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Abstract A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propaga-
tor is applied to coupled orbit/attitude propagation. Concepts previously shown to
improve efficiency in 3DOF propagation are modified and extended to the 6DOF
problem, including the use of variable-fidelity dynamics models. The impact of com-
puting the stage dynamics of a single step in parallel is examined using up to 23
threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics
function evaluation used in the estimation of the local truncation error. Efficiency is
found to peak for typical examples when using approximately 8 to 12 stages for both
serial and parallel implementations. Accuracy and efficiency compare favorably to
explicit Runge-Kutta and linear-multistep solvers for representative scenarios. How-
ever, linear-multistep methods are found to be more efficient for some applications,
particularly in a serial computing environment, or when parallelism can be applied
across multiple trajectories.
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Introduction

The efficient propagation of space object (SO) trajectories is of vital importance to
applications including mission design, conjunction analysis, and trajectory estima-
tion and optimization. In recent years, the astrodynamics community has revisited
the viability of implicit Runge-Kutta (IRK) ordinary differential equation (ODE)
solvers as accurate, efficient alternatives to the widely used linear multistep and
explicit Runge-Kutta (ERK) solvers [6, 14, 21, 26]. Equivalent but alternatively for-
mulated implicit solvers like Modified Chebyshev-Picard Iteration (MCPI) have also
been investigated with success [6, 11]. The dynamics model evaluations at each
node within an implicit propagation step are independent, allowing such methods
to take advantage of modern parallel computing paradigms within a single step –
unlike linear multistep and ERK solvers. Additional benefits depend on the specific
implementation, but may include, for example, high order, strong stability properties,
continuous solutions, symmetry, and symplecticity [6, 11, 19, 20, 26].

In this paper, concepts for propagating three-degree-of-freedom (3DOF) SO tra-
jectories using IRKmethods are modified and extended to the propagation of coupled
SO trajectory and attitude – the 6DOF problem. Efficient 6DOF propagation is
important for a variety of applications, including, perhaps most obviously, deter-
mining the orientation evolution of controllable SOs with pointing requirements. In
addition, body forces like aerodynamic drag and solar radiation pressure (SRP) are
dependent on SO orientation. Thus, high-accuracy orbit propagation necessitates atti-
tude knowledge, particularly for SOs that significantly violate the “cannonball” shape
assumption commonly used to model body forces in the 3DOF domain [16]. In the
context of space situational awareness (SSA), 3DOF propagation may be insufficient
to maintain custody of and perform conjunction analysis on such SOs.

Unfortunately, 6DOF propagation is significantly less efficient than 3DOF prop-
agation due to factors including (1) the increased size of the state vector, (2) the use
of potentially complicated SO shape models, and (3) differences between the char-
acteristic time scales of the translational and rotational dynamics. As a result, 6DOF
numerical propagation generally uses much smaller time steps than 3DOF propaga-
tion, and the advancement of the state at a single time step is more computationally
intensive for 6DOF propagation than for 3DOF propagation.

Several methods have been shown to modestly ease the computational burden
of 6DOF propagation, such as partially decoupling the rotational and translational
dynamics [16, 30, 42]. However, numerical propagation remains fundamental to
these methods, and the use of more efficient ODE solvers benefits both fully cou-
pled and semi-coupled propagation approaches. In this paper, a variable-step-size
Gauss-Legendre IRK (GLIRK) ODE solver is applied to the 6DOF problem. Inspired
by previous work on the 3DOF problem, customizations are introduced that greatly
improve the efficiency of the GLIRK solver without sacrificing accuracy for certain
classes of SOs and dynamic environments. Two example scenarios are given, and
the applicability of the customizations – and the corresponding effects on propaga-
tor efficiency – are discussed. In addition, the effects of parallelizing the dynamics
model evaluations of the GLIRK solver using a multicore CPU are examined, and
accuracy and efficiency are compared to linear multistep and ERK solvers.
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Fully Coupled Orbit and Attitude Propagation

The 6DOF state of an SO in Earth orbit may be written as

x =

⎛
⎜⎜⎝

r

v

q̄

ω

⎞
⎟⎟⎠

13×1

, (1)

where r and v are the SO’s Earth-centered inertial (ECI) position and velocity vec-
tors, respectively, q̄ is a quaternion representing the orientation of a reference frame
fixed to the SO body with respect to the ECI frame, and ω is the angular velocity
vector of the body-fixed frame with respect to the ECI frame, expressed in the body-
fixed frame.1 While the attitude may be expressed in several ways, the quaternion
and angular velocity combination is chosen due to the robustness and precision of
this formulation [17]. The state equations are [33]

ẋ = f (t, x) =

⎛
⎜⎜⎝

v

r̈
˙̄q
ω̇

⎞
⎟⎟⎠ , (2)

where

r̈ = − μ

r3
r + ap (3)

˙̄q = 1

2
Ωq̄ (4)

ω̇ = J−1
0 [T − ω × (J 0ω)] . (5)

In Eqs. 3–5, μ is the two-body gravitational parameter of the Earth, r is the mag-
nitude of r , ap is the sum of all non-two-body accelerations acting on the SO in the
ECI frame, J 0 is the inertia tensor of the SO in the body-fixed frame (assumed con-
stant), and T is the sum of external torques acting on the SO in the body-fixed frame.
(Note that the time derivative of ω, ω̇, is expressed in the body-fixed frame.) Ω is a
matrix given by

Ω =

⎛
⎜⎜⎝

0 ω3 −ω2 ω1
−ω3 0 ω1 ω2
ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎞
⎟⎟⎠ , (6)

where ω = [ω1, ω2, ω3]T .
The vectors ap and T are sums of individual perturbing accelerations and torques,

respectively. The elements of the summation are problem-specific and depend pri-
marily upon the dynamical regime (e.g., low Earth orbit (LEO) vs. geosynchronous

1The quaternion is defined here such that q̄4×1 = [
eT sin (φ/2) , cos (φ/2)

