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Abstract A unique formulation of the solution to a spinning, nearly axisymmetric
rigid-body is presented. Direct integration of the linearized equations of motion gives
accurate results for nearly axisymmetric inertia ellipsoids while avoiding the com-
plexity of more general formulations. The simplicity of the formulation lends itself
to a better understanding of the system behavior. Specifically, the motion of the spin
axis for this nearly axisymmetric case is described by an oblate epicycloid, providing
an extension of the classic epicycloid solution for axisymmetric objects.
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Nomenclature
An = Amplitude of Nutation
Ap = Amplitude of Precession
a = Semimajor Axis of an ellipse
b = Semiminor Axis of an ellipse
J = Moment of Inertia Tensor
J = Transverse moment of inertia for axisymmetric rigid-body
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J1 = Moment of Inertia of a rigid-body about the first body axis
J2 = Moment of Inertia of a rigid-body about the second body axis
J3 = Moment of Inertia of a rigid-body about the third body axis
L1 = First dimension of Kolk’s inner pendulum
L2 = Second dimension of Kolk’s inner pendulum
L3 = First dimension of Kolk’s outer pendulum
L4 = Second dimension of Kolk’s outer pendulum
M = Torque about the transverse axis of an axisymmetric rigid-body
M1 = Torque about the first body axis of a rigid-body
M2 = Torque about the second body axis of a rigid-body
n = Initial spin-rate of a rigid body
R = Radius of a circle and length of inner pendulum of an oblate epicycloid
β = Angular Velocity of Kolk’s outer pendulum
ε = Angular Velocity of Kolk’s inner pendulum
λ = Relative spin rate for an axisymmetric rigid-body
λ1 = First relative spin rate for an asymmetric rigid-body
λ2 = Second relative spin rate for an asymmetric rigid-body
μ = Disturbance Acceleration for an axisymmetric rigid-body
μ1 = Disturbance Acceleration about the first body axis of an

asymmetric rigid-body
μ2 = Disturbance Acceleration about the second body axis of an

asymmetric rigid-body
θ1 = First angle of a set of 1-2-3 Euler Angles describing the attitude

of a rigid-body
θ2 = Second angle of a set of 1-2-3 Euler Angles describing the attitude

of a rigid-body
θ3 = Third angle of a set of 1-2-3 Euler Angles describing the attitude

of a rigid-body
� = Angular velocity of inner pendulum of an oblate epicycloid
ω = Angular velocity of outer pendulum of an oblate epicycloid
ω1 = Angular velocity of a rigid-body about its first body axis
ω2 = Angular velocity of a rigid-body about its second body axis
ω3 = Angular velocity of a rigid-body about its third body axis

Introduction

The solution to Euler’s equations of motion for a spinning rigid-body with a body-
fixed torque has been treated by many researchers with varying degree of complexity.
At the more general and complex end of the spectrum, Leimanis [1] describes
Bödewadt’s solution, which is an exact analytical solution to Euler’s equations for
an axisymmetric rigid-body, with any initial angular velocity vector, and subject to
constant torques about any axis. Bödewadt’s solution is given in terms of Fresnel
integrals, and was found by Longuski [2, 3] to be inaccurate for nearly axisymmetric
rigid bodies. Longuski goes on to develop a similar solution for nearly axisymmetric



J of Astronaut Sci (2017) 64:1–17 3

bodies. In later work, Longuski [4–9] and Tsiotras [5–9] develop additional solutions
for nearly axisymmetric bodies under a variety of specific conditions, including one
that does not utilize the small angle assumption [8] and one for an asymmetric rigid-
body subject to large initial angular velocities [9]. All of these solutions [2–9] involve
complex equations and Fresnel integrals.

Analyses of the motion of a spinning rigid-body subject to a constant body-fixed
torque have also been completed under the assumption that the transverse moments
of inertia are nearly equal [10–12]. In References [10, 11], a solution for the nondi-
mensional angular velocity is obtained and the stability properties are developed as
a function of the initial conditions. Longuski et al. [12] solve for the attitude of the
rigid-body as a function of time by translating the two transverse equations of motion
for the Euler angles into a single complex equation. The solution is numerically
equivalent to the one presented in this paper and has the merit of being compact, but
it does not readily permit the physical interpretation developed herein.

