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Abstract Low-thrust trajectories about planetary bodies characteristically span a
high count of orbital revolutions. Directing the thrust vector over many revolutions
presents a challenging optimization problem for any conventional strategy. This paper
demonstrates the tractability of low-thrust trajectory optimization about planetary
bodies by applying a Sundman transformation to change the independent variable of
the spacecraft equations of motion to an orbit angle and performing the optimization
with differential dynamic programming. Fuel-optimal geocentric transfers are com-
puted with the transfer duration extended up to 2000 revolutions. The flexibility of
the approach to higher fidelity dynamics is shown with Earth’s J2 perturbation and
lunar gravity included for a 500 revolution transfer.

Keywords Low-thrust · Trajectory optimization · Differential dynamic
programming · Sundman transformation

Introduction

Highly efficient low-thrust propulsion systems enable mission designers to increase
the useful spacecraft mass or delivered payload mass above that from high-thrust
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engine options. This improvement typically comes at the expense of increased times
of flight to mission destinations. For low-thrust trajectories about planetary bodies,
an orbital period on the order of hours or days provides inadequate time to impart
a substantial change to the orbit and results in a large number of revolutions that
are traversed before reaching the desired state. Determining the optimal control over
hundreds or thousands of revolutions poses a sensitive and often unwieldy, high-
dimensional optimization problem.

Historical Approaches to Low-Thrust Many-Revolution Orbit Transfers

Classical approaches employ optimal control theory, named the indirect, Lagrange
multiplier, or adjoint method, beginning with Edelbaum’s transfer between circu-
lar orbits of different semimajor axis and inclination [1, 2]. Wiesel and Alfano
extended Edelbaum’s work to the slow time scale problem, i.e. many-revolution
transfers, but the optimal thrust angle must be approximated numerically [3]. Edel-
baum [4] and Kéchichian [5–7] used orbit averaging techniques for approximate
many-revolution rendezvous in classical orbital elements and modified equinoctial
elements, respectively.

Under significant assumptions, e.g. the aforementioned examples, analytic expres-
sions for the Lagrange multipliers (adjoints or costates) enable quick trajectory
computation. Otherwise, numerical solution requires a non-intuitive initial guess of
the Lagrange multipliers and the resulting trajectory is sensitive to those values.
That sensitivity is amplified when the trajectory encompasses many revolutions. The
indirect approach is further complicated by the need to re-derive the adjoint equa-
tions of motion and boundary conditions as different state variables, constraints, and
dynamics are considered.

These drawbacks of indirect methods can be avoided by following a control law,
or a heuristic policy that the mission designer deems acceptable. Petropolous devel-
oped the Q-law, where Q is a candidate Lyapunov function named the proximity
quotient [8, 9]. Q captures the proximity to the target orbit, and best-case time-to-go
for achieving the desired change in each orbital element. Thrust directions are cho-
sen to maximize the reduction in Q, but the Q-law also includes constraint handling
and a mechanism for coasting. Other useful control laws pertinent to the low-thrust
many-revolution transfer include Kluever’s approach [10] that blends the optimal
thrust directions for changing different orbital elements, and the Lyapunov control
law from Chang, Chichka, and Marsden [11] that minimizes the weighted sum of
squared errors of the angular momentum and Laplace vectors between the current
and target orbit.

While indirect methods solve for the abstract Lagrange multipliers, direct methods
seek the physical variables explicitly. A decision vector is formed of control vari-
ables, state variables, or other variable parameters that collectively describe an entire
trajectory. The decision vector could also be the input parameters for a control law.
The direct optimization procedure then updates the decision vector iteratively until
convergence criteria are satisfied.

Direct optimization of heliocentric low-thrust trajectories is dominated by direct
transcription and nonlinear programming (NLP) techniques. Direct transcription
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transforms the continuous optimal control problem into a discrete approximation
[12]. Nonlinear programming generally involves the assembly and inversion of
a Hessian matrix that contains the second derivatives and cross partial deriva-
tives of a scalar objective function with respect to the decision vector. The size
of the optimization problem grows quadratically with the number of decision
variables and proves to be a computational bottleneck when applying nonlinear
programming to planetocentric low-thrust trajectories that require a large deci-
sion vector. Nonetheless, Betts solved large-scale NLPs for geocentric trajectories
over several hundred revolutions using collocation and sequential quadratic pro-
gramming in the Sparse Optimization Suite [13–17]. The current state-of-the-art
technology for the optimal design of low-thrust planetocentric trajectories is the
Mystic Low-Thrust Trajectory Design and Visualization Software [18]. Mystic
has best demonstrated its capabilities with the success of NASA’s Dawn mis-
sion [19]. Mystic’s optimization engine is built around the Static/Dynamic Optimal
Control algorithm, a differential dynamic programming (DDP) approach devel-
oped by Whiffen [20]. DDP exhibits a linear scaling of the optimization problem
size with number of control variables [21]. Despite the favorability of DDP for
large scale optimization, computation time limits Mystic to about 250 revolu-
tions for optimized trajectories before switching to the Q-law [22]. Lantoine and
Russell introduced Hybrid Differential Dynamic Programming (HDDP) [23–25],
a DDP variant that makes the most computationally expensive step suitable for
parallelization.

Differential Dynamic Programming

DDP seeks the minimum of a cost functional J (x, u, t), where x(t) = f (x0, u, t) is
a state trajectory and u(t) is a control schedule, or policy. A nominal control u(t) is
suggested as an initial guess and produces a nominal state trajectory x = f (x0, u, t).
The control is iteratively updated by applying δu(t) until optimality conditions are
satisfied. It is the δu that are the optimization variables such that the trial control is
u = u+δu. The new state that results from the updated control is similarly described
by a deviation from the nominal trajectory, x = x + δx.

