the frequencies change when
a degenerate system is used as the reference problem, an effect the KAM theorem
rules out. These difficulties were overcome for a coupled harmonic oscillator, pro-
ducing a perturbation algorithm that is at once numerically based, retains the literal
dependence of the variables, and which can be iterated to convergence.

In this paper, that method is further developed, and successfully applied to the
problem of a satellite orbiting a non-spherical Earth. The methods of [5] are extended,
eliminating the dependence on numerical partial derivatives. Rather, the first two
orders of the Hamilton-Jacobi equation are solved by iterative techniques. This is
sufficient to describe not only the KAM torus itself, but to also extract its state tran-
sition matrix. Frequency corrections can be found through integrations over the torus
as convergence proceeds.

The goal of this paper is to construct a specified KAM torus and its immediate
environs in the full Earth geopotential problem. A KAM torus is more than an orbit.
It is a three dimensional surface embedded in a six dimensional phase space. On this
surface, all the momenta Ji are constant, and all three frequencies are constant. Three
angle coordinates ϑi parameterize the surface, and all increment linearly with time. It
is a local realization of the Hamilton-Jacobi theorem. The torus is a static, geometric
object, here rotating with the Earth below. As all three frequencies are constant on the
torus, it is the ideal reference solution for either Walker constellations or for forma-
tion flight of groups of satellites. To the extent satellites can be maneuvered precisely
into the torus, they will not drift with respect to each other. This is of paramount
importance for navigation satellites, but still important for minimum fuel formation
flight. So, a KAM torus is more than an orbit, and a single torus would contain an
entire Walker constellation, or a satellite cluster; but it is less than a complete general
perturbation solution. To navigate and maneuver in the torus vicinity, the state tran-
sition matrix will be needed. This will also be obtained in the current paper. And all
of this, the torus and its state transition matrix, can be described by just four scalar
Fourier series with numerical coefficients, but still retaining all the literal variable
dependence necessary.

Dynamics

A canonical perturbation theory maps one Hamiltonian system onto another. For
an attempt to apply the KAM theorem methods, both systems should be expressed
in action angle variables, and should be “close” to each other. The two dynami-
cal systems will be the problem of orbiting in the Earth’s geopotential field, and
the classical two body problem. This problem will employ three sets of variables.
The first, the “physical” variables, will be written as the rectangular state vector
XT = (x, y, z, px, py, pz). The second set will be various possible sets of action -
angle variables for the two body problem. These will be written as the state vector
YT = (θi, Ii). Finally, the action angle variables for the KAM torus will be written
as ZT = (ϑi, Ji) when state vector formalism is more convenient.



48 J of Astronaut Sci (2018) 65:46–62

Begin with the Hamiltonian for satellite orbits about the non-spherical Earth in the
Earth-centered rotating frame

H = 1
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)−n

P m
n (cos θ) (Cnm cosmλ + Snm sinmλ) (1)

Here the Earth-centered rotating rectangular coordinates are x, y, z, and the conju-
gate momenta are the inertial velocity components, but resolved along the rotating
axes. The quantities μ, R⊕, and ω⊕ are the gravitational parameter, the equatorial
radius of the Earth, and the Earth’s rotation rate. The P m

n are the usual associated
Legendre polynomials, and the coefficients Cnm, Snm are the spherical harmonic
coefficients of the gravity model. Since a KAM torus is supposed to be a static
geometric structure, using the Earth-centered rotating frame removes the time depen-
dence of the system. Although the co-latitude θ and longitude λ appear, (1) is most
conveniently thought of as a function of the rectangular coordinates.

A classical perturbation theory would at this point need to express the Hamiltonian
in the two body problem variables. Transforming this system into two body action
angle variables will be done numerically. That is, the physical Hamiltonian written
in two body action angle variables is simplyH(X(Y)). In this paper the EGM-96 [6]
Earth gravity model will be used, usually truncated at order and degree twenty. Units
will be nondimensional, using Earth radii, setting μ = 1, and making the time units
about 13.44 minutes. Exact conversion values are set from the gravity model.