The simplest solution of a self-excited, spinning rigid-body with an axisymmetric
inertia ellipsoid has been republished by many, but is described byWie [11] and Kolk
[13] as an epicycloid curve, where the amplitudes and frequencies of precession and
nutation are constant functions of the moments of inertia, initial spin rate of the body,
and the torque on the body. Due to the assumptions made to derive this solution, it
is valid for a narrow range of conditions: the initial spin rate must be entirely about
either the major or minor body axis; the two transverse moments of inertia must be
equal; the torque must be constant and about a single transverse axis; finally, the
torque must be small enough for the deviation of the nominal spin axis to remain
small (i.e. small angle assumption).

This paper considers the slightly more general case of a nearly symmetric rigid-
body, while maintaining the assumption of small transverse spin rates and Eulerian
Angles. It is also assumed that the initial spin rate is primarily about either the major-
or minor-axis, and that torques exist only about the transverse axes. The formulation
achieves a unique balance between extension of the applicability of the classic case
to a nearly symmetric mass distribution and the complexity of the resulting solution,
which still retains a physically intuitive description that is deemed herein an “oblate
epicycle”.

Theoretical Development

Motion of a Self-Excited, Axisymmetric Rigid-Body as an Epicycloid

Wie [11] gives the solution for the axisymmetric rigid-body with torque about a single
transverse axis as:

θ1 (t) = −Ap

[
1 − cos

(
ωpt

)] + An [1 − cos (ωnt)] (1)

θ2 (t) = Ap sin
(
ωpt

) − An sin (ωnt) (2)
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where θ1 and θ2 are part of a set of 1-2-3 Euler Angles describing the attitude of the
rigid-body. The precessional and nutational amplitudes and frequencies are given by:

Ap = μJ

λnJ3
= precessional amplitude (3)

An = μ

λn
= nutational amplitude (4)

ωp = J3n

J
= precessional f requency (5)

ωn = n = nutational f requency (6)

where μ is the disturbance acceleration due to the transverse moment, and λ is the
relative spin rate. Both of these values are constants given in terms of the torque,
moments of inertia, and initial spin rate:

μ = M

J
(7)

λ = (J − J3)

J
n (8)

whereM is the torque about the transverse axis, J is the transverse moment of inertia,
J3 is the moment of inertia about the spin axis, and n is the initial spin rate.

Wie [11] describes the epicycloid as the curve described by a point on a circle of
radius An, rolling about the outside of a circle of radius Ap, as shown in Fig. 1. Kolk
[13] describes the epicycloid with two pendulums, the first fixed at one end, and the
second attached to the free end of the first. The lengths of the two pendulums are not
necessarily equal, nor are their angular rates. The epicycloid is the curve traced out

Fig. 1 Rolling circles
description of the epicycloid
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by the free end of the second pendulum, as shown in Fig. 2. Kolk gives the slightly
more general form of the equations:

θ1 = L1 [1 − cos (εt)] + L2 sin (εt) + L3 [1 − cos (βt)] + L4 sin (βt) (9)

θ2 = L1 sin (εt) − L2 [1 − cos (εt)] + L3 sin (βt) − L4 [1 − cos (βt)] (10)

where L1, L2, L3, L4, ε, and β are as shown in Fig. 2, but is quick to assume that
L2 and L4 are negligible and that L1 = Ap; L3 = An; ε = ωp; and β = ωn as
given in Eq. 3 through Eq. 6. McNair and Tragesser [14] have shown that, due to
the relationships between Ap, An, ωp, and ωn, these two descriptions (i.e. the circles
rolling without slip and the double pendulum) are equivalent, with the caveat that the
radius of the inner circle in Wie’s qualitative description is equal to the difference
between Ap and An, rather than simply Ap.