The DDP procedure for updating the nominal control policy is called the backward
sweep and is motivated by Bellman’s Principle of Optimality.

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision. [26]

Considering the state that results from applying the nominal control up to stage
k = N − 1, the sole remaining decision is δuN−1. Optimization of this final deci-
sion is now independent of those preceding it and minimizes the cost-to-go. After
performing this optimization and stepping back to stage k = N − 2, the remaining
decisions are δuN−2 and δuN−1. The latter is known, however, and only the control
update at the current stage needs to be determined. An update to the entire control
policy is possible by proceeding upstream to the initial state at stage k = 0, while
optimizing each stage decision along the way.
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DDP solves the stage subproblem for each δuk to optimize a local model of the
cost remaining along the trajectory. This is in stark contrast to methods that update
the entire control sequence in the computationally expensive matrix inverse of a large
Hessian. If the control vector at each stage is of dimension m, then DDP solves N

NLP subproblems of size m, rather than a single NLP problem of size Nm.

DDP and a Sundman Transformation

The main contribution of this work is a method for the optimization of low-thrust
many-revolution spacecraft trajectories. The method is to apply a Sundman trans-
formation to the spacecraft equations of motion and perform the optimization with
DDP. The Sundman transformation [27] is a general change of variables from time
to a function of orbital radius, and effectively regulates the step size of numerical
integration [28]. Berry and Healy assessed numerical integration accuracy and com-
putational speed to establish an eccentricity threshold at which the transformation
proves more effective than time-integration [29]. Pellegrini, Russell, and Vittaldev
showed accuracy and efficiency gains for propagation with the Sundman transforma-
tion in the Stark and Kepler models [30]. Yam, Izzo, and Biscani previously applied
a Sundman transformation to the Sims-Flanagan transcription to optimize interplane-
tary trajectories [31, 32]. Now the Sundman transformation is applied to HDDP with
a focus on geocentric trajectories.

The Sundman Transformation

In regularizing the equations of motion to solve the three-body problem, Karl Sund-
man introduced a change of independent variable from time t to the new independent
variable τ [27].

dt = cnr
ndτ (1)

Time and the new independent variable are related by a function of the orbital radius,
r . The real number n and coefficient cn may be selected so that τ represents an orbit
angle. For n = 0, 1, 2, the independent variables are the mean anomaly M , eccentric
anomaly E and true anomaly f . Those transformations are given by

dt =
√

a3/μdM, (2a)

dt = √
a/μrdE, (2b)

dt = r2/h df, (2c)

where a is the semimajor axis, μ is the gravitational parameter of the central body
and h is the angular momentum magnitude.

Transforming time-dependent equations of motion simply requires multiplication
by the functional relationship between the two independent variables.

X̊ = dX

dτ
=

(
dX

dt

)
dt

dτ
= Ẋcnr

n (3)
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In Eq. 3, X represents a state vector, the overhead dot denotes a time derivative and
the overhead ring denotes a derivative with respect to τ . Time-dependent equations
of motion Ẋ are typically propagated for a prescribed duration of time from the state
at an initial epoch. Now, however, propagation is specified for a duration of τ . When
τ is an orbit angle, the number of revolutions Nrev may be specified so that the τ

duration is 2πNrev . The elapsed time is unknown a priori but may be tracked by
including t in the state vector and numerically integrating dt/dτ .

Sundman-Transformed HDDP

This section summarizes the HDDP algorithm presented by Lantoine and Russell
in Reference [23], with necessary changes for the Sundman transformation. Depar-
tures from their presentation include expanded use of the augmented state vector and
tensor notation. Algorithmic options and differences between the author’s HDDP
implementation and Reference [23] are also noted.

Tensor Notation

DDP is a second-order gradient-based method that requires first and second deriva-
tives of the state dynamics, or in this context, Sundman-transformed dynamics. Those
second derivatives form a rank three tensor and cause notational difficulties. Tensor
notation prevents ambiguities of mathematical operations between tensors, matrices,
vectors, and scalars.

The adopted convention uses superscripts as indices. The rank of an object is
implied by the number of indices. For example, Xi is the i-th element of state vector
X. First and second derivatives of the state dynamics are stated as

Ai,a = ∂Ẋ
i

∂Xa , (4a)

Ai,ab = ∂2Ẋ
i

∂Xa∂Xb
. (4b)

Ai,a is the (i, a) entry of the dynamics matrix and is the derivative of the i-th element
of state dynamics vector Ẋ taken with respect to the a-th element of X. Ai,ab is the
(i, a, b) entry of the rank three dynamics tensor that is the cross partial derivative, or
second derivative if a = b, of the i-th element of Ẋ with respect to the a-th and b-th
elements of X.

Following Einstein notation, multiplication is performed by summing over
repeated γ indices. The familiar differential equation for the state transition matrix,
�̇ = A�, is the product of two matrices and otherwise written as

�̇i,a = Ai,γ1�γ1,a. (5)

The differential equation for the second-order state transition tensor is

�̇i,ab = Ai,γ1�γ1,ab + Ai,γ1γ2�γ1,a�γ2,b. (6)
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The presence of multiple repeated indices implies multiple summations, e.g. for X

with n state variables, Ai,γ1γ2�γ1,a�γ2,b is a double summation over γ1 = 0, 1, ..., n,
γ2 = 0, 1, ..., n.