The two body problem appears twice in this method. The first time it is the change
of variables from physical quantities to an action - angle set for the unmodified two
body problem. The second appearance will be in modified form, as the target Hamil-
tonian onto which the native system will be mapped. Since this will be an application
of KAM theorem techniques, the dynamics must begin with action angle variables.
The two body problem action angle variables take several forms, but to avoid time
dependence in the dynamics, the node must be replaced with the node measured from
Greenwich. The fact that this makes the node a function of time is not relevant, since
all three angles will shortly be functions of time. For the two body problem the Delau-
nay variables are one set of action angle variables. In terms of the classical elements
a, the semimajor axis, e the eccentricity, i the inclination, M the mean anomaly, ω

the argument of perigee, and � the node, the Delaunay elements are

I1 = L = √
μa θ1 = l = M

I2 = G = √
μa

√
1 − e2 θ2 = g = ω

I3 = H = √
μa

√
1 − e2 cos i θ3 = h = �

(2)

Since the node is measured from Greenwich, a simple canonical transformation
shows the two body Hamiltonian has the form

HT BP = − μ2

2I 21
− ω⊕I3 (3)
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The Poincaré action angles are a variant of these, and have the advantage that they
are always defined for any orbital elements. They are

I1 = L θ1 = l + g + h

I2 = L − G θ2 = −g − h

I3 = G − H θ3 = −h

(4)

with a Hamiltonian in the rotating frame of

HT BP = − μ2

2I 21
+ ω⊕(−I1 + I2 + I3) (5)

Here,HT BP will stand for the unaltered two body Hamiltonian. Not covered in detail
here is the fact that the first and second derivative matrices of the physical state X

with respect to the action angle variables Y will be needed. That is, we have available
both ∂Xi/∂Yj , a six by six matrix, but also the cubical tensor ∂2Xi/∂Yj ∂Yk . The
need for both of these will become apparent shortly.

To serve as the target system onto which the native Hamiltonian will be mapped,
the classical two body problem must be modified somewhat. The target Hamiltonian
is a function of the new constant momenta, which are the Ji in the notation of this
paper. Measuring the node from Greenwich matches the Earth’s rotation and intro-
duces a second frequency into the two body problem. As the target Hamiltonian must
be in action angle form, it is not a function of the coordinates ϑi . However, the KAM
Newton-Rhapson iteration method introduced below will fail with zero frequencies,
and it is well known that orbiting a non-spherical planet forces non-zero frequencies
in all three angle variables. This will avoid the well-known non-degeneracy condi-
tion on the reference Hamiltonian in the KAM theorem. The author found in [5] that
frequency corrections are an essential part of adapting the KAM theorem for prac-
tical problems. Accordingly, let all three angle variables have corrections added to
their frequencies. Insert the possibility of frequency corrections by adding an extra
unknown potential function to the two body Hamiltonian

K = HT BP (J ) + �V (J )

= HT BP (J ) + Jα�ωα + 1

2

∂�ωα

∂Jβ

�Jα�Jβ + ... (6)

In the above the convention that Greek indices are summed is introduced, and will be
used frequently in what is to follow. The first order term in the potential directly adds
a correction �ωi to the frequencies of the two body problem. This correction will be
present on the reference torus, so it is multiplied by Ji instead of the offset from the
reference torus, �Ji = Ji −Ji0. The �ωi will be initialized using the well known J2
oblateness rates calculated from the secular potential

V (J ) ≈ μ4J2R
2⊕

L3G3

(
1

4
− 3

4

H 2

G2

)
(7)

and an equivalent form in the Poincaré variables. But this is only an approximation,
and will be corrected by a method to be introduced shortly. The last term, quadratic in
�Ji = Ji − Ji0, the displacement off the nominal torus specified by the Ji0, affirms
that nearby trajectories also lie on KAM tori. Their frequencies must depend only
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on the action momenta, but may be different from that of the reference torus. The
frequency partial derivative matrix will also be determined in what is to follow. What
this transform does is to change the system frequencies by specified amounts

ωi = ∂K
∂Ji

= ∂HT BP

∂Ji

+ �ωi (8)

on the reference torus itself �ω. For nearby tori, J �= J0 additional frequency correc-
tions appear, first order in the �Ji . This means that we are free to use the two body
problem geometry as a reference solution, while decoupling the geometry of the two
body problem from its traditional frequencies. Assuming that the frequency correc-
tions depend on the action momenta is simply an affirmation that the system is still
in action-angle form. As this is no longer quite the two body problem, this system
will be referred to as the target, or reference Hamiltonian.

A Hamilton-Jacobi Solution Algorithm

The underlying approach will be to change variables using the Hamilton-Jacobi equa-
tion to map the physical system (1) onto the target problem (6), H → K. A classical
F2 = S generating function will be used, where S = S(θ, J ) is a function of the old
angles and the new momenta. Transform relationships are

ϑi = ∂S

∂Ji

, Ii = ∂S

∂θi

(9)

To be useful in actual applications, the solution must not just construct the torus, but
should also include nearby tori. This will involve a Taylor’s expansion in the new
momenta about the chosen torus values Ji0.