]T
, where e3×1 is the rotation

axis and φ is the rotation angle.
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orbit (GEO)) and the desired model fidelity. For the purposes of the test cases pre-
sented in this paper, the perturbing accelerations considered are the non-two-body
component of the geopotential, two-body gravitational accelerations caused by the
Sun and Moon, aerodynamic acceleration (i.e., drag), and SRP acceleration. Mean-
while, T consists of the two-body approximation of the gravity-gradient torque,
aerodynamic torque, and SRP torque. In the current model, the gravitational accel-
erations depend only on the 3DOF state of the SO, and the gravity-gradient torque
depends on the 6DOF state and J 0. On the other hand, the aerodynamic and SRP
accelerations and torques act on the SO external body surfaces, and are functions of
the SO geometry in addition to the 6DOF state. The external SO surfaces are mod-
eled as a set of single-sided flat panels, each of which may be given unique physical
properties. The position, orientation, and surface area of each panel is fixed in the
body-fixed reference frame. In this model, the SRP acceleration (in km/s2) on a
single panel i is given by Wetterer et al. [41] and Früh and Jah [16]

aSRP,i =−FsunAU2

mcD2
H1H2,iAi cosφi

{(
1−Cs,i

)
usun + 2

[
1

3
Cd,i +Cs,i cosφi

]
ni

}
,(7)

where Fsun is the total solar flux over all wavelengths (W/m2), AU is one astronom-
ical unit (km), m is the mass of the SO (kg), c is the speed of light (km/s), D is the
distance from the SO to the Sun (km), H1 is an Earth shadowing function,2 H2,i is
the fraction of panel i facing the Sun, Ai is the area of panel i (km2), Cs,i is the spec-
ular reflectivity coefficient for panel i, Cd,i is the diffusive reflectivity coefficient for
panel i, usun is a unit vector pointing from the SO to the sun, ni is a unit vector in the
outward normal direction of panel i, and cosφi = usun · ni . The total SRP accelera-
tion experienced by the SO is the sum of the aSRP,i . The torque due to SRP on panel
i is then calculated in the body-fixed frame by

T SRP,i = m
[
dcm,i ×

(
RI→BaSRP,i

)]
, (8)

where dcm,i is the vector from the center of mass of the SO to the center of pressure
of panel i and RI→B is the transformation matrix from the ECI frame to the body-
fixed frame. As with the acceleration, the total SRP torque experienced by the SO is
the sum of the T SRP,i .

The aerodynamic acceleration and torque are also calculated for each panel indi-
vidually following the method of Doornbos [15]. In the interest of brevity, the full
details of the method are not presented here; at the most basic level, the method calcu-
lates the vector aerodynamic coefficient Ca,i for each panel i based on atmospheric
properties. Then, the aerodynamic acceleration on panel i is given by

aaero,i = 1

2

Aref ρv2r

m
Ca,i , (9)

2A cylindrical Earth shadowing function is assumed in this paper.
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where Aref is a constant reference area,3 ρ is the atmospheric density, and vr is the
magnitude of the relative velocity between the SO and the atmosphere. Aerodynamic
torque is then found following Eq. 8.

Implicit Runge-Kutta ODE Solver

A GLIRK ODE solver is written to propagate the 6DOF equations of motion. A
description of the fundamental GLIRK method and IRK methods in general is given
by Hairer et al. [19], while descriptions within the context of 3DOF SO propagation
are found in Jones [26], Aristoff et al. [6], and Aristoff and Poore [5]. The referenced
works also discuss the motivations for selecting GLIRK amongst the range of avail-
able IRK methods for astrodynamics applications. For example, the GLIRK method
is superconvergent: An implementation using s internal stages per step produces a
solution accuracy of order 2s, the highest possible for an RK method. Additionally,
the GLIRK method is both symmetric and symplectic, and exhibits both A and B

stability.
Any explicit or implicit RK method with s internal nodes (or stages) may be sum-

marized as advancing an approximation of the state vector x from time tn to time
tn+1 via the equations

xn+1 = xn + h

s∑
j=1

bjkj (10)

ki = f

⎛
⎝tn + hci, xn + h

s∑
j=1

ai,jkj

⎞
⎠ , i = 1, ..., s. (11)

= f (ti , xi ) , i = 1, ..., s. (12)

The arrays As×s , bs×1, and cs×1 – whose elements are the ai,j , bj , and cj , respec-
tively – define the RK method.4 In ERK methods, the ai,j are zero for j ≥ i, which
allows for the ki to be calculated explicitly in a sequential fashion. On the other hand,
IRKmethods violate this restriction, and the ki that satisfy Eq. 11 must be determined
by simultaneously solving a system of algebraic equations. For nonlinear systems of
ODEs, solving Eq. 11 requires an iterative method such as fixed-point iteration, the
Newton-Raphson method, or the Gauss-Seidel method [5]. In the current work, fixed-
point iteration is used because the method is parallelizable (unlike Gauss-Seidel) and
avoids the computation of the Jacobian (unlike Newton-Raphson). It is noted that a
Newton or quasi-Newton method (as opposed to a fixed-point method) must be used

3The area and orientation of each individual panel i is taken into account in the calculation of Ca,i .
4The defining arrays of the GLIRK method are calculable for arbitrary s, and
may be obtained to high precision using, for example, the Mathematica function
NDSolve‘ImplicitRungeKuttaGaussCoefficients [3].
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in order to retain the A stability property of a GLIRK solver and guarantee conver-
gence of Eq. 11 for large step sizes [5]. In practice, however, convergence of the
fixed-point iterations may be monitored numerically at each step, and the step size
may be reduced if divergence is predicted. For reasonably high-precision 3DOF or
6DOF astrodynamics applications, step size reductions of this type are rare enough
that any associated cost is significantly less than that of the Jacobian calculations
required by Newton-based methods [8].

The alternative implicit ODE solver MCPI is most commonly used as a high-
order method (i.e., large s) that takes large, predetermined step sizes on the order of
one-to-five steps per orbital period for 3DOF applications [11, 32]. However, pre-
vious work has shown variable-step-size implementations of GLIRK to propagate
3DOF dynamics more efficiently than an untuned MCPI method for certain exam-
ple cases [6]. Additionally, MCPI performance is dependent on the predetermination
of a suitable step size because no general, truncation-error-based adaptive-step-size
implementation has been published. For the 6DOF problem, this goal of a general
variable-step implementation is important because of the multiple driving frequencies
of the combined rotational and translational dynamics.