Forward Pass

Evaluating a trial control schedule x(t) = f (x0, u+δu, t) constitutes a forward pass.
For the first iteration, u is the initial guess of controls and δu = 0. HDDP is a discrete
form of DDP where a trajectory can be described by any number of phases, with each
phase described by a number of stages. This work considers single phase trajectories
of N stages. The discrete trajectory is [x0, x1, ..., xN ] and the control schedule is
[u0, u1, ..., uN−1]. A useful construct for both notation and implementation is the
augmented state vector XT = [xT , uT ]. The forward pass is then the sequence of
function evaluations,

Xk+1 = F (Xk), k = 0, 1, ..., N − 1. (7)

The transition function F dictates how the state evolves between stages, and might
obey a system of linear, nonlinear or differential equations, and is not necessarily
deterministic. DDP is applicable to all of these systems in both continuous and dis-
crete form [21]. Stages in HDDP represent sampling of continuous variables, so
that the transition function is the integral of the equations of motion. The relevant
transition function for the Sundman-transformed dynamics in Eq. 3 is

Xk+1 = Xk +
τk+1∫

τk

X̊k(τ ) dτ. (8)

The cost can be determined once the transition functions have been evaluated up
to the final state, XN . Nominal states and controls are updated for successful itera-
tions, so that X becomes the new X. If optimality conditions are satisfied, then the
procedure is finished. Otherwise, a control update is computed in a backward sweep.

Augmented Lagrangian Method

The standard DDP formulation adjoins terminal constraints ψ(xf ) = 0 to the orig-
inal cost function using a constant vector of Lagrange multipliers. HDDP selects a
cost function J = ϕ̃ based on the augmented Lagrangian method where a scalar
penalty parameter places additional weight on terminal constraint violations. Here a
penalty matrix is used so that the additional weight on each constraint may be treated
individually.

ϕ̃ = φ + λT ψ + ψT 
ψ +
N−1∑
k=0

Lk (9)

The first term φ(XN) is the original objective to be minimized. Multipliers λ are ini-
tialized as the zero vector and updated at every iteration to push the trajectory toward
feasibility. The initial guess of zero-valued multipliers is not a requirement but it is
nonintuitive how to choose otherwise. Penalty matrix 
 places additional weight on
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constraint violations and serves to initialize a quadratic cost function space. Lk(Xk)

is the local cost incurred at stage k. In contrast to previous approaches that continually
increase the penalty weight [23, 33], 
 is held constant for all iterations. In practice,
the entries of 
 are tuned after observing how the iterates progress toward feasibil-
ity. For example, an initial attempt to optimize a trajectory might begin with 
 as a
scalar multiple of the identity matrix so that each constraint is weighted equally. If
iterates show little progress toward satisfying a particular constraint, its associated 


entry could be increased and the process restarted. Similarly, if the algorithm appears
to prioritize a constraint without working to satisfy the other constraints, the 
 entry
for that prioritized constraint could be reduced.

Backward Sweep

Stage Subproblems The backward sweep solves the sequence of subproblems that
minimize the cost-to-go from stage k = N − 1, N − 2, ..., 0.

J ∗
k = min

δuk

[Jk] (10)

With the addition of the stage subscript, Jk is the cost-to-go from stage k. The super-
script asterisk denotes an optimal value, so J ∗

k is the optimal cost-to-go from stage k.
The solution to Eq. 10 is the optimal control update δu∗

k . By assuming that the cost
function can be approximated by a second-order Taylor series expansion about the
nominal states, controls and multipliers, a prediction for δu∗

k is readily available.

Jk(xk + δxk, uk + δuk, λ + δλ) ≈ ERk+1 + Jk(xk, uk, λ) + J T
x,kδxk + J T

u,kδuk

+ J T
λ,kδλ + 1

2
δxT

k Jxx,kδxk + 1

2
δuT

k Juu,kδuk + 1

2
δλT Jλλ,kδλ

+δxT
k Jxu,kδuk + δxT

k Jxλ,kδλ + δuT
k Juλ,kδλ (11)

The expected reduction ERk+1 accounts for the predicted change in cost that accu-
mulates with the solution to each subproblem. The left-hand side of Eq. 11 represents
the cost-to-go along a neighboring trajectory that differs from the nominal value by
δJk .

δJk = Jk(xk + δxk, uk + δuk, λ + δλ) − Jk(xk, uk, λ) (12)

The quadratic model is then restated as

δJk ≈ ERk+1 + J T
x,kδxk + J T

u,kδuk + J T
λ,kδλ + 1

2
δxT

k Jxx,kδxk

+ 1

2
δuT

k Juu,kδuk + 1

2
δλT Jλλ,kδλ + δxT

k Jxu,kδuk + δxT
k Jxλ,kδλ

+δuT
k Juλ,kδλ. (13)
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The minimizing control update is found by taking the derivative of Eq. 13 with
respect to δuk and setting it equal to zero. The result is an unconstrained feedback
control law,

δu∗
k = Ak + Bkδxk + Dkδλ,

Ak = −J−1
uu,kJu,k,

Bk = −J−1
uu,kJux,k,

Dk = −J−1
uu,kJuλ,k. (14)

The feed-forward terms Ak and feedback gains Bk , and Dk are stored to assemble
δu∗

k during the forward pass. For a quadratic cost function and linear system, the
model and minimization are exact and DDP exhibits one-step convergence. Algo-
rithmic options from HDDP permit the practical application of Eq. 14, namely the
enforcement of control bounds by a null-space method [24]. A trust-region method
restricts the size of Ak and δλ so that the resulting δxk remains within the valid region
of the quadratic model [34]. Furthermore, the trust-region method ensures that Juu,k

is positive definite so that δu∗
k is a descent direction.