The comparison of an attempted KAM solution with a Von Ziepel literal approach
in [5] showed that there do exist periodic perturbations along the KAM angle variable
directions, at least when the perturbations are finite. The missing information in the
local generating function is the dependence on the action momenta Ji and on time.
Until information on the local dependence of S1 on the action momenta Ji is obtained,
it is not possible to map both the final action angle variables ϑi, Ji back onto the
osculating variables θi, Ii , and further onto physical space. Also, a KAM torus alone
will be of only theoretical interest without the means to do orbit determination and
maneuver planning. Both of these considerations show that the generating function
for a single torus, S = S(θi, Ji0) must be extended beyond single constant values Ji0
of the action momenta. In other words, we need to add some thickness to the torus to
make it usable.

If the nearby space is also filled with KAM tori, then two types of terms are
expected as we calculate a Taylor’s expansion for S in the Ji about the reference
value Ji0. Begin by affirming the near identity transform, but now including orbits
near the reference torus, and the possibility of frequency changes. So the lead term
in S is θαJα = θα(Jα,0 + �Jα). The periodic part of S1 should expand into further
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terms in �Ji = Ji − Ji0 which will also be periodic in the angles θi . So close to the
reference torus, S should have the form

S(θ, J ) = θα(Jα,0 + �Jα) + S1(θ) + ∂S1(θ)

∂Jα

�Jα

+ 1

2!
∂2S1(θ)

∂Jα∂Jβ

�Jα�Jβ + ... (10)

The generating function is shown as an explicit Taylor’s expansion about the refer-
ence torus (�Ji = 0), but a generalized function of the angles θi . This is because we
propose to calculate the functions of the θi as Fourier series with numerically deter-
mined coefficients. This will be done via a set of Newton-Rhapson iterations, to be
developed below. The generating function is shown truncated to second order in the
�Ji . As we are only interested in motion on, and in the immediate vicinity of a spec-
ified KAM torus ( Ji0 given ), this will prove to be sufficient to fully describe both
the KAM torus surface and all adjacent trajectories. Actually, the quadratic term will
vanish in all but one instance as we evaluate partial derivatives on the torus itself,
�Ji = 0. In that one instance, an alternate method will be used to produce a closed,
self-consistent algorithm, making higher order terms unnecessary.

A generating function transform produces explicit equations for half of the vari-
ables, and implicitly determines the other half of the variables. Practical questions of
implementation are put aside here to concentrate on the construction of the generating
function solution. This generating function produces the variable transformation

ϑi = ∂S

∂Ji

= θi + ∂S1(θ)

∂Ji

+ ∂2S1(θ)

∂Ji∂Jα

�Jα + ... (11)

Ii = ∂S

∂θi

= Ji,0 + �Ji + ∂S1

∂θi

+ ∂2S1(θ)

∂Jα∂θi

�Jα

+ 1

2

∂3S1(θ)

∂Jα∂Jβ∂θi

�Jα�Jβ + ... (12)

Since the generating function terms S(θ) are obtained as Fourier series, additional
partial derivatives with respect to the θi can be calculated as needed. If this expression
only included the identity transform and S1(θ) term, this would be an attempt to
directly apply the KAM theorem methodology. It would also ignore the first order
terms in �Ji , which become zero order terms in the angle transformation (11). Since
these terms only change the angles, they do not change the geometry of the torus.
But they must be included to model actual time-dependent orbits. The only terms a
direct KAM analysis would produce are the periodic perturbations in the momentum
transform. This changes the shape of the torus, producing a static, geometric object.
However, it ignores periodic perturbations within the surface of the torus itself, as
well as the possibility of changes in the system frequencies. This may well explain
why practical attempts to apply KAM theory have such a poor reputation.

Now, to continue the KAM transformation, take the full Hamilton-Jacobi equation

H
(

θi, Ii = Ji,0 + �Ji + ∂S

∂θi

+ ∂2S1(θ)

∂Jα∂θi

�Jα + ...