Inspection will show that an equivalent form of Kolk’s equations, corresponding
with the representation shown in Fig. 3, is given by:

θ1 = Ap cos
(
ωpt + �

) + An cos (ωnt + φ) + θ1,c (11)

θ2 = Ap sin
(
ωpt + �

) + An sin (ωnt + φ) + θ2,c (12)

where:

Ap =
√

L2
1 + L2

2 (13)

An =
√

L2
3 + L2

4 (14)

Fig. 2 Kolk’s pendulum
description of the epicycloid
[13]
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Fig. 3 Pendulum description of
the epicycloid

� = atan

(
L2

L1

)
(15)

φ = atan

(
L4

L3

)
(16)

Applying initial conditions to solve for the offset of the inner pendulum, θ1,c and
θ2,c yields:

θ1,c = θ1,0 − Ap cos (�) − An cos (φ) (17)

θ2,c = θ2,0 − Ap sin (�) − An sin (φ) (18)

so that the parametric equations become:

θ1 = Ap

[
cos

(
ωpt + �

) − cos (�)
] + An [cos (ωnt + φ) − cos (φ)] + θ1,0 (19)

θ2 = Ap

[
sin

(
ωpt + �

) − sin (�)
] + An [sin (ωnt + φ) − sin (φ)] + θ2,0 (20)

Description of the Oblate Epicycloid

The oblate epicycloid invented in this work can also be described with two rotating
pendulums. Instead of having a fixed length, the outer pendulum is allowed to change
in length such that if one end were fixed, its free end would trace out the path of an
ellipse as shown in Fig. 4 . The parametric equations for an ellipse with semimajor
axis a and semiminor axis b are:

xe = a cos(ωt + φ) (21)

ye = b sin (ωt + φ) (22)

where a �= b, ω is the angular velocity of the outer pendulum, φ is the angle of
the outer pendulum at the initial time, and the parameters xe and ye are expressed
such that xe is in the direction of the semimajor axis of the ellipse and ye is in the
direction of the semiminor axis. In order to express the position and length of the
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Fig. 4 Oblate epicycloid

1

2

outer pendulum in the θ1-θ2 plane, a coordinate transformation must be performed.
Since the semimajor axis of the ellipse traced by the outer pendulum is always aligned
in the same direction as the inner pendulum, this coordinate transformation is given
by:

θ1,p = xe cos (�t + �) − ye sin (�t + �) (23)

θ2,p = xe sin (�t + �) + ye cos (�t + �) (24)

Substituting in the parametric equations for an ellipse yields expressions for the
motion of the outer pendulum:

θ1,p = a cos (ωt + φ) cos (�t + �) − b sin (ωt + φ) sin (�t + �) (25)

θ2,p = a cos (ωt + φ) sin (�t + �) + b sin (ωt + φ) cos (�t + �) (26)

These expressions are then added to those for the inner pendulum:

θ1=R cos (�t+�)+a cos (ωt+φ) cos (�t+�)−b sin (ωt + φ) sin (�t + �)+θ1,c
(27)

θ2=R sin (�t+�)+a cos (ωt+φ) sin (�t+�)+b sin (ωt + φ) cos (�t + �)+θ2,c
(28)

Applying initial conditions to solve for θ1,c and θ2,c results in the parametric
equations:

θ1 = R [cos (�t+ �) − cos (�)]+ a [cos (ωt+φ) cos (�t + �) − cos (φ) cos (�)]

−b [sin (ωt + φ) sin (�t + �) − sin (φ) sin (�)] + θ1,0 (29)

θ2 = R [sin (�t + �) − sin (�)] + a [cos (ωt + φ) sin (�t+ �) − cos (φ) sin (�)]

+b [sin (ωt + φ) cos (�t + �) − sin (φ) cos (�)] + θ2,0 (30)
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Motion of a Self-Excited, Nearly Axisymmetric Rigid Body as an Oblate
Epicycloid

In the axisymmetric case described above, a single moment is chosen without loss of
generality, due to the assumption of symmetry; the axes can simply be chosen such
that any transverse torque is about a single axis. However, for the asymmetric case,
this is not true. Euler’s equations of motion are still used as the starting point, but in
this case they are more general, having moments about both transverse axes, and also
two different transverse moments of inertia, J1 and J2:

J1ω̇1 − (J2 − J3) ω3ω2 = M1 (31)

J2ω̇2 + (J1 − J3) ω3ω1 = M2 (32)

J3ω̇3 + (J2 − J1) ω1ω2 = 0 (33)

where a principal axis reference frame is chosen without loss of generality. It is
assumed that the spin rate is primarily about the third body axis, such that the trans-
verse angular velocities remain small. Therefore, the nonlinear term in Eq. 33 can be
neglected. This is valid, as long as the difference between the two transverse moments
of inertia is not significantly larger than the moment of inertia about the spin axis.
Thus, Eq. 33 becomes:

J3ω̇3 ≈ 0 (34)

The following constant substitutions are made:

n ≡ ω3 (35)

λ1 ≡ J2 − J3

J1
n (36)

λ2 ≡ J1 − J3

J2
n (37)

μ1 ≡ M1

J1
(38)

μ2 ≡ M2

J2
(39)

Equations 31 and 32 may then be re-written as:

ω̇1 = λ1ω2 + μ1 (40)

ω̇2 = −λ2ω1 + μ2 (41)

Solving Eqs. 40 and 41 for ω1 and ω2 yields

ω1 (t)=
(
ω1 (0) − μ2

λ2

)
cos

(√
λ1λ2t

)
+

√
λ1λ2

λ2

(
ω2 (0) + μ1

λ1

)
sin

(√
λ1λ2t

)
+μ2

λ2
(42)

ω2 (t)=−
√

λ1λ2

λ1

(
ω1 (0) − μ2

λ2

)
sin

(√
λ1λ2t

)
+

(
ω2 (0) + μ1

λ1

)
cos

(√
λ1λ2t

)
−μ1

λ1
(43)
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If the attitude of the rigid-body is described by 1-2-3 Euler angles, the correspond-
ing kinematic equations are:

θ̇1 = (ω1 cos θ3 − ω2 sin θ3) / cos θ2 (44)

θ̇2 = ω1 sin θ3 + ω2 cos θ3 (45)

θ̇3 = (−ω1 cos θ3 + ω2 sin θ3) sin θ2/ cos θ2+ω3 (46)

Applying a small angle assumption to the first two angles yields:

θ̇1 = ω1 cos (nt) − ω2 sin (nt) (47)

θ̇2 = ω1 sin (nt) + ω2 cos (nt) (48)

and the solution for the third angle becomes:

θ3 = nt (49)

Substituting the solutions for ω1 and ω2 (from Eqs. 42 and 43) into Eqs. 47 and 48
and integrating yields the following analytical solutions for θ1 and θ2:

θ1 = μ2

λ2n
sin (nt) − μ1

λ1n
[cos (nt) − 1]

+
[

n + λ2

n2 − λ1λ2

] (
ω1,0 − μ2

λ2

)
sin (nt) cos

(√
λ1λ2t

)

−
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ1

n2 − λ1λ2

⎤

⎦
(

ω1,0 − μ2

λ2

)
cos (nt) sin

(√
λ1λ2t

)

+
[

n + λ1

n2 − λ1λ2

] (
ω2,0 + μ1

λ1

)[
cos (nt) cos

(√
λ1λ2t

)
− 1

]

+
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ2

n2 − λ1λ2

⎤

⎦
(

ω2,0 + μ1

λ1

)
sin (nt) sin

(√
λ1λ2t

)
+ θ1,0 (50)

θ2 = μ2

λ2n
[cos (nt) − 1] − μ1

λ1n
sin (nt)

−
[

n + λ2

n2 − λ1λ2

] (
ω1,0 − μ2

λ2

)[
cos (nt) cos

(√
λ1λ2t

)
− 1

]

−
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ1

n2 − λ1λ2

⎤

⎦
(

ω1,0 − μ2

λ2

)
sin (nt) sin

(√
λ1λ2t

)

+
[

n + λ1

n2 − λ1λ2

] (
ω2,0 + μ1

λ1

)
sin (nt) cos

(√
λ1λ2t

)

−
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ2

n2 − λ1λ2

⎤

⎦
(

ω2,0 + μ1

λ1

)
cos (nt) sin

(√
λ1λ2t

)
+ θ2,0 (51)
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This solution can be expressed as the parametric equations of an oblate epicycloid
as given in Eqs. 29 and 30, which are repeated here for convenience:

θ1 = R [cos (�t+�)− cos (�)]+ a [cos (ωt+ φ) cos (�t + �) − cos (φ) cos (�)]

−b [sin (ωt + φ) sin (�t + �) − sin (φ) sin (�)] + θ1,0 (52)

θ2 = R [sin (�t + �) − sin (�)] + a [cos (ωt + φ) sin (�t + �) − cos (φ) sin (�)]