Derivatives present in the new control law are obtained by recognizing that the
cost-to-go is the sum of the local cost and the optimal cost-to-go from the next stage.

Jk = Lk + J ∗
k+1 (15)

The required derivatives are the Taylor coefficients in Eq. 13, which is the expansion
of the left-hand side of Eq. 15. Their counterparts from expanding the right-hand side
of Eq. 15 should be equivalent.

δLk ≈ LT
x,kδxk+LT

u,kδuk+ 1

2
δxT

k Lxx,kδxk+ 1

2
δuT

k Luu,kδuk+δxT
k Lxu,kδuk (16a)

δJ ∗
k+1 ≈ ERk+1 + J ∗T

x,k+1δxk+1 + J ∗T
λ,k+1δλ + 1

2
δxT

k+1J
∗
xx,k+1δxk+1

+1

2
δλT J ∗

λλ,k+1δλ + δxT
k+1J

∗
xλ,k+1δλ (16b)

Derivatives in Eq. 16a are obtained directly while those in Eq. 16b are known from
the preceding subproblem. Equating Taylor coefficients of like order requires an
expression for δxk+1 as a function of δxk , δuk and δλ. By definition, that relationship
is

δxk+1 = f (xk + δxk, uk + δuk, tk) − f (xk, uk, tk). (17)

Second-Order Dynamics Equation 17 suggests the need to compute a neighboring
trajectory alongside the new control schedule during the backward sweep. This is
avoided by using a quadratic approximation of the dynamics, again obtained by a
second-order Taylor series expansion.

δXi
k+1 ≈ F

i,γ1
X,kδX

γ1
k + 1

2
F

i,γ1γ2
XX,k δX

γ1
k δX

γ2
k (18)
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Taylor coefficients for the approximate state deviation are the first-order state
transition matrix (STM) and second-order state transition tensor (STT).

�i,a(tk, tk+1) = ∂Xi
k+1

∂Xa
k

= F
i,a
X,k (19a)

�i,ab(tk, tk+1) = ∂2Xi
k+1

∂Xa
k∂Xb

k

= F
i,ab
XX,k (19b)

The STMs (referring to both the STMs and STTs) between each stage obey the dif-
ferential equations in Eqs. 5 and 6 with initial conditions �(tk, tk)

i,a = δi,a , the
Kronecker delta or identity matrix, and �i,ab(tk, tk) = 0. Equation 18 is now restated
in terms of STMs, with arguments are removed so that the implied mapping is from
tk to tk+1.

δXi
k+1 = �i,γ1δX

γ1
k + 1

2
�i,γ1γ2δX

γ1
k δX

γ2
k (20)

Sundman Transformed Dynamics As with the state dynamics transformation,
the dynamics matrix and tensor need to be transformed to reflect the change of
independent variable.

�i,a = ∂X̊
i

∂Xa (21a)

�i,ab = ∂2X̊
i

∂Xa∂Xb
(21b)

The new dynamics matrix and tensor are obtained first with respect to time then their
transformed counterparts in Eqs. 21a and b are obtained by extensive application of
the chain rule. First, the general Sundman transformation is redefined along with its
first and second derivatives with respect to the state vector.

η = dt/dτ = cnr
n (22)

ηX
i = ∂η

∂Xi
(23)

ηXX
i,a = ∂2η

∂Xi∂Xa
(24)

After assembling Eqs. 4a and b, the chain rule completes the transformation,

�i,a = Ai,aη + Ẋ
i
ηX

a, (25a)

�i,ab = Ai,abη + Ai,aηX
b + Ai,bηX

a + Ẋ
i
ηXX

a,b, (25b)

and the transformed differential equations for the STMs become

�̊i,a = �i,γ1�γ1,a, (26a)

�̊i,ab = �i,γ1�γ1,ab + �i,γ1γ2�γ1,a�γ2,b. (26b)
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Stage Cost-To-Go Derivatives Before making use of the STMs to obtain the stage
cost-to-go derivatives, the quadratic expansions of the cost-to-go are restated in terms
of the augmented state vector.

δJk ≈ ERk+1+J T
X,kδXk+J T

λ,kδλ+ 1

2
δXT

k JXX,kδXk+ 1

2
δλT Jλλ,kδλ+δXT

k JXλ,kδλ

(27a)

δLk ≈ LT
X,kδXk + 1

2
δXT

k LXX,kδXk (27b)

δJ ∗
k+1 ≈ ERk+1 + J ∗T

X,k+1�δXk + 1

2
J

∗γ1
X,k+1�

γ1,γ2γ3δX
γ2
k δX

γ3
k + J ∗T

λ,k+1δλ

+1

2
δXT

k �T J ∗
XX,k+1�δXk + 1

2
δλT J ∗

λλ,k+1δλ + δXT
k �T J ∗

Xλ,k+1δλ(27c)

Recall that the control sensitivities of J ∗
k+1 are zero. Substituting Eq. 20 into Eq. 16b

yields third and fourth-order terms in δXk that have been ignored in Eq. 27c.
That truncation is inconsequential as Taylor coefficients are only being matched to
second-order. Doing so finally yields the stage cost-to-go derivatives with respect to
the augmented state and multipliers, from which the submatrices are acquired for
Eq. 14.