)
= K(Ji,0 + �Ji) (13)
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after inserting (10), and ignoring the time portion of the classical Hamilton-Jacobi
equation. Expanding in a Taylor’s series in the �Ji and grouping terms yields, at
order zero

H
(
θi, Ii = Ji,0 + ∂S1/∂θi

) = K
(
Ji,0

)
(14)

At the first order, the conditions are

∂H
∂Jk

∣∣∣∣
�Ji=0

= ∂H
∂Iα

∂Iα

∂Jk

= ∂K
∂Jk

∣∣∣∣
�Ji=0

(15)

Calculating ∂Ii/∂Jk = δik + ∂2S1/∂Jk∂θi from (12), and substituting in the native
Hamiltonian reduces the above to

∂H
∂Iα

(
δαk + ∂2S1

∂θα∂Jk

)
= ∂K

∂Jk

(16)

where δij is Kroenecker’s delta function. This rearranges somewhat to give

∂H
∂Iα

∂

∂θα

∂S1

∂Jk

= ∂K
∂Jk

− ∂H
∂Ik

(17)

This is a set of partial differential equations for the unknown series ∂S1/∂Jk . All
partial derivatives are, of course, evaluated on the reference torus.

Now, the assumption is that the Hamiltonian functions H and K are quite close
to each other. In the KAM theorem proof they are assumed to be infinitesimally
close, but in the current application we will assume that the differences are “small”.
For the Earth the largest term is the oblateness J2 term, which is about order 10−3

compared to the two body problem. Rather than the traditional power series expan-
sions in a small parameter, following the KAM theory proof methodology, we will
attempt solutions to (14) and (17) by Newton-Rhapson linearization methods. In the
zero order equation, assume there is a small correction to the generating function
S1 → S10 + δS1, and expand (14) to obtain

δH = K(J0) − H(θ, I = J0 + ∂S10/∂θ) ≈ ∂H
∂Iα

∂

∂θα

δS1(θ)

≈ ωα

∂

∂θα

δS1(θ) (18)

The first approximation indicates truncating the expansion at the first order in δS1,
while the second notes the additional approximation ∂H/∂Ii ≈ ωi . This is the stan-
dard approach in the KAM theorem proof, but here with finite perturbations we will
not see true quadratic convergence. The “slope” coefficient on the linearized term
has been approximated.

In [5] the first order terms were obtained by numerical partial derivatives. Here,
they are calculated by a Newton-Rhapson method, as in the zero order equation.
Assume a small correction ∂S1/∂Jk → (∂S1/∂Jk)0 + δ∂S1/∂Jk . Then inserting this
into (17) and expanding to first order in small quantities produces

δ
∂H
∂Jk

= ∂K
∂Jk

(J0) − ∂H
∂Ik

(θ, I ) − ∂H
∂Iα

∂

∂θα

(
∂S1

∂Jk

)

0
≈ ∂H

∂Iα

∂

∂θα

δ
∂S1

∂Jk

≈ ωα

∂

∂θα

δ
∂S1

∂Jk

, k = 1, 2, 3 (19)
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Again, the same two approximations have been made: first that the corrections
δ∂S1/∂Jk are small, and second that the physical Hamiltonian partial derivatives
yield the system frequencies. While the perturbations are finite, the corrections have
been truncated at first order, this is the usual approximation in a Newton-Rhapson
algorithm. It will be iterated to convergence.

In mathematical proofs of the KAM theorem, it is assumed that the Hamiltonian
error δH and corrections to the generating function δS1 are expanded as Fourier
series. That is

δH =
∞∑

�i=1

{
Ci,H cos(�i · �θ) + Si,H sin(�i · �θ)

}

δS1 =
∞∑

�i=1

{
Ci,S cos(�i · �θ) + Si,S sin(�i · �θ)

}
(20)

The three summation indices �i are written as a vector, as are the angles �θ , making
the trigonometric arguments a dot product. Here, it can’t just be assumed that these
functions are available, but both δ H and the three δ∂H/∂Jk can be calculated numer-
ically at a given set of θi and J0. This means that the Fourier series for δH and the
δ∂H/∂Jk can be found by numerical quadratures using the classical Fourier coeffi-
cient formulae. Inserting (20) into the zeroth order Eq. 18 and equating coefficients
produces the solution

Ci,S = −Si,H

�i · �ω, Si,S = Ci,H

�i · �ω (21)

The exact same approach suffices to solve (19) for the Fourier coefficients of
δ ∂S1/∂Jk . The quantities �i · �ω are the familiar small divisors of perturbation theory.
While the KAM proof shows that these are strongly non-resonant almost everywhere
and that the series therefore are convergent, when dealing with finite perturbations
we can only hope this is true.