+b [sin (ωt + φ) cos (�t + �) − sin (φ) cos (�)] + θ2,0 (53)

where:

� = n (54)

R1 = − μ1

λ1n
(55)

R2 = μ2

λ2n
(56)

R =
√

R2
1 + R2

2 (57)

a1 =
[

n + λ1

n2 − λ1λ2

] (
ω2,0 + μ1

λ1

)
(58)

a2 =
[

n + λ2

n2 − λ1λ2

] (
ω1,0 − μ2

λ2

)
(59)

a =
√

a21 + a22 (60)

b1 =
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ2

n2 − λ1λ2

⎤

⎦
(

ω2,0 + μ1

λ1

)
(61)

b2 =
⎡

⎣
√

λ1λ2 + n
√

λ1λ2
λ1

n2 − λ1λ2

⎤

⎦
(

ω1,0 − μ2

λ2

)
(62)

b =
√

b21 + b22 (63)

� = atan

(
R2

R1

)
= atan

(
a2

a1

)
= atan

(
b2

b1

)
(64)

ω = √
λ1λ2 (65)

φ = 0 (66)
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Equivalence to More Specific Cases

The solution presented in Eqs. 49 and 52 through Eq. 66 addresses a general case of
a nearly axisymmetric, spinning rigid-body subject to torques about both transverse
axes. This can be narrowed down by making certain additional assumptions about the
torques, moments of inertia, and initial conditions.

If the transverse moments of inertia of the rigid-body are equal, then

λ1 = λ2 = λ (67)

and the coefficients defined in Eq. 55 through Eq. 59 become:

a1 = b1 = ω2,0 + μ1
λ

n − λ
(68)

a2 = b2 = ω1,0 − μ2
λ

n − λ
(69)

If it is additionally assumed that the initial transverse rates are zero, then these
simplify further to:

r1 = a1 = b1 = μ1

λ (n − λ)
= Jμ1

J3λn
(70)

r2 = a2 = b2 = μ2

λ (n − λ)
= Jμ2

J3λn
(71)

and Eqs. 52 and 53 can be described as:

θ1 (t)=R1 [cos (nt)−1]−R2 sin (nt)+r1[cos ((λ−n)t)−1]+r2 sin ((λ−n) t)+θ1,0
(72)

θ2 (t)=R1 sin (nt)+R2 [cos (nt)−1]+r1sin ((λ−n) t)−r2 [cos ((λ − n) t)−1]+θ2,0
(73)

Further assuming a transverse torque only about the first body axis yields the
equations presented by Wie [11] and Kolk [13], as R2 and r2 both become zero.

Repeating Path

When considering the epicycloid approximation as depicted in Fig. 3, inspection
will show that the path of the spin axis will repeat itself if either ratio of the two
frequencies, ωn and ωp, is an integer. That is, if either of the following is true:

ωn

ωp

= integer (74)

ωp

ωn

= integer (75)

By substituting the expressions for the frequencies of nutation and precession
from Eqs. 5 and 6, it is possible to arrive at the repeating-path condition in terms of
the moments of inertia. This condition is met, for an axisymmetric rigid-body when
one of the following terms is an integer, depending on the relative quantities of the
transverse and spin-axis moments of inertia:

J

J3
= integer (76)
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J3

J
= integer (77)

A similar analysis can also be applied to the oblate epicycloid solution; inspection
of Fig. 4 will show that the path of the spin axis will repeat itself if either of the
following is true:

ω

�
= integer (78)

�

ω
= integer (79)

By substituting the expressions in Eqs. 36, 37, 54 and 59, it is seen that the
repeating-path condition for a asymmetric rigid-body is therefore met when one of
the following terms is an integer:

√

1 − J3

J1J2
(J1 + J2 − J3) = integer (80)

[√

1 − J3

J1J2
(J1 + J2 − J3)

]−1

= integer (81)

Numerical Examples

Major- and Minor-Axis Spin Examples

Numerical examples for both a major- and minor-axis spin are presented. The basis
for comparison is the results obtained by numerically integrating Euler’s Equations
and kinematic equations for the Euler Angles. The error is defined as:

ε ≡ θ − θ̂ (82)

where θ is the “exact” solution determined by numerical integration and θ̂ is the
analytic approximation of the solution.