The need for a predetermined step size also holds for published implementations
of bandlimited collocation IRK (BLC-IRK), an ODE solver that bases its quadra-
ture scheme on a weighted sum of exponentials rather than on a weighted sum of
polynomials, as is done by both GLIRK and MCPI [14]. Like MCPI, BLC-IRK is
designed to work with large s and may outperform GLIRK if a near-optimal fixed
step size is known a priori [6]. On the other hand, a propagator with a mechanism for
adapting the step size to meet a user-defined local truncation error (LTE) tolerance
avoids the difficulty of determining an appropriate fixed step size. Variable-step-size
mechanisms exist for GLIRK, and such methods are the focus of this study [6, 26,
28].

Variable-Fidelity Dynamics Models

Though the necessity of iterative methods to solve Eq. 11 is generally a disad-
vantage in terms of computational efficiency for IRK methods, problem-specific
customizations of the iterative solver may greatly reduce the computational burden
of the solution process. For example, a high-fidelity 3DOF SO dynamics model is
computationally intensive. However, a lower-fidelity approximation of the dynam-
ics model may be obtained for a small fraction of the computational price. Under
the assumptions that the lower-fidelity dynamical model suitably approximates the
full dynamics model and that the ki do not undergo large changes between iter-
ations, the lower-fidelity model may be evaluated instead of the full model at
some iterations without compromising the accuracy of the converged solution of
Eq. 11 [5, 6, 14, 26, 32].

In this paper, a similar approach is taken for fully coupled 6DOF propagation,
as described in Algorithm 1. The forces and torques considered in the low-fidelity
model are specified in the discussion of each example simulation.
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Algorithm 1 Iterative solution of IRK step (Eq. (11)) using variable-fidelity dynam-
ics model

Set convergence tolerances: 1 2 3 0
Set initial guess for

1 Start with first iteration tolerance
evaluation fidelity low Start with low-fidelity dynamics model

0 1
while 3 do Loop through iteration tolerances

if evaluation fidelity == low then
1 Low-fidelity function evaluation

1 Update full function approximation
else

1 High-fidelity function evaluation
1 Low-fidelity function evaluation

1 High-fidelity contribution to model
end if
Update 1 , using fixed-point iteration update equations

norm of change over all 1
if then Converged to within current iteration tolerance

1 Proceed to next iteration tolerance
evaluation fidelity high Perform high-fidelity function evaluation at

next iteration
else

evaluation fidelity low Perform low-fidelity function evaluation at
next iteration

end if
end while

When using Algorithm 1, the high-fidelity dynamical model is evaluated at only
two iterations per propagation step, regardless of the number of total iterations
required for convergence. The three iteration convergence tolerances ε1, ε2, and ε3
are user-defined parameters that may be used to control the precision of the solution.
Though similar in spirit, this approach differs from previously published GLIRK
variable-fidelity models used for 3DOF propagation. For example, both Jones [26]
and Aristoff and Poore [5] utilize one or more low-fidelity dynamics model iterations
before switching to the high-fidelity model at all subsequent iterations. Alternatively,
as is done in Algorithm 1, Bradley et al. [14] use two high-fidelity iterations per
step. However, in the Bradley algorithm, the two high-fidelity iterations are sepa-
rated by a fixed number of low-fidelity iterations, and no subsequent low-fidelity
iterations are performed following the second high-fidelity iteration. In the context
of MCPI, Macomber [32] implements an approach similar to Algorithm 1, but the
validity of the approach is only investigated for a 3DOF dynamical model consist-
ing of the geopotential alone. In the present work, numerical examples show that this
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variable-fidelity dynamics model approach is valid for the 6DOF propagation of an
SO in the presence of realistic forces and torques – provided that the low-fidelity
dynamics model is selected appropriately.

All tests presented in this paper use ε1 = 10−5, ε2 = 10−12, and ε3 = 10−15.
Divergence of the iterative solver is handled by placing a maximum value on the
number of iterations: If the solver does not converge to within ε3 in 50 iterations, the
step size is halved, and the step is rerun.

Initial guesses for the xi are provided using approximate analytical propagation
methods: An elliptical orbit is assumed for the translational propagation [12], and
constant-angular-velocity rotation is assumed for the rotational propagation [43].
Analytical solutions to more physically representative models, such as torque-free
rotation [43], exist, but are more computationally demanding and are not found
to improve overall efficiency when combined with the variable-fidelity dynamics
model strategy for the scenarios presented in this paper. At early iterations, the fixed-
point solver converges toward an approximate solution because only the inexpensive,
low-fidelity dynamics model is evaluated. Therefore, the improvement in the ini-
tial guess between the constant-angular-velocity solution and the torque-free-rotation
solution is unnecessary. If the full, high-fidelity dynamics model is evaluated at every
iteration, a more accurate initial guess becomes more valuable.

Variable-Step-Size Propagation

Variable-step-size ODE solvers adaptively vary the step size of the independent
variable by comparing the estimated LTE of the method to a user-prescribed tol-
erance. In this way, variable-step-size methods attempt to maximize efficiency by
taking the minimum number of propagation steps needed to meet the user’s accu-
racy requirements. ERK methods commonly use embedded methods to estimate the
LTE; that is, each propagation step is performed by two methods, each of unique
order, that share the same A and c arrays but are defined by different b arrays.
This strategy allows for the efficient calculation of state estimates of different order.
The LTE is then estimated based on the difference between the state estimates
produced by the two methods and knowledge of the order of the LTE of each
method [37].

For the GLIRK ODE solver, an embedded method of nearly the same order as the
propagation method is difficult to achieve because an s-stage GLIRK method gives
a solution of order 2s, the highest order achievable by an RK method [6]. For this
reason, previous authors have utilized alternative methods for creating a variable-
step-size GLIRK ODE solver for 3DOF SO propagation. For example, Jones [26]
employs a method of van der Houwen and Sommeijer [23] that uses the differences
between the solutions produced at consecutive iterations of the iterative solution
process to approximate the LTE. Aristoff [4], on the other hand, uses a second, non-
embedded IRK propagation of order near 2s (such as a Radau method) to produce a
high-order LTE estimate. However, to the authors’ knowledge, the precise methodol-
ogy has not been specified in a published work [4–8]. The computational cost of the
second IRK propagation is reduced by using the collocation polynomial produced by
the original GLIRK propagation to obtain an initial guess (of order s) to Eq. 11 [19].
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In the current work, a lower-order (order s), nearly embedded5 solution is used to
estimate the LTE [18, 28]. A solution x̂ of order s is given by

x̂n+1 = xn + h

⎛
⎝γ0f (tn, xn) +

s∑
j=1

b̂jkj

⎞
⎠ . (13)

The elements b̂j make up the array b̂s×1 = V −1
s×sus×1, where

V =

⎛
⎜⎜⎜⎝

1 1 · · · 1
c1 c2 · · · cs

...
...