A Frequency Algorithm

Examining the Newton-Rhapson iteration solutions above, it is obvious that the �i = 0
term is missing. As shown in [5], the constant term in the Fourier series would nor-
mally be a function of the momenta Ji , and would be paired with the ∂S/∂t terms
in the Hamilton-Jacobi equation, producing secular terms in S, and then correc-
tions to the orbital frequencies. The mathematicians’ KAM theorem proof offers no
guidance, so frequency corrections must be found another way. In [5], the corrected
system frequencies were extracted by calculating numerical partial derivatives of the
constant term in the S1 Fourier expansion, since this term in a literal development
would be C0,S = ∑

k�ωkJk . Here a more robust, but still numerical method will be
used.
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As the two Hamiltonians converge to each other,H → K, their derivatives should
also do the same. It would be hoped, then, that

ωi = ∂K
∂Ji

= ∂H
∂Ji

(22)

This will not happen without intervention. The target Hamiltonian K has an adjustable
frequency correction for this reason. The native Hamiltonian is a function of the
Ji through the transformation, but will have residual angle dependence until con-
vergence is achieved. This suggests calculating a correction δ�ωi as the current
discrepancybetween the twovalues,with the native system averaged over the current torus

δ�ωi = 1

(2π)3

∫ 2π

0

∂H
∂Ji

d �θ − ∂K
∂Ji

= 1

(2π)3

∫ 2π

0

∂H
∂Iβ

(
δβi + ∂2S1

∂θβ∂Ji

)
d �θ − ∂K

∂Ji

= 1

(2π)3

∫ 2π

0

∂H
∂Xα

∂Xα

∂Iβ

(
δβi + ∂2S1

∂θβ∂Ji

)
d �θ − ∂K

∂Ji

(23)

carrying the transformations all the way back to the native coordinates Xj , where
the calculations are carried out. [Of course, α is summed to six, while β is summed
to three.] In the computer code, this is mechanized alongside the integrations for the
Fourier coefficients for the δH series.

This calculation will yield the corrections to the three fundamental frequencies on
the torus. But for motion in the vicinity of the target torus, the additional matrix

∂�ωi

∂Jk

= ∂2K
∂Ji∂Jk

(24)

is required to follow the relative drift on nearby tori. Again, a correction term to mod-
ify the two body frequency derivatives is included in the target Hamiltonian (6). This
matrix should be symmetric by construction. As with the frequencies themselves,
note that at convergence the chain rule gives

ωi = ∂H
∂Ji

= ∂H
∂Xα

∂Xα

∂Iβ

∂Iβ

∂Ji

(25)

The matrix ∂ωi/∂Jk is initialized to the partial derivatives of the well known J2
secular rates. Then, locally this matrix can be found from the physical Hamiltonian
by change of variables

∂ωi

∂Jk

=
(

∂2H
∂Xα∂Xβ

∂Xα

∂Iγ

∂Xβ

∂Iδ

+ ∂H
∂Xα

∂2Xα

∂Iγ ∂Iδ

)
∂Iγ

∂Ji

∂Iδ

∂Jk

(26)

This is, of course, the next derivative of (25). Averaging over the torus, corrections to
the frequency partial derivative matrix are found as

δ

(
∂�ωi

∂Jk

)
= 1

(2π)3

∫ 2π

0

∂ωi

∂Jk

(�θ)d �θ − ∂�ωi

∂Jk

(27)

While this matrix should be symmetric, all nine components were calculated as a
check. No violations of symmetry were observed.
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Algorithm Performance

In this section an example of the algorithm will be presented. Numerically, each iter-
ation involves numerical quadratures to obtain the Fourier coefficients of the function
δH from (18), three more sets of Fourier series coefficients for the δ∂H/∂Jk , (19),
three more integrals to obtain the frequency corrections δ�ωi , (23), and an addi-
tional nine integrals for the corrections to the frequency partial derivative matrix
δ∂�ωi/∂Jk , (27). All these integrals are conveniently done together, since they are
integrations over the same torus geometry. In general, it is to be hoped that the
method will converge. This means that first the transformed Hamiltonians and their
partial derivatives will approach each other, H → K. Second, the increments to the
generating function series for S1 and its partial derivatives will go to zero. And finally,
the frequency corrections will also approach zero. In evaluating the convergence of a
Fourier series, there is a norm on multiply periodic functions

‖δS‖2 = ‖C0‖2 + 1

2

∞∑
�j

(���C �j
���
2 +

���S �j
���
2
)

(28)

that we will find useful. The sample torus reported here has a perigee distance of 1.1
Earth radii, an eccentricity of approximately e = 0.1, and an inclination of i = 0.2
radians. Poincaré variables were used. The native Hamiltonian (1) was truncated at
n,m ≤ 20.