JX,k = LX,k + �T J ∗
X,k+1 (28a)

Jλ,k = J ∗
λ,k+1 (28b)

J
i,a
XX,k = L

i,a
XX,k + J

∗γ1,γ2
XX,k+1�

γ1,i�
γ2,a + J

∗γ1
X,k+1�

γ1,ia (28c)

Jλλ,k = J ∗
λλ,k+1 (28d)

JXλ,k = �T J ∗
Xλ,k+1 (28e)

Stage Update Equations Before proceeding upstream from stage k to k − 1, the
stage update equations predict the effects of the updated control. The expected reduc-
tion and derivatives of the optimal cost-to-go are obtained by inserting the optimal
control law into Eq. 13.

ERk = ERk+1 + J T
u,kAk + 1

2
AT

k Juu,kAk (29a)

J ∗T
x,k = J T

x,k + J T
u,kBk + AT

k Juu,kBk + AT
k Jux,k (29b)

J ∗T
λ,k = J T

λ,k + J T
u,kDk + AT

k Juu,kDk + AT
k Juλ,k (29c)

J ∗
xx,k = Jxx,k + BT

k Juu,kBk + BT
k Jux,k + J T

ux,kBk (29d)

J ∗
λλ,k = Jλλ,k + DT

k Juu,kDk + DT
k Juλ,k + J T

uλ,kDk (29e)

J ∗
xλ,k = Jxλ,k + BT

k Juu,kDk + BT
k Juλ,k + J T

ux,kDk (29f)

The stage update equations require initial values to solve the first subproblem at stage
k = N − 1. These values are straightforward to obtain as there is no subproblem at
the final state. The optimal and nominal cost are equivalent, i.e. J ∗

N = ϕ̃. Derivatives
of the optimal cost-to-go are derivatives of the augmented Lagrangian and there is no
expected reduction, ERN = 0.
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Multiplier Update HDDP obtains the optimal multiplier update in the same manner
as the optimal control update at each stage, by setting the derivative of the quadratic
model with respect to the multiplier update equal to zero.

δλ = −J−1
λλ Jλ (30)

In this single-phase formulation, Jλλ = J ∗
λλ,0 and Jλ = J ∗

λ,0. The trust-region method
is again employed to perform the multiplier update in Eq. 30. Now however, Jλλ

is negative-definite, so the update δλ is a maximizer and the expected reduction
increases. The expected reduction is updated to reflect the multiplier increment.

ER0 = ER0 + J T
λ Aλ + 1

2
AT

λ JλλAλ (31)

Trust-Region Quadratic Subproblem The unconstrained control update in Eq. 14
is likely to step beyond the valid region of the quadratic approximation, as is the
multiplier update in Eq. 30. An unconstrained backward sweep and subsequent appli-
cation of the new control law is likely to lead to divergence or infeasible iterates. The
updates also require the Hessians to be invertible, with Juu,k positive definite and
Jλλ negative definite. HDDP overcomes these challenges by solving a trust-region
quadratic subproblem (TRQP) at each stage subproblem and multiplier update. Now
to compute each stage control update, for example, δuk is required to lie within the
trust-region radius �.

min
δuk

[J T
u,kδuk + 1

2
δuT

k Juu,kδuk]
s.t. ‖Dδuk‖ � � (32)

The subproblem posed in Eq. 32 is named TRQP(Ju, Juu, �) and the multiplier
subproblem is TRQP(−Jλ, −Jλλ, �). The methods of Reference [34] have proved
robust in solving this subproblem in HDDP. However, the algorithm is sensitive to
the selection of a scaling matrix D that determines the shape of the trust-region. In
this study, setting D to the identity matrix was sufficient. When components of the
gradient and Hessian vary by orders of magnitude, a robust heuristic for selecting D

becomes necessary. Reference [24] suggests several scaling methods and provides a
performance comparison.

Iteration

A quadratic model of the cost function and dynamics is inexact for higher-order
systems and requires iteration to reach a local minimum. The reduction ratio

ρ = δJ/ER0 (33)

serves as an acceptance criterion for new iterates. If ρ ≈ 1, then the quadratic model
is good and the reduction in cost is as predicted. The iterate is accepted and a larger
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trust-region is allowed. Otherwise the model is poor, the iterate is rejected and the
trust-region is reduced for the next backward sweep.

�p+1 =
{

min((1 + κ)�p, �max), if ρ ∈ [1 − ε1, 1 + ε1]
max((1 − κ)�p, �min), otherwise

(34)

For the trust-region update in Eq. 34, p is the iteration counter, κ and ε1 are an addi-
tional set of tuning parameters, as is the allowable trust-region range [�min, �max].

If ER0 is zero after the backward sweep, or less than some optimality tolerance,
the optimization has reached a stationary point of the cost function with respect to
controls and multipliers. This point is a minimum if all of the Hessians Juu,k are
positive definite and Jλλ is negative definite. The algorithm converges upon reaching
a minimum while satisfying terminal constraints to within a feasibility tolerance.

Problem Formulation

Fuel-optimal low-thrust transfers from geostationary transfer orbit (GTO) to geosyn-
chronous orbit (GEO) were computed to demonstrate the efficacy of the Sundman-
transformed DDP approach.