. . .
...

cs−1
1 cs−1

2 · · · cs−1
s

⎞
⎟⎟⎟⎠ , u =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − γ0
1
2
...
1
j

...
1
s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

The scalar γ0 is a user-selected parameter. Following Kouya [28], the method
implemented in this paper uses γ0 = 1/8. Once xn+1 and x̂n+1 are known, the
procedure for adapting the step size proceeds identically to an ERK method:

hnew = hold · min

[
Δhmax, c

(
1

δ

)p]
(15)

δ =
√√√√ 1

N

N∑
i=1

(
xi,n+1 − x̂i,n+1

τi

)2

(16)

τi = atol + rtol · max
(|xi,n|, 1

)
(17)

p = 1

s + 1
(18)

c = 0.8 (19)

Δhmax = 2, (20)

where subscript i indicates element i of the N-dimensional state vector, atol and rtol
are user-defined absolute and relative tolerance parameters, respectively, and 0 <

c < 1 is set to increase the likelihood that the subsequent step is accepted. In the
event δ = 0 to double precision, the step size is increased by a factor of 10. Note that
if hnew > hold , then the current step is accepted and hnew is used as the step size for
the next time step, while, if hnew < hold , the current step is rejected and retried with
hnew as the step size.

The low computational cost of the LTE estimation procedure is offset by the low
order of the nearly embedded solution (order s) relative to the GLIRK solution (order
2s). In other words, for step size adaptation purposes, the GLIRK method is treated
as an order-(s + 1) method. The result is that the LTE estimate δ is likely to be larger

5The embedded solution requires a single additional high-fidelity dynamics model evaluation at the initial
time and state of the step.



342 J of Astronaut Sci (2017) 64:333–360

than the actual LTE of the GLIRK method. Thus, hnew is likely to be underestimated,
and some steps that should be acceptable may be rejected. One method for addressing
large differences between the orders of the propagated and embedded methods is
Jay’s “internal tolerance” scheme [25]. However, use of the internal tolerance is not
found to reliably improve performance in the current application; an illustration of
this finding is given in Appendix A. The test cases presented in this paper use the
more conservative step size selection scheme given by Eqs. 13–20.

A disadvantage of variable-step-size methods is the costly re-propagation of a
step if the estimate of the LTE is found to be larger than the user-specified toler-
ance. In order to proactively seek out steps that are likely to fail, the current GLIRK
implementation estimates the LTE following the first evaluation of the high-fidelity
dynamics model (following convergence of the fixed-point iteration to within ε1). If
the estimate of the LTE is greater than the tolerance (i.e., δ > τ ), the fixed-point
iteration is aborted, and the step is rerun using the step size computed using Eq. 15.
Thus, the second evaluation of the high-fidelity dynamics model at each stage –
which would have been wasted due to the rejection of the step – is avoided. While
it is possible for false detections to cause unecessary recomputations, empirical evi-
dence suggests that false detections are rare relative to true detections because of the
proximity of the partially converged solution to the fully converged solution.

An estimate for the step size to be used at the first propagation step is calculated
using the initial value of the state and its time derivative, as described in Algorithm 2
[39].

Algorithm 2 Calculation of estimate for initial step size 0

Set minimum and maximum step sizes and

atol
max rtol is machine epsilon

maxval 0
max maxval 0

rtol is defined in Eq. 18; is defined in Eq. 19
if 0 then

0
else if 0 1 then

0 1
end if
0 max 0 Ensure 0

Parallelization

Parallel computation within a single propagation is a trait of IRK methods not shared
by ERK methods or linear multistep methods.6 The opportunity for parallelization

6It is noted that, for any ODE solver, the propagation of state transition tensors may be parallelized within
a single propagation step over the dimension of the state.
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arises from the fact that, when solving Eq. 11 for an IRK method, each kj evaluation
is independent. Thus, each of the s kj evaluations required at each iteration of the
implicit solver may be performed in parallel when using fixed-point iteration. Such
parallelization has the potential to yield strong benefits for both 3DOF and 6DOF
SO propagation because the high-fidelity dynamics model evaluations required to
compute the kj generally dominate propagation runtime. While the possibility of par-
allelization of 3DOF GLIRK methods has been suggested previously [5, 6, 14, 26],
analysis has been limited to the assumption of linear speedups – i.e., the use of s par-
allel threads reduces total runtime by a factor of s. However, this assumption provides
only a best-case approximation of efficiency gains. Linear speedups are not typical
for realistic implementations because the CPU time required to evaluate a typical
dynamical model may not be large enough to hide the overhead of parallelization.

In this paper, the effect of parallelization on the efficiency of the GLIRK method
applied to 6DOF SO propagation is studied using the OpenMP library with up to 23
threads [2]. Dynamical models of varying complexity are implemented to examine
the consequences of parallelization overhead. At each iteration of the solution pro-
cess of Eq. 11 at which high-fidelity dynamics model evaluations are required, the s

kj are evaluated in parallel using an !$omp parallel do loop. Static schedul-
ing is used due to the very similar workload of each loop iteration. Parallelization of
the evaluations of the low-fidelity dynamics model and the initial guesses for the xi

is also possible. However, because of the short runtime of these routines, serial evalu-
ation is sometimes preferred because of the overhead associated with parallelization.
Further discussion is given for the two example scenarios described in the “Results”
section.