Figure 1 shows the convergence of the Hamiltonian error and the errors of its par-
tial derivatives as a function of iteration. As in [5], the convergence is only geometric,
not quadratic. In the linearized Newton iterations, the derivative term is approxi-
mated, and true quadratic convergence is not obtained. No attempt has been made to
identify the actual partial derivative curves on the figure, the intention being to merely
verify convergence. It seems the usual case that the Hamiltonian error itself con-
verges faster than its derivatives. Initial errors for δH are of order 10−3 as expected.
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10-2

10-4

10-6

10-8

10-10

10-12

10-14

0 2 4 6 8 10

H
am

ilt
on

ia
n 

N
or

m
s

H

H
Jk

Fig. 1 Convergence of the norm of the Hamiltonian error δH and its partial derivatives
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Fig. 2 Convergence of the norm of the increment to the generating function δS1 and its partial derivatives

While the oblateness frequency approximations are being used to initialize the itera-
tion, other oblateness perturbations are not initially included. Also, the first iteration
can be considered the equivalent of a first order literal variable perturbation solu-
tion. The advantage of expanding in action-angle variables is that only limited terms
are needed in the momenta directions to model a given torus, and so it is possible
to numerically iterate without generating an ever increasing number of terms in the
Fourier series.

Figure 2 shows the equivalent result for the generating function itself. As with the
Hamiltonian results, the generating function increment δS1 converges faster than its
derivatives. However, the orbit does not seem to be overly troubled by any particular
small divisors. Convergence again continues to be geometric, not quadratic.

The behavior of the frequency corrections is displayed in Fig. 3. There are three cor-
rections to the fundamental orbital frequencies, and nine elements of the frequency
partial derivative matrix. While all nine of the latter were calculated independently,
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Fig. 3 Convergence of the orbital frequencies and the frequency partial derivative matrix



J of Astronaut Sci (2018) 65:46–62 57

the symmetry condition ∂�ωi/∂Jk = ∂�ωk/∂Ji was obeyed to machine precision
in all cases. Hence, there does not appear to be 12 curves in the figure, but only
nine. In [5] the first order frequency corrections were obtained by numerical partial
derivatives, while here they are found directly from the Hamiltonian, as are the fre-
quency partial derivatives. The accuracy of the frequencies will shortly be evaluated
by comparison to numerical integration.

The Fourier norm (28) can be used to examine the frequency spectrum and conver-
gence of these series. In particular, the bounds on the angles must be chosen before
the Fourier integrals are performed, and if any significant coefficients are prema-
turely truncated, they will distort the results in other ways. Figure 4 shows the power
in the θ1, θ2 directions, with the remaining sum in (28) being over the θ3 coefficient

‖S‖i1,i2
=

⎛
⎝‖C0‖2 + 1

2

∞∑
i3

(��Ci1i2i3

��2 + ��Si1i2i3

��2
)⎞
⎠

1/2

(29)

Over the integer grid (i1, i2) of two of the Fourier series indices, this plots the power
in the remaining index i3. The desire here is to confirm that truncation limits in these
indices have been chosen appropriately. Since Poincaré variables have been used, the
integer coefficients refer to the angles in (4). While Fourier coefficients were calcu-
lated across the entire rectangle, the plot used 10−12 as a floor for truncation. The
fact that the power distribution is cut off on all sides indicates that the full spectrum
has been captured to this level of accuracy. A similar plot using two different angles
completes the verification, and also indicates where the Fourier series might be prof-
itably truncated before use. Alternately, significant power appearing at the edge of
the graph would indicate higher order frequency combinations must be included. In
this paper we have tried to convincingly achieve convergence. This involves many
more terms than might be used in a real world application.
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Implementing The KAM Variable Transform

The end result of the construction algorithm discussed up to here is a set of four
Fourier series for S1(θ) and the three ∂S1(θ)/∂Jk , the torus frequencies ωk , and the
frequency partial derivative matrix ∂ωj/∂Jk . But there are some practical details to
be worked out to implement the transformation developed herein. In the days of lit-
eral variable perturbation development, the generating function approach used here
was often criticized, since it seems to require the inversion of infinite series. The
transformation laws (11) and (12) each supply one half of the complete transform,
but in opposite directions. A more modern approach to literal variable development
would be the Lie series based approaches of Hori [7] and Deprit [8], which do not
require a series inversion. Both transform laws are, however, near identity transfor-
mations, and can be re-arranged to find near Newton-Rhapson iterations to complete
the transform in the other direction.