Examples with large differences in the transverse moments of inertia are chosen to
emphasize the accuracy of the analytic solution for asymmetric (as opposed to nearly
axisymmetric) objects.

In developing the oblate epicycloid solution to the asymmetric case, the following
term was neglected as being small, due to including the product of two small angular
velocities:

J1 − J2

J3
ω1ω2 (83)

However, even if both transverse angular rates remain reasonably small, it is
possible that this term may become significant if the following quantity is large:

|J1 − J2|
J3

(84)
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In both numerical examples, the moments of inertia are chosen such that the quan-
tity listed in Eq. 72 is 0.5. For satellites, this value is typically something on the order
of 0.1 or less. Due to the inequality law for inertia:

Ji ≤ Jj + Jk (85)

the largest possible value for Eq. 72 is 1.
The results for the nearly axisymmetric analytic solution are compared to the

axisymmetric solutions presented by Wie [11] and Kolk [13] since this is the clos-
est formulation to the current work. The larger of the two transverse moments of
inertia was selected for the value of the axisymmetric formulation since it yielded
results that were somewhat closer to the numerical integration than those yielded
by selecting either the smaller or the average of the two transverse moments of
inertia.

Two cases are considered, both with an initial spin rate about the third body axis
of 15 rpm and all other initial body rates and angles assumed to be zero. The torque
about the first body axis in both examples is 20 Nm. The results are given for a period
of 15 seconds. Figures 5 and 6 illustrate the solution for a rigid-body spinning about
its major-axis, the following moment of inertia tensor using:

J =
⎡

⎣
400 0 0
0 900 0
0 0 1000

⎤

⎦ kg · m2 (86)

Figures 7 and 8 illustrate the solution for a rigid-body spinning about its minor-
axis, using the following moment of inertia tensor:

J =
⎡

⎣
233.333 0 0

0 316.667 0
0 0 166.667

⎤

⎦ kg · m2 (87)

The first and second Euler angles, which give the projection of the spin axis onto
the transverse plane, are shown in Fig. 5 for the major-axis spin, and Fig. 7 for the
minor-axis spin. The difference between these values and the numerical solution are
shown in Fig. 6 for the major-axis spin, and Fig. 8 for the minor-axis spin.

In both the major-axis and minor-axis examples, the epicycle solution diverges
rapidly, and after the first revolution (at 4 seconds) the error in the epicycloid solu-
tion is almost as large as the amplitude of the deviation in the spin-axis from nominal.
The errors in the oblate epicycloid representation are more than an order of magni-
tude lower than those in the epicycloid solution. The errors in the oblate epicycloid
solution grow larger with time, but the solution remains representative of the motion
for several revolutions (tens of seconds in this case), performing better than the
epicycloid solution.

Repeating Path Example

A third numerical example is presented to illustrate the scenario in which the spin
axis of the asymmetric body follows a repeating path. The initial spin rate and torque
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Fig. 6 Errors in calculated first and second body angles for a major-axis spin
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Fig. 7 First and second body angles for a minor-axis spin
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Fig. 9 First and second body angles with a repeating path

are the same as those in the major- and minor-axis spin examples, and the following
moment of inertia tensor is used:

J =
⎡

⎣
30.619 0 0

0 149.667 0
0 0 238.095

⎤

⎦ kg · m2 (88)

Using the diagonal terms of this matrix, the expression in Eq. 80 evaluates to a
value of 1.9996. The first and second Euler angles for this example are shown in
Fig. 9, which shows that the path of the spin axis very nearly repeats itself.

Conclusions

In this paper, analytic approximations are derived for the equations of motion for
the attitude of a nearly axisymmetric, spinning rigid-body, described by 1-2-3 Euler
angles. It is shown that the solution presented in this paper encompasses the solu-
tion presented by Wie [11] and Kolk [13] for the specific case where the transverse
moments of inertia are equal, and torque is applied about only one transverse axis.
It is further shown that the solutions presented in this paper are more accurate than
those presented by Wie [11] and Kolk [13] when the transverse moments of inertia
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are not equal. The solution retains, however, the physically intuitive representation
of a relatively simple geometric shape, namely, an oblate epicycloid.
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