Results

The accuracy and efficiency of the GLIRK propagator are compared to a standard
implementation of the explicit Runge-Kutta-Dormand-Prince (RKDP) 8(7) propaga-
tor and to the public-domain linear multistep (Adams-Moulton) propagator LSODE
[37, 38].7 Results are presented for two scenarios: A rectangular prism SO in LEO
and a high-area-to-mass-ratio (HAMR) SO in GEO. The 6DOF equations of motion
are propagated with each ODE solver for three orbital periods unless otherwise spec-
ified. The quaternion unit norm constraint is enforced by renormalizing q̄ after each
propagation step for all propagators. Accuracy is assessed via a “truth” model cal-
culated using a quadruple-precision implementation of RKDP8(7) with a relative
LTE tolerance of 10−25. For GLIRK parallelization, the number of available threads
is set to (s + 1) so that each of the dynamical model evaluations – including the
extra evaluation used in the estimation of the LTE – is provided a single thread.
All code is written in Fortran and compiled using the Intel Visual Fortran Compiler

7All input options for LSODE are set to default values (with method flag = 10) except for the relative and
absolute tolerance parameters: The absolute tolerance is set uniformly to machine epsilon, and the relative
tolerance is varied.
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Table 1 Initial state for SO in
LEO (a) Translational state in (b) Rotational state

classical orbital elements

a 6,745.592 km q1 0

e 0.01 q2 0

i 7.81 deg q3 0

Ω 100.21 deg q4 1

ω 152.83 deg ω1 0.573 deg/s

ν 0 deg ω2 0.573 deg/s

ω3 0.573 deg/s

XE 14.0.0.103 (64-bit) using the -O2 optimization flag. All computations are per-
formed on a 64-bit Windows 7 Enterprise workstation with two 12-core Intel Xeon
E5-2680 v3 processors (clock speed 2.50 GHz) and 64 GB of RAM. Hyperthreading
is disabled.

It is noted that, in the presentation of results, discrete data points (indicated by
shapes in figures) are connected by lines. This convention is not intended to convey
information regarding trends between data points, but merely to aid the reader in
differentiating between data sets.

Object in Low Earth Orbit

The first test scenario is a tumbling rectangular prism SO in LEO. The initial state
is given in Table 1, and the SO’s physical characteristics are described in Tables 2
and 3. Note that the SO’s panels are given non-uniform reflectance properties in
order to induce an SRP torque. Tables 4 and 5 give the high-fidelity and low-fidelity
dynamics models, respectively. In all results given for this scenario, parallelization is
limited to the high-fidelity dynamics model; parallelization of the low-fidelity model
and initial guess generation is found not to improve efficiency for this scenario.

The differing frequencies of the translational and rotational motions are demon-
strated in the state evolutions shown in Fig. 1; for this scenario, the rotational
dynamics evolve much more rapidly than the translational dynamics. The perfor-
mance of the GLIRK propagator as a function of the number of stages s is shown

Table 2 SO basic physical
characteristics Property Value

Shape Rectangular prism

Dimensions 1.5 m × 2 m × 3 m

Mass 175 kg

Number of panels 6
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Table 3 SO panel reflectance
properties Panel dimensions (m)

Property 2 × 3 2 × 3 1.5 × 3 1.5 × 3 1.5 × 2 1.5 × 2

Cd 0.3 0.35 0.25 0.25 0.15 0.2

Cs 0.2 0.15 0.25 0.25 0.35 0.3

in Fig. 2 for a three-orbit propagation.8 Figure 2a confirms that the use of the
variable-fidelity models does not degrade propagation accuracy. Figure 2b depicts the
performance gains that may be realized by using variable-fidelity dynamics models
in the fixed-point iteration. The optimal number of stages for a serial implementation
for this scenario is seen to be in the range of 8–12, which is found to be typical for this
application. For a parallel implementation, the optimal number of stages depends on
the dynamical model: As the CPU time required by the dynamical model increases,
larger relative efficiency gains are available from parallelization using a high num-
ber of stages and threads. For this scenario, Fig. 2b shows that efficiency gains using
more than eight stages and nine threads are minimal for either the high-fidelity-only
or variable-fidelity implementations.

Figure 2c explicitly shows the efficiency gains achieved by parallelizing the
dynamical model evaluations at each propagation step. When the high-fidelity
dynamics model is evaluated at every iteration, these evaluations consume a greater
percentage of propagator runtime than when the variable-fidelity model is used.
Thus, greater relative efficiency gains are observed for the high-fidelity-only prop-
agator. As expected, the efficiency gains from parallelization lag the number of
parallel threads employed. For the variable-fidelity propagator, speedups between
3× and 4× compared to the serial performance are achieved for s ≥ 8, while, for
the high-fidelity-only propagator, s ≥ 16 delivers relative speedups between 7× and
8×. However, despite the superior relative efficiency gains of the high-fidelity-only
propagator, greater absolute performance is still achieved via the variable-fidelity
propagator for this scenario (Fig. 2b).

Figure 2d displays the relative efficiency improvements for the eight-stage GLIRK
propagator as a function of the number of parallel threads available. Efficiency
jumps correspond to threadcount increases that decrease the number of loop itera-
tions required. For example, the high-fidelity-only propagator sees a large efficiency
gain between seven and eight threads because s = 8. As expected, the availability of
more than (s + 1) threads provides no further efficiency gains.

The impact of the variable-fidelity dynamics model strategy is further under-
scored in Fig. 3, which displays the relative CPU time requirements of each of the
constituents of the high-fidelity dynamics model. The low-fidelity dynamics model
evaluation time is also shown for comparison. The benefits of eliminating evaluations

8Each subfigure displays results corresponding to a single identical value of relative LTE tolerance, rtol =
10−15.
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Table 4 High-fidelity dynamics model for SO in LEO

Source Force model Torque model

Gravity 70×70 geopotential (spherical harmonics or interpo-
lated [10]); Sun and Moon point mass (cubic spline
ephemerides [9])

Earth gravity gradient

SRP Direct (panel model) Direct (panel model)

Drag Doornbos model (panel-based) [15]; modified Harris-
Priester atmospheric density [31]

Doornbos model (panel-based)

of the high-fidelity geopotential are clear – even though the runtime of the interpo-
lated 70×70 field is approximately equivalent to that of a 15×15 field if the more
common spherical harmonics formulation is used.

Figure 4 compares root-mean-square (RMS) accuracy and efficiency of the eight-
stage GLIRK propagator to RKDP8(7) and LSODE for relative LTE tolerances
ranging from 10−5 to 10−15. Among serial implementations, the linear multistep
solver LSODE is more efficient than either the IRK or ERK solvers, particularly
for stringent LTE tolerances. This result supports the substantial heritage of linear
multistep solvers for serial astrodynamics applications [35]. For example, the Gauss-
Jackson method is used by United States Air Force Space Command to propagate
the SO catalog using special perturbation techniques [1, 13, 24, 27]. In addition, the
DIVA propagator used by the Jet Propulsion Laboratory is a linear multistep inte-
grator [29], and LSODE is the default propagator in the Copernicus mission design
software [36].