Given a set of physical initial conditions, these can be traded for the osculating
state (θi, Ii) using the two body problem. The obvious choice of Ji,0 = Ii would
probably be used to initialize the theory. The remaining problem is then to find the
�Ji and the ϑi which match the osculating state. Rearrange (12), expanding linear
terms to find corrections δ�Ji to the momenta offsets. This then becomes a Newton
- Rhapson iteration

[
δi,α + ∂2S1(θ)

∂Jα∂θi

]
δ�Jα = Ii − Ji,0 − �Ji − ∂S1

∂θi

− ∂2S1(θ)

∂Jα∂θi

�Jα (30)

where δij is the Kroenecker delta function. The obvious starting guess is to choose
�Ji = 0. The matrix on the left side does not change, and needs to be factored only
once. Knowing the �Ji , the ϑi follow from (11) by direct calculation. Alternately,
knowing the �Ji , the torus might be recalculated with the “correct” Ji,0 and the �Ji

set to zero.
The prediction problem begins with the solution to the target Hamiltonian system

K, where the �Ji are constant, and where the ϑi(t) = ϑi(t0) + ωi,0(t − t0). Then
knowing the (ϑi, �Ji), the problem becomes to calculate the osculating variables
(θi, Ii) and then obtain the physical coordinates. Begin with the target Hamiltonian’s
behavior

ϑi(t) = ϑi(t0) + ∂K

∂Ji

(t − t0)

= ϑi(t0) +
(

∂KT BP

∂Ji

+ �ωi + ∂ωi

∂Jα

�Jα

)
(t − t0) (31)

grouping the terms that can grow linearly together. Starting with θi ≈ ϑi , then (11)
rearranges to yield the Newton-Rhapson iteration equation

[
δi,α + ∂2S1(θ)

∂Ji∂θα

]
δθα = θi − ϑi + ∂S1(θ)

∂Ji

(32)

for corrections δθi to the θi . Once the θi are known, (12) supplies the Ii directly.
Finally, the two body problem supplies the physical state.
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Going to the first order partial derivatives is especially tempting, since this makes
it possible to evaluate the “state transition matrix” of the system. Recall the vectors
X and Y stand for the physical variables and the two body problem action-angle
variables, while ZT = (ϑi, Ji) is the torus state vector. Then the state transition
matrix can be written as

�(t, t0) = ∂X(t)

∂X(t0)

=
{

∂X
∂Y

∂Y
∂Z

(t)

}
∂Z(t)

∂Z(t0)

{
∂X
∂Y

∂Y
∂Z

(t0)

}−1

(33)

Since the solution in the Z variables is given by (31) and the statement that the action
momenta are constant, the innermost matrix ∂Z(t)/∂Z(t0) is easily found to be

∂Z(t)

∂Z(t0)
=

{
I

(
∂2KT BP

∂Ji∂Jj
+ ∂�ωi

∂Jj

)
(t − to)

0 I

}
(34)

The next matrix, ∂Y/∂Z can be evaluated from the new solution (11), (12). In four
sub blocks it is

∂Y
∂Z

=
{

∂θ/∂ϑ ∂θ/∂J

∂I/∂ϑ ∂I/∂J

}
(35)

The required three by three blocks are given by

∂θi

∂ϑj

=
{
δij + ∂2S1

∂Jj ∂θi

}−1

∂θi

∂Jj

= − ∂2S1

∂Ji∂Jj

∂Ii

∂ϑj

= ∂Ii

∂θγ

∂θγ

∂ϑj

=
(

∂2S1

∂θi∂θγ

+ ∂3S1

∂Jα∂θi∂θγ

�Jα

)
∂θγ

∂ϑj

∂Ii

∂Jj

= δij + ∂2S1

∂Jj ∂θi

(36)

In the first line, it is the inverse of the desired quantity that is easily obtained. In
the third line Ii and θj would normally be independent, but the Ii are calculated
after the θj are found from the ϑk . Of course, as Fourier series are available for S1
and its first Ji partial derivatives, further partial derivatives with respect to the θi

can be calculated during numerical summation. Unfortunately, on the second line
the quadratic term ∂2S1/∂Ji∂Jj makes its first appearance. The current paper has
not developed the theory to evaluate this term. But there is a way to truncate this
interleaved set of equations without calculating the second order terms. The matrix
∂Y/∂Z is the Jacobian matrix of a canonical transformation. As such it must satisfy
the symplectic condition

(
∂Y
∂Z

)T {
0 I

−I 0

}
∂Y
∂Z

=
{

0 I

−I 0

}
(37)
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Evaluating the upper right block of this expression and simplifying yields

∂θ

∂J
= −

(
∂I

∂ϑ

T
)−1 (

I −
(

∂θ

∂ϑ

)T
∂I

∂J

)
(38)

This supplies the one block that cannot be computed from zero and first order quanti-
ties. Finally, the last matrix ∂X/∂Y is evaluated from the original dynamical system.
Second order partial derivatives were necessary to include the secular frequency
change terms in the second line above, otherwise the relative drift of adjacent tori
would be missed.