Spacecraft State and Dynamics

The spacecraft state is chosen as a Cartesian representation of the spacecraft inertial
position and velocity.

r = [
x y z

]T
, v = [

ẋ ẏ ż
]T (35)

The augmented state vector includes time, mass m, and thrust control variables T , α

and β.
X = [

t x y z ẋ ẏ ż m T α β
]T (36)

Spherical thrust control is defined by magnitude T , yaw angle α and pitch angle β,
where the angles are defined relative to the radial-transverse-normal (RSW) frame.
RSW basis vectors and the rotation to the inertial frame are defined by

[
r̂ ŝ ŵ

] =
[

r
r

(r×v)×r
‖(r×v)×r‖

r×v
‖r×v‖

]
. (37)

Thrust vector components are then⎡
⎣

Tr

Ts

Tw

⎤
⎦ =

⎡
⎣

T sin α cos β

T cos α cos β

T sin β

⎤
⎦ ,

⎡
⎣

Tx

Ty

Tz

⎤
⎦ = [

r̂ ŝ ŵ
]
⎡
⎣

Tr

Ts

Tw

⎤
⎦ , (38)

so that the pitch angle is measured from the orbit plane about the radial direction
and the yaw angle is measured from the transverse direction about the angu-
lar momentum. No concern is given for angle wrapping. In fact, computation
exhibits favorable performance when the angles are unbounded. Spacecraft dynamics
consider geocentric two-body motion perturbed by thrust, J2 and lunar gravity,

2 (39)
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where Ẋ⊕ is the two-body motion due to point mass Earth gravity, ẊT is the
thrust acceleration and mass flow rate, ẊJ2 is Earth’s J2 perturbation, and is the
point mass lunar gravity perturbation. The Sundman transformation is made after
assembling the complete equations of motion with respect to time.

2 (40)

The time derivatives are defined by

Ẋ⊕ =
[

1 ẋ ẏ ż −μ⊕
r3

x −μ⊕
r3

y − μ⊕
r3

z 0 0 0 0
]T

, (41a)

ẊT =
[

0 0 0 0
Tx

m

Ty

m

Tz

m
− T

Ispg0
0 0 0

]T

, (41b)

ẊJ2 = −3J2μ⊕R2⊕
2r5

[
0 0 0 0 x

(
1 − 5

z2

r2

)
y

(
1 − 5

z2

r2

)
z

(
3 − 5

z2

r2

)
0 0 0 0

]T

, (41c)

(41d)

Gravitational parameters for the Earth and the Moon are μ⊕ and , respectively.
A constant power model is assumed with T ∈ [0, Tmax]. Mass flow rate is inversely
proportional to the specific impulse Isp, and acceleration due to gravity at sea level
g0. The J2 perturbation is owed to the Earth’s oblateness and is a function of the
Earth’s equatorial radius R⊕. Table 1 lists these dynamic model constants. Including
the lunar perturbation requires the Moon’s inertial position with respect to the Earth,

(42)

that is assumed to evolve according to geocentric two-body motion. The Moon’s state
is initialized with the orbital elements listed in Table 2, where i is the inclination, �

is the right ascension of the ascending node and ω is the argument of periapsis.

Augmented Lagrangian cost function

Final conditions for GEO are described in the terminal constraint function ψ , so that
ψ(Xf ) = 0 for a feasible solution. The cost in Eq. 9 also includes an objective

Table 1 Dynamic model
parameters μ⊕ 398600.44 km3/s2 μ� 4904.928372 km3/s2

R⊕ 6378.136 km g0 0.00980665 km/s2

J2 0.0010826265
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Table 2 The Moon’s Earth-
centered ICRF orbital elements
at 01 Jan 2000 00:00:00.0 TDB

a 381218.68756119 km � 12.23324045◦

e 0.06476694 ω 60.78357549◦

i 20.94024252◦ M 140.74025588◦

function defined so that the final mass is maximized and does not include local stage
costs, i.e. each Lk = 0.

φ = −mf (43a)

ψ =

⎡
⎢⎢⎢⎢⎣

‖rf ‖ − rtarget

‖vf ‖ − vtarget

rf · vf

zf

żf

⎤
⎥⎥⎥⎥⎦

(43b)


 = I5×5 (43c)

The terminal constraint function is satisfied upon arrival at GEO distance with circu-
lar orbital velocity, zero flight path angle and zero inclination. The arrival longitude
is unconstrained. The penalty matrix is set as the identity matrix so that all constraints
are weighted equally. A scaled feasibility tolerance requires ‖ψ‖ < 1 × 10−8 and
an optimality tolerance requires ER0 < 1 × 10−9. Scaling improves the numerical
behavior of both trajectory computation and optimization but adds to the set of tun-
ing parameters. Here a distance unit DU , time unit T U , force unit FU and mass unit
MU are set as

DU = rtarget ,

T U = 10
√

DU3/μ⊕,

FU = Tmax,

MU = FU T U2/DU, (44)

where the distance unit is approximately GEO radius, the time unit has been scaled
by an additional factor of 10, and the force unit is the maximum thrust.

Trajectory Computation

Propagating a trajectory from the initial state requires effective discretization and a
numerical method to evaluate the transition function between stages. Trajectories are
discretized to 100 stages per revolution and numerically integrated with fixed-step
eighth-order Runge-Kutta (RK8) formulae from Dormand and Prince [35]. Stages
are equally spaced in the independent variable. Each stage offers an opportunity to
update the thrust control variables that are held constant across an integration step.
A fixed integration step accumulates �τ = τk+1 − τk = 2π/100. The initial guess
for all stage control variables is zero, so the first iteration considers a ballistic orbit
in GTO for a prescribed number of revolutions, Nrev . The fixed transfer duration in
orbit angle is 2πNrev and there are 300Nrev control variables to solve for.
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STM Computation

The author’s HDDP implementation is programmed in C++ and compiled on the
RMACC Summit supercomputer [36]. Results were generated on a single node that
contains two Intel Xeon E5-2680 v3, 2.50 GHz CPUs with 12 cores each. STM com-
putations were distributed in parallel across all 24 cores with OpenMP [37]. All other
steps of the algorithm run serially. To permit parallelization, STMs are obtained sep-
arately from attempted trajectories with trial controls. When an iterate is accepted as
the new nominal trajectory, Eq. 8 is augmented with the STM differential equations
in Eq. 26. Each Xk is known, so integrations from any stage k to k + 1 can be per-
formed separately and in parallel, instead of serially from k = 0 to k = N − 1. The
states at integrator substeps are not saved, so the 11 state differential equations are
recomputed with the 112 + 113 STM differential equations.