The poor performance of the serially implemented, high-fidelity-only GLIRK
propagator demonstrates why the method has not been traditionally popular for astro-
dynamics applications. On the other hand, the variable-fidelity GLIRK propagator
gives comparable or superior performance compared to the RKDP8(7) propaga-
tor, even when implemented serially. When parallelized, variable-fidelity GLIRK
also outperforms LSODE, showing improved efficiency for a given accuracy. For a
30-orbit propagation, the parallelized variable-fidelity GLIRK propagator achieves
sub-centimeter-level accuracy in 31 percent less CPU time than LSODE and 61
percent less CPU time than RKDP8(7) (Fig. 4c).

As the effects of parallelization and the variable-fidelity dynamics model increase
with increasing dynamics model complexity, even further relative speed gains are
possible. For example, higher-fidelity atmospheric density models can be an order of
magnitude more computationally expensive than the modified Harris-Priester model

Table 5 Low-fidelity dynamics
model for SO in LEO Source Force model Torque model

Gravity Earth point-mass and J2 terms Earth gravity gradient

SRP None None

Drag None None
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Fig. 1 Rotational state evolution for three-orbit LEO scenario
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implemented in this example [22]. Manymore than six panels may be required to ade-
quately represent an SO body. Additionally, the propagation of state transition tensors
via the variational equations is often important – and significantly increases the com-
putational burden of the dynamical model. This phenomenon is clearly demonstrated
in Fig. 5, in which the 70×70 geopotential is calculated using spherical harmonics
instead of the significantly faster interpolated gravity model. The peak relative effect
of parallelization increases significantly for both the high-fidelity-only and variable-
fidelity GLIRK propagators (Fig. 2c vs. Fig. 5a), and the parallelized variable-fidelity
GLIRK is now four times faster than LSODE for sub-centimeter-level position error
after three orbital periods (Fig. 5c). Additionally, comparing Fig. 5b to Fig. 2b, larger
relative efficiency increases from parallelization allow for runtime improvements

(a) Efficiency gain from parallelization.

The number of threads made available for

parallelization is equal to (s 1)

(b) Absolute CPU time

(c) Position accuracy, three orbits; rela-

tive LTE tolerance of propagators is var-

ied from 10−5−10−15. Eight-stageGLIRK

propagator is used. Note the log scale of

vertical axis

(d) Quaternion accuracy, three orbits; rel-
ative LTE tolerance of propagators is var-

ied from 10−5−10−15. Eight-stageGLIRK

propagator is used. Note the log scale of

vertical axis
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spherical harmonics, which is approximately an order of magnitude slower than the interpolated model
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(a) Position accuracy, three orbits (b) Quaternion accuracy, three orbits
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at larger s. However, gains achieved beyond 8–12 stages are minimal due to the
inefficient serial performance of the high-order methods.

Further efficiency improvements for GLIRK relative to RKDP8(7) and LSODE
are possible when the solvers are applied to uncertainty propagation [8]. Sigma-point
filters such as the unscented Kalman filter (UKF) require the propagation of a popu-
lation of neighboring state vectors [34]. For relatively small initial uncertainties, the
differences between the neighboring state vectors are also small. In this situation, one
state vector (e.g., the mean) may be propagated using an unmodified GLIRKmethod,
and the converged times and states of each internal stage of each step may be saved.
Then, when propagating the remaining state vectors, the variable time steps produced
by the initial propagation may be reused, eliminating costly rejected steps. While
this modification is not unique to the GLIRK method, each individual step of an
eight-stage GLIRK is more computationally expensive than popular ERK and linear
multistep methods because the GLIRK method is single-step and high-order. Thus,
the elimination of a rejected – and therefore recalculated – step is more meaningful
for GLIRK than for competing methods. In addition, the saved states at each internal
stage of each step may be used as accurate initial guesses for the internal stages of

Table 6 Initial state for HAMR
SO in GEO (a) Translational state in (b) Rotational state

classical orbital elements

a 42,164 km q1 0

e 0.001 q2 0

i 1 deg q3 0

Ω 145.92 deg q4 1

ω 266.13 deg ω1 0 deg/s

ν 0 deg ω2 0 deg/s

ω3 0 deg/s
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Table 7 SO physical
characteristics Property Value

Shape Two-sided flat plate

Dimensions 1 m × 1 m

Mass 0.038 kg

Number of panels 2

Cd (uniform) 0.26

Cs (uniform) 0.6

Center-of-mass-center-of-pressure offset 1.414 ×10−3 m

the neighboring propagations, potentially reducing the number of iterations required
for convergence, depending on the proximity of the neighboring state vectors.

The spherical-harmonics-based LEO scenario is re-simulated assuming that the
previously described SO is non-tumbling (ω0 = [0, 0, 0]T ). Figure 5c and d are
duplicated for this case in Fig. 6a and b, respectively. For the non-tumbling case, the
absolute CPU time required by all ODE solvers decreases because the attitude state
changes more slowly, allowing for larger propagation step sizes. On the other hand,
the performances of the ODE solvers relative to one another are similar to the tum-
bling case (Fig. 5). In a serial environment, LSODE and the variable-fidelity GLIRK
propagator display generally similar efficiency profiles, while the RKDP8(7) prop-
agator requires more CPU time to achieve a given accuracy. When parallelization is
used, the variable-fidelity GLIRK propagator once again provides the greatest effi-
ciency among the options considered, here achieving an approximately 6× speedup
over LSODE for approximately sub-centimeter-level position error.

High-Area-to-Mass-Ratio Object in Geosynchronous Orbit

A second test scenario consists of a HAMR two-sided flat plate in GEO. An offset
between the center of mass and center of pressure of the plate is assumed in order
to induce an SRP torque. For the primary analysis of this example, the SO is not
tumbling, and instead begins with zero angular velocity. The complete initial state
and SO physical characteristics are given in Tables 6 and 7, respectively. In all results
given for this scenario, both the low-fidelity and high-fidelity dynamics models are
parallelized because of the relative expense of the low-fidelity model, as discussed
below.

