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Abstract The solution of the initial relative orbit determination problem using
angles-only measurements is important for orbital proximity operations, satellite
inspection and servicing, and the identification of unknown space objects in similar
orbits. In this paper, a preliminary relative orbit determination performance analysis
is conducted utilizing the linearized relative orbital equations of motion in cylindrical
coordinates. The relative orbital equations of motion in cylindrical coordinates are
rigorously derived in several forms included the exact nonlinear two-body differen-
tial equations of motion, the linear-time-varying differential equations of motion for
an elliptical orbit chief, and the linear-time-invariant differential equations of motion
for a circular orbit chief. Using the nonlinear angles-only measurement equation in
cylindrical coordinates, evidence of full-relative-state observability is found, con-
trary to the range observability problem exhibited in Cartesian coordinates. Based on
these results, a geometric approach to assess initial relative orbit determination per-
formance is formulated. To facilitate a better understanding of the problem, the focus
is on the 2-dimensional initial orbit determination problem. The results clearly show
the dependence of the relative orbit determination performance on the geometry of
the relative motion and on the time-interval between observations. Analysis is con-
ducted for leader-follower orbits and flyby orbits where the deputy passes directly
above or below the chief.
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Introduction

The initial inertial orbit determination problem using angles-only measurements is
well known. For example, Gauss’ method of preliminary orbit determination [1,
2] is capable of determining the inertial orbit or inertial state of an orbiting object
using angles-only measurements. In Gauss’ method, an Earth-based observer with a
known position collects angular information of an orbiting object over a relatively
short period of time to produce a preliminary estimate of the object’s state vector.
The observations are the line-of-sight (LOS) vectors of the space object, equivalent
to pairs of azimuth and elevation angles. Three observations, equivalent to 6 pieces
of angular information, are required to estimate the object’s inertial state vector.

The initial relative orbit determination (IROD) problem is similar in many ways,
but consists of an orbiting observer (chief) in a known orbit and a space object
(deputy) in an unknown orbit. In this case the three LOS observations are used to
estimate the deputy’s relative state vector (and since the inertial state of the chief is
assumed to be known, the deputy inertial state is also determined).

The objective of this paper however is to conduct a preliminary performance anal-
ysis of the IROD problem, independent of the specific algorithm that may be chosen.
The goal is to conduct this performance analysis using a geometric approach equiv-
alent to the computation of the Cramer-Rao lower bound [3], and then apply it to
the case where the chief and deputy are in nearly the same circular orbit. The final
metric is the geometric dilution of precision (GDOP) for each component of the ini-
tial state vector. This will provide valuable relative orbit determination performance
information based only on the geometry of the problem and the time-interval between
measurements.

The standard Hill-Clohessy-Wiltshire (HCW) equations in Cartesian coordinates
[4, 5] cannot be utilized for this study because Woffinden [6] showed that the angles-
only relative navigation problem in this context is unobservable. A brief summary of
Woffinden’s proof is given below.

The standard HCW equations in Cartesian coordinates are given by,

ẍrel ≈ 3n2xrel + 2nẏrel (1.1)

ÿrel ≈ −2nẋrel (1.2)

z̈rel ≈ −n2zrel (1.3)

where x(t), y(t), and z(t) are the radial, along-track, and cross-track components
of the relative position vector r(t), and n is the constant angular rate of the chief’s
circular orbit. The solution to these equations is

r(t) = φrr(t)r0 + φrv(t)v0 (1.4)
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where r0 is the initial relative position, v0 is the initial relative velocity, and
φrr (t) and φrv(t) are known functions of time [6]. Using these equations, the LOS
measurement time-history,

ilos(t) = r(t)

‖r(t)‖ = φrr (t)r0 + φrv(t)v0

‖φrr (t)r0 + φrv(t)v0‖ (1.5)

is not unique to each initial position/velocity state [6]. For example, any scalar multi-
ple of the initial state vector in the above equation will produce the exact same LOS
vector time-history. Thus, a performance analysis based on the standard HCW equa-
tions in Cartesian coordinates will only show that the initial state is unobservable.
This proof is easily extended to any linear relative orbital motion model in Cartesian
coordinates including the Tschauner-Hempel equations [7, 8].

A number of solutions to the observability problem can be found in the literature.
Observability maneuvers and associated observability criteria have been recently
studied [9–11]. Although these solutions require propellant, they are valid for small
or large inter-vehicle separations. To avoid the costs associated with maneuvers, [12]
solves the observability problem by including a second optical sensor at a known
baseline. To avoid the costs associated with using two (or more) optical sensors, [13]
solves the observability problem by properly modeling the offset of a single opti-
cal sensor from the vehicle center-of-mass. These non-propulsive solutions are valid
for relative small inter-vehicle separations and dependent on the length of the sensor
baseline or the magnitude of the sensor offset.

In the current paper, it is hypothesized that the linearized equations of motion
in cylindrical coordinates retain more information about orbit curvature and relative
orbit dynamics than the HCW equations in Cartesian coordinates, and are thus more
useful in investigating relative orbit state observability and conducting IROD perfor-
mance analysis. The observability problem is solved by introducing the curvature of
the orbit through the angular component of the cylindrical coordinates. Maneuvers,
multiple optical sensors, or modeling of the sensor offset are not required. A similar
analysis using relative orbital elements [14] (ROE) might be possible, since the ROE
will also properly capture the curvature of the orbit.

While the linearized relative orbital equations of motion in cylindrical coordinates
are well known [15, 16], a rigorous and detailed derivation of these equations in
vector form using kinematics in cylindrical coordinates is difficult to find in the liter-
ature. Thus, Section “Derivation of Relative Orbital Motion Equations in Cylindrical
Coordinates” presents a detailed and rigorous derivation of the relative orbital equa-
tions of motion in cylindrical coordinates. The nonlinear two-body differential
equations of motion, the linearized linear-time-varying (LTV) differential equa-
tions of motion for an elliptical orbit chief, and the linearized linear-time-invariant
(LTI) differential equations of motion for a circular orbit chief are all presented in
cylindrical coordinates.

Section “Measurement Equation in Cylindrical Coordinates” derives and presents
the nonlinear LOS measurement equation in cylindrical coordinates. To facilitate our
understanding of the observability and IROD performance, the remainder of the paper
focuses on the 2-dimensional problem where the deputy and the chief are in the same
orbital plane. In this case there are only 4 elements of the initial relative state vector
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and each LOS observation consists of only 1 angle measurement, i.e., 4 observations
are required to estimate the 4 elements of the initial state vector.

The nonlinear LOSmeasurement equation and the linearized dynamics are applied
in Section “Observability” to produce strong evidence that the initial relative state is
in fact observable. Although full nonlinear observability criteria for the angles-only
relative motion problem is nicely provided in [17], this section empirically shows
that the linearized dynamics in cylindrical coordinates can provide the observability
that the linearized dynamics in Cartesian coordinates cannot.

Section “Initial Relative Orbit Determination Performance Analysis and Geometric
Dilution of Precision” presents a geometric approach, based on the linearized dynam-
ics in cylindrical coordinates, to assess IROD performance equivalent to the compu-
tation of the Cramer-Rao lower bound. Section “Results - Leader/Follower Orbits”
presents IROD performance analysis results for leader-follower orbits, and Section
“Results - Flyby Orbits” presents results for flyby orbits where the deputy passes
directly above or below the chief. Section “Results - Summary” provides a summary
of the IROD results, and conclusions are provided in Section “Conclusions”.

Derivation of