Results

Petropoulos et al. [38] compared direct and indirect methods and the Q-law over
several cases of many-revolution transfers, including a GTO to GEO example named
Case B. Now HDDP is added to the comparison. Table 3 describes the initial and
target orbits, with slight differences between Reference [38] and the HDDP transfer.
Eccentricity and inclination targets were set to zero to use of Eq. 43. The dynamics
consider two-body motion and thrust, but not J2 and lunar perturbations, so the equal
reduction to initial and target inclination is inconsequential to the comparison. The
HDDP transfer requires more effort to completely circularize the final orbit, but the
dynamics use a slightly smaller gravitational parameter for the Earth. The effects are
small and offsetting with regard to fuel expenditure and time of flight, but have no
qualitative implications. The scaled feasibility tolerance corresponds to a 0.42165 m
position requirement and 0.003075 mm/s velocity requirement.

Transfers were computed across a range of Nrev and with Sundman transforma-
tions to each of the true, mean and eccentric anomalies. Attempts with time as the
independent variable were unsuccessful. The result is a Pareto front of propellant
mass versus Nrev as shown in Fig. 1a. That is not identically the propellant mass
versus time of flight trade-off. The target orbit might be reached before the final
revolution is completed, resulting in a terminal coast arc that adds extra flight time.

Table 3 Case B initial and target orbits

Orbit a (km) e i (deg) Tmax (N) m0 (kg) Isp (sec) μ⊕

Initial [38] 24505.9 0.725 7.05 0.350 2000 2000 398600.49

Target [38] 42165 0.001 0.05

Initial (HDDP) 24505.9 0.725 7.0 0.350 2000 2000 398600.44

Target (HDDP) 42165 0 0
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Fig. 1 Case B trade-off of propellant mass versus time of flight and number of revolutions

Nonetheless, the Pareto front of propellant mass versus time of flight shown in Fig. 1b
is consistent with Petropoulos’ result.

The intuitive limiting cases are continuous thrust for the minimum time of flight
transfer that reduces to impulsive apoapsis maneuvers for infinite flight time. The
trend is evidenced in Fig. 2, where coast arcs grow in duration and number, while
thrust arcs reduce to small maneuvers centered on their optimal locations. Figure 3
shows the thrust magnitude history for the 500 revolution transfer as evidence of
the expected bang-bang control structure for the fuel-optimal transfer. It also proves
worthwhile for the shorter duration transfers to raise apoapsis beyond GEO radius
for more efficient inclination change. The change in maneuver strategy as time of
flight increases is shown in Fig. 4, with apsis radii distances and inclination provided
through the duration of the 183 and 500 revolution true anomaly transfers. The 183
revolution true anomaly transfer spans 141.95 days and uses 215.64 kg of propel-
lant, but falls short of finding the minimum time solution with a number of perigee
centered coast arcs. On the other end, the Sundman-transformed HDDP approach is
able to extend the transfer duration out to 2000 revolutions for a 1276.83 days time
of flight requiring 146.32 kg of propellant. There are limited returns on extending the
flight time, as the 1000 revolution transfer shown only increases the propellant use
up to 147.55 kg for 634.35 days time of flight.

The accuracy of each HDDP solution was checked by variable-step RK8(7)
integration with a relative error tolerance of 10−11 [35]. The resulting constraint vio-
lations are shown in Fig. 5. Solutions with mean anomaly as the independent variable
prove unreliable, with actual constraint violations growing six orders of magnitude
from what was viewed as a feasible trajectory with fixed-step integration. As with
fixed-step time integration, mean anomaly integration incurs errors through large
steps around periapsis. Mean anomaly integration, however, automatically adapts
the step size as the orbit changes during the transfer, whereas time integration steps
remain fixed. An adaptive-mesh technique might enable successful time integration,
but that is essentially the point of the Sundman transformation. HDDP attempts with
mean anomaly failed when Nrev was increased from 700 to 800. The true anomaly
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Fig. 2 Equatorial projections of Case B transfers for a 183, b 210, c 500 and d 1000 revolutions with true
anomaly as the independent variable. Thrust arcs are colored orange and coast arcs are colored blue. The
x and y coordinates of the first and final revolutions are overlaid in black

Fig. 3 Thrust magnitude for the 500 revolution true anomaly transfer is shown for a the entire transfer
and b zoomed in on the last few revolutions
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Fig. 4 a Apsis radii and b inclination history for the 183 revolution true anomaly transfer, and c apsis
radii and d inclination history for the 500 revolution true anomaly transfer

and eccentric anomaly prove more effective in regulating the step size. Most eccen-
tric anomaly trajectories fall just outside of feasibility with constraint violations
10−8 < ‖ψ‖ < 10−7, except for the 1000 and 1500 revolution cases that remain fea-
sible. Every true anomaly trajectory remains feasible. The superiority of true anomaly
was first realized for a coarse range of Nrev before proceeding exclusively with
true anomaly through a finer resolution of Nrev . Data points are absent for the 200,
220 and 240 revolution true anomaly transfers and 200 and 650 revolution eccentric
anomaly transfer. For these cases, the algorithm found a stationary point that was just
outside of feasibility, again in the region 10−8 < ‖ψ‖ < 10−7. Given the range of
feasible trajectories, this might be resolved by adjusting the many tuning parameters.
Optimization of the 2000 revolution eccentric anomaly transfer was cut off after 48
hours of runtime on iteration 1556.