Table 8 High-fidelity dynamics
model for SO in GEO Source Force model Torque model

Gravity 8×8 geopotential (spherical har-
monics); Sun and Moon point mass
(cubic spline ephemerides)

Earth gravity gradient

SRP Direct (panel model) Direct (panel model)

Drag None None
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Table 9 Low-fidelity dynamics
model for SO in GEO Source Force model Torque model

Gravity Earth point-mass term Earth gravity gradient

SRP None Direct (panel model)

Drag None None

The dynamical models differ from the LEO example, as shown in Tables 8 and 9.9

Of particular note, the low-fidelity torque model is identical to its high-fidelity coun-
terpart. The reason is that the low-fidelity model is only useful if the approximation
of the high-fidelity model is adequate: Referencing Eq. 5, for a HAMR SO with little
or no angular velocity, the torque contribution to ω̇ dwarfs the inertia contribution.
Further, in the current example scenario, SRP is the dominant source of torque, and
therefore the largest driver of ω̇. Thus, failure to take into account SRP in the eval-
uation of the low-fidelity model results in an inaccurate propagation. This contrasts
with the 3DOF problem, in which the two-body gravitational acceleration term is
orders of magnitude greater than all disturbing accelerations,10 even for a HAMR SO
in GEO.

The evolution of the rotational states is shown in Fig. 7. Despite the small center-
of-mass-center-of-pressure offset, the HAMR nature of the SO results in an SRP
torque that significantly affects the attitude. Additionally, the small rotational angu-
lar momentum of the SO results in slower, less regular rotational motion than was
observed in the tumbling LEO scenario, exemplified by the decreased number of
complete rotations of the spin and precession angles.

The computational expense of the low-fidelity dynamics model relative to the
high-fidelity model degrades the efficiency of the variable-fidelity GLIRK propa-
gator, as shown in Fig. 8 for a three-orbit propagation. This result is confirmed by
Fig. 9, as well. The effect of parallelization is also diminished in this scenario because
the high-fidelity dynamics model is significantly less expensive to evaluate than that
of the LEO scenario due to the truncated geopotential and absence of aerodynamic
forces. Thus, for the GEO scenario, a smaller fraction of the runtime is spent evalu-
ating the dynamical model, and the detrimental impact of parallelization overhead is
more pronounced.

The consequences of the SO physical characteristics and dynamics model on the
performance of the eight-stage GLIRK propagator relative to RKDP8(7) and LSODE
are shown in Fig. 10. Unlike in the LEO scenario, the variable-fidelity GLIRK
propagator is only competitive with the other propagators for very high-accuracy
applications, even when implemented in parallel. Also unlike the LEO scenario,
RKDP8(7) is nearly as efficient as LSODE, due to two factors: (1) the ratio of
the number of steps taken by RKDP8(7) to the number of steps taken by LSODE
decreases from the LEO scenario to the GEO scenario; and (2) a lower percentage

9Note that the spherical harmonics formulation of the geopotential is used because it is more efficient than
the interpolation model for the low degree and order used for GEO propagation.
10Excepting possibly the effect of aerodynamic acceleration on an SO in an extremely low orbit.
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Fig. 7 Rotational state evolution for three-orbit GEO scenario
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Fig. 9 Fraction of total high-fidelity dynamics model CPU time spent evaluating each model constituent
for three-orbit GEO scenario; alternative low-fidelity dynamics model time shown for comparison. (Low-
fidelity model time is not included in summation used to compute total time). Note logarithmic scale of
vertical axis

of propagation steps are rejected for the GEO scenario, especially for RKDP8(7) at
tight tolerances. Rejected steps are more costly for RK methods than for linear multi-
step methods when dynamics function evaluations dominate overall runtime because
RK methods generally require signficantly more dynamical function evaluations per
step (in this case, 13 for RKDP8(7) vs. 1–2 for LSODE). The smaller percentage of
rejected steps is likely due to the more uniformly changing dynamic environment of
the slowly rotating GEO scenario. For example, there is no torque due to aerodynamic
drag, and the torques caused by the gravity gradient and SRP change more slowly

(a) Position accuracy, three orbits (b) Quaternion accuracy, three orbits
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Fig. 10 Accuracy vs. CPU time for propagation of non-tumbling HAMR SO in GEO; relative LTE toler-
ance of propagators is varied from 10−5−10−15. Eight-stage GLIRK propagator is used; numeric subscript
in legend represents number of parallel threads used in computation; “var.-fi.” indicates use of variable-
fidelity dynamics model, while “hi.-fi.” indicates use of high-fidelity dynamics model only. Note the log
scale of vertical axes
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(a) Position accuracy, three orbits (b) Quaternion accuracy, three orbits
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Fig. 11 Accuracy vs. CPU time for propagation of tumbling HAMR SO in GEO; relative LTE tolerance
of propagators is varied from 10−5 − 10−15. Eight-stage GLIRK propagator is used; numeric subscript
in legend represents number of parallel threads used in computation; “var.-fi.” indicates use of variable-
fidelity dynamics model, while “hi.-fi.” indicates use of high-fidelity dynamics model only. Note the log
scale of vertical axes

than in the LEO environment due to the slower rotation rate and increased orbital
period of the SO. Thus, a step size hi+1 is more likely to differ significantly from
the step size for the previous step hi in the LEO propagation than in the GEO propa-
gation. When a large difference between consecutive step sizes occurs, the predicted
value for hi+1 may be inaccurate, resulting in either (1) a failed step (if the predicted
hi+1 is too large) or (2) an inefficient step (if the predicted hi+1 is too small).

The scenario is also simulated assuming an initially tumbling plate, with ω0 =
[0.573, 0.573, 0.573]T deg/s; results are shown in Fig. 11. As in the LEO scenario,
propagation of a tumbling body requires more absolute CPU time than an initially
non-rotating body due to the higher frequencies of the rotational motion. The perfor-
mance of the GLIRK propagator is improved in the tumbling scenario (compared to
the non-tumbling GEO scenario) at loose LTE tolerances, though the efficiency still
does not significantly exceed that of either LSODE or RKDP8(7) for a given RMS
error. At more stringent tolerances, the relative performances of the propagators are
similar to those observed in the non-tumbling case.