Of course, it is hardly possible to contemplate orbit fitting without access to the �

matrix. Given a KAM torus, a natural set of orbital parameters relative to that torus
are the torus angles ϑi and the offsets in the torus momenta �Ji at an epoch t0. This
means that for orbit fitting the matrix relating the physical state X(t) to the relative
torus state at epoch Z(t0) is required. It is given by a portion of (33)

∂X(t)

∂Z(t0)
=

{
∂X
∂Y

∂Y
∂Z

(t)

}
∂Z(t)

∂Z(t0)
(39)

This matrix has been used to implement a least squares torus fitting program.
The example cited in the earlier sections was used to generate a physical position

and velocity vector. These were then used as initial conditions to perform a numerical
integration of the orbit using a 20 by 20 geopotential expansion, identical to that used
to develop the torus for this case. The integrated position vectors were then used as
data in a least squares fit of the current theory. In all cases tried to date, convergence
was quadratic, showing that the partial derivative matrices are correct. This was true
even when the initial guess was displaced from the known torus state values. Figure 5
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Fig. 5 Best fit residuals in the radial (U), orbit normal (W), and tangential direction (V), from a least
squares fit to a numerically integrated orbit. Orbit normal (W) errors are the smallest, while in-track (V)
errors show a tiny linear drift



J of Astronaut Sci (2018) 65:46–62 61

shows that theory and numerical integration agree to better than meter accuracy over
a week. The author takes this to mean that the current theory is indeed the solution to
constructing a KAM torus in the Earth’s actual gravity field. This is not to claim that
results of this accuracy will be obtained with real world data. In the real world the
data is of finite accuracy itself, and stochastic forces like air drag also operate. The
two meter linear drift over a week indicates that the fundamental orbital frequencies
are valid to at least ±10−10 radians per time unit.

Discussion and Conclusions

In this paper a method of solving the Hamilton-Jacobi equation has been developed,
starting with the classical two body problem, and producing KAM torus solutions
that can be pushed to numerical machine precision. Solutions to the geopotential
orbit problem can be calculated, along with motion in the immediate vicinity of the
KAM torus, and also including the state transition matrix. The method is numerical,
producing four Fourier series for the generating function and its first momentum
derivatives. As the momenta are constants on the torus, this suffices to produce a
local solution with numerical coefficients, but with literal variable dependence on the
(ϑ, J ) variables still present.

The algorithm is computationally expensive in the torus construction, where lit-
erally thousands of Fourier coefficient integrals are being done. This portion should
benefit greatly from parallelized computer code. In the tracking problem, only a few
Fourier series summations are needed to generate both the physical state and the state
transition matrix. It is probable that a constructed torus might be useful for quite a
long period of time for a given satellite, perhaps months to years. And while initial
construction of a torus may be somewhat computationally expensive, remember that
a numerical integrator must also sum many terms for the Earth’s gravity field, at each
and every timestep.

In exploring test cases, it was found that the present algorithm does not converge
for eccentricities less than about e = 0.05. Since a KAM torus algorithm seems
intimately tied to action angle variables, and since Lyddane [9] showed that zero
eccentricity is not the center of the torus in the eccentricity / argument of perigee
variables, this is quite understandable. The author’s previous work on low eccentricity
KAM tori, Wiesel [10, 11] already is capable of constructing KAM tori including the
Earth’s geopotential to arbitrary order and degree. But perhaps a Lyddane inspired
transformation can be found to extend the current effort to smaller eccentricities.

The use of KAM tori as a reference for Walker constellations and for formation
flight in orbit is very tempting. All orbits within the KAM torus have the same fre-
quencies, and so will not drift with respect to each other in torus (ϑ, J ) variables.
Their motion with respect to each other in physical space will remain bounded. To the
extent that orbit determination and maneuver errors permit, this will greatly reduce
the need for stationkeeping.
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