Computational performance is profiled in Figs. 6 and 7. The quickest solution time
was 20 minutes and 40 seconds to compute the 184 revolution true anomaly case in
186 iterations. The lowest number of iterations to convergence was 181 for the 187
revolution true anomaly case and required 21 minutes and 1 second. Generally, both
runtime and number of iterations grow with the number of revolutions. The behav-
ior is unpredictable, especially with excessive transfer duration, where the runtime
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Fig. 5 Constraint violations after fixed-step integration solutions were recomputed with variable-step
integration and a relative error tolerance of 10−11

and iterations might jump up or down by a factor of two or more. Runtimes for the
forward pass and STM subroutines however, do have a predictable linear growth.
The listed times correspond to the first iteration that is ballistic propagation in GTO.
Computing the STMs is the most computationally intensive step in the HDDP algo-
rithm. The importance of parallelization is highlighted when comparing the parallel
STM elapsed real time to the total CPU time across all cores, and realizing that the
STM step would slow by an order of magnitude in the current configuration.

Fig. 6 a Elapsed real time and b number of iterations to convergence
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Fig. 7 Elapsed real time for a forward pass and b STM subroutines and c the total CPU time for the STM
subroutine

GTO to GEO with Perturbations

Next, the robustness of the approach is tested by introducing J2 and lunar gravity
perturbations to the 500 revolution Case B transfers with both eccentric and true
anomalies as independent variables. Perturbations are introduced one at a time, so
that the new cases are J2-perturbed and J2 and Moon-perturbed transfers.

Equatorial projections of the new transfers in Fig. 8 show the pronounced effect
of the J2-induced periapsis drift over a long transfer duration. The effect of lunar
gravity is less noticeable. Three-dimensional views of the two-body and J2 and
Moon-perturbed true anomaly transfers are provided in Fig. 9. Trajectory perfor-
mance is compared with the two-body case in Table 4, where mp is the propellant
mass. Computational performance is summarized in Table 5. The new cases are
unable to leverage perturbations to improve upon the two-body result, but propellant
mass and time of flight reach similar values. Solution accuracy when checked with
RK8(7) integration remains consistent with the two-body results and is summarized
in Table 6. These measures collectively add the significant result that Sundman-
transformed HDDP can accommodate perturbations to yield a reliable solution
without detriment to the computational effort. That is not for free, as seen by the
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Fig. 8 Equatorial projections of eccentric anomaly transfers with a J2 and b J2 and Moon perturbations
and true anomaly transfers with c J2 and d J2 and Moon perturbations

Fig. 9 Three dimensional views of the a two-body and b J2 and Moon-perturbed true anomaly transfers
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Table 4 500 revolution transfer
results Perturbations f E

mp (kg) tf (days) mp (kg) tf (days)

None 152.77 318.55 152.83 317.67

J2 157.65 319.05 159.01 314.17

J2 and Moon 156.93 320.08 159.20 313.93

Table 5 Computational performance for 500 revolution transfers

Perturbations f E

Iterations Elapsed real time (min) Iterations Elapsed real time (min)

None 475 163 542 193

J2 489 166 524 200

J2 and Moon 596 237 371 151

Table 6 Constraint violations
after variable-step integration of
500 revolution fixed-step
solutions

Perturbations f E

None 8.3368 × 10−9 2.3907 × 10−8

J2 1.7207 × 10−10 2.4244 × 10−8

J2 and Moon 1.0832 × 10−11 2.5892 × 10−8

Table 7 Subroutine elapsed
real time (sec) for 500
revolution transfers

Perturbations Forward pass Parallel STMs Serial STMs

f None 2.10 8.10 85.76

J2 2.19 8.34 86.80

J2 and Moon 2.69 8.54 87.26

E None 2.18 8.13 86.69

J2 2.23 8.20 87.22

J2 and Moon 2.68 8.52 88.62
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effect on subroutine runtimes in Table 7. Including J2 is an inexpensive addition
relative to the cost of computing the lunar perturbation and the necessary derivatives
with respect to the spacecraft state. Table 7 adds the comparison to the elapsed real
time of a serial STM step, as opposed to the parallel STM step total CPU time in
Fig. 7c, and shows an order of magnitude speed improvement owed to parallelization.

Conclusion

The pairing of differential dynamic programming and the Sundman transformation
has been presented as a viable approach to the low-thrust many-revolution spacecraft
trajectory optimization problem. The utility of this method has been demonstrated by
the fuel-optimization of transfers from geostationary transfer orbit to geosynchronous
orbit with an implementation of the Hybrid Differential Dynamic Programming algo-
rithm and transformations to the true, mean and eccentric anomalies. The resulting
Pareto front of propellant mass versus time of flight is consistent with those of other
methods. Beyond just reproducing a past result, the method is demonstrably effi-
cient and amenable to perturbations. Choosing the true anomaly for this study proved
most effective and enabled the direct optimization of up to 600,000 variables for the
2000 revolution transfer. The size of the optimization problem and computation time
could be significantly reduced by replacing the Cartesian representation of the space-
craft with an orbital element set. Future research should also explore different types
of transfers, objectives and constraints, and continue to add fidelity to the dynamic
model.
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