For any propagator, increasing the LTE tolerance beyond a limiting value11 results
in erratic behavior in an accuracy vs. CPU time plot.12 This behavior can produce
ranges of tolerance values in which the change in tolerance (and the resulting change
in dynamics function evaluations) does not reliably correlate with a change in the
accuracy of the propagation [40]. For this particular scenario, such a region exists for
the GLIRK propagator for relative tolerances greater than approximately 10−6.2. As a
result, the RMS state errors do not vary predictably at loose tolerances for GLIRK in
Fig. 11, and errors observed for a tolerance of 10−5 are similar to those observed for

11This value is problem- and integrator-dependent.
12It is noted that erratic behavior for an implicit method can also be caused by frequent divergence of the
iterative procedure used to solve the RK update equations, but divergence does not occur over the range of
tolerances displayed in the figures in this paper.
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Fig. 12 Accuracy vs. relative LTE tolerance for propagation of tumbling HAMR SO in GEO; relative LTE
tolerance of propagators is varied from 10−4.8 − 10−6.4. Eight-stage GLIRK propagator is used; numeric
subscript in legend represents number of parallel threads used in computation; “var.-fi.” indicates use of
variable-fidelity dynamics model, while “hi.-fi.” indicates use of high-fidelity dynamics model only. Note
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a tolerance of 10−7 – even though the former case requires fewer dynamics function
evaluations. Figure 12 details this result by directly displaying RMS errors as func-
tions of relative LTE tolerance for serial GLIRK propagations only, with the relative
tolerance varied from 10−4.8 − 10−6.4.

Just as for the LEO scenario, the relative performance of the GLIRK propagator
would improve if the dynamics were more strenuous: For example, SRP may be
calculated using bidirectional reflectance distribution functions, SO self-shadowing
effects may be relevant, and Earth-albedo and Earth-infrared radiation pressure and
thermal radiation pressure may also be taken into account. The addition of any of
these factors increases the performance gains available from parallelization. Also,
because of the dominance of SRP torque on HAMR SOs in GEO, Earth and thermal
radiation pressure torque may likely be ignored in the low-fidelity dynamics model,13

further improving efficiency.

Conclusion

A variable-step-size Gauss-Legendre implicit Runge-Kutta (GLIRK) ODE solver is
applied to the fully coupled six-degree-of-freedom (6DOF) propagation of a space
object in Earth orbit. Local truncation error is estimated using an inexpensive, nearly
embedded lower-order method. The majority of dynamics model evaluations are
replaced with fast, low-fidelity alternatives, decreasing CPU runtime without com-
promising propagation accuracy. Additional unnecessary high-fidelity evaluations
are eliminated by estimating the local truncation error prior to full convergence of the
iterative solver at each propagation step. As these customizations suggest, GLIRK

13Unless the SO is in the Earth’s shadow.
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propagators – for both 3DOF and 6DOF astrodynamics applications – require careful
tuning and problem-specific insight to maximize efficiency. However, the benefits of
the GLIRK method are shown to be strong for certain common dynamical regimes,
particularly given the growing ubiquity of parallel computing resources.

The performance of the GLIRK propagator is examined using 4–22 internal stages,
evaluated either serially or in parallel using a multicore CPU with up to 23 threads
and OpenMP. (One thread is reserved for an extra dynamics function evaluation used
in the estimation of the local truncation error.) Eight-to-twelve-stage methods are
found to produce greatest efficiency for a serial implementation. Speed improve-
ments realizable from a parallel implementation depend on parallelization overhead
and dynamical model complexity; for typical dynamics models, the efficiency gains
from using more than 8–12 stages and threads are observed to be marginal.

The use of variable-fidelity dynamics combined with the parallelizability of IRK
methods means that the propagator is most efficient when the high-fidelity dynam-
ics model is computationally intensive and a much less expensive, yet moderately
accurate, low-fidelity model is available. For example, for a sample space object
in low Earth orbit, the serially implemented, variable-fidelity, eight-stage GLIRK
propagator is competitive with standard linear multistep and explicit Runge-Kutta
propagators, though the linear multistep method may be the most efficient of the
three tested options. However, when parallelized, the GLIRK method is shown to
significantly outperform the serial alternatives.

On the other hand, the efficiency of the GLIRK method is degraded if the high-
fidelity dynamics model is inexpensive to evaluate, and/or the cost of the low-fidelity
model relative to the high-fidelity model is high. These conditions lessen the impact
of variable-fidelity dynamics models and increase the visibility of parallelization
overhead: For the propagation of a high-area-to-mass-ratio space object in geosyn-
chronous orbit, the parallelized GLIRK method is only competitive with the linear
multistep propagator at tight integration tolerances. In such scenarios – in which the
effectiveness of GLIRK customizations is limited – a variable-step linear multistep
method is likely to outperform the GLIRK method, particularly in a serial comput-
ing environment. The example simulations presented in this study are representative
of the two ends of the performance spectrum for GLIRK methods applied to 6DOF
propagation. However, when approaching a specific propagation scenario, a prac-
titioner should carefully evaluate the factors discussed here to determine the best
choice of integration method.
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Appendix A: Local Truncation Error Estimation

Position accuracy as a function of high-fidelity dynamics function evaluations (a
proxy for CPU time) for three methods of calculating the “comparison solution” for
estimating the local trunction error (LTE) is shown in Fig. 13. The figure displays
results for three-orbit propagations of the tumbling LEO scenario (Fig. 13a) and
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Fig. 13 Position accuracy as a function of high-fidelity dynamics function evaluations for three LTE
calculation methods; relative LTE tolerance of propagators is varied from 10−5 − 10−15. The Kouya
method is used to produce the results given in this paper

non-tumbling GEO scenario (Fig. 13b) introduced in this paper. The variable-fidelity
dynamics strategy is used, and the GLIRK solution uses eight stages. The “Kouya”
method, which is based on a nearly embedded solution of order s, is the strategy used
to produce the results given in this paper [28]. The “Jay” method uses an internal
tolerance parameter to generate a less conservative estimate of the LTE based on the
order-s comparison solution [25]. The “Radau” method produces a comparison solu-
tion using a non-embedded s-stage Radau-IA propagation, which produces a solution
of order (2s − 1) [19]. For the results presented in Fig. 13, it is assumed that the ini-
tial guess for the Radau-IA solution is accurate enough that only one high-fidelity
dynamics function evaluation per stage is required to achieve convergence.

The inexpensiveness of the nearly embedded Kouya method generally produces a
more efficient propagation than the Radau method for a given accuracy when using
variable-fidelity dynamics models, even though the Radau method generally uses
larger step sizes. On the other hand, the Jay method uses very few function evalu-
ations, but the internal tolerance tends to produce such large step sizes that global
error control is poor compared to the other two methods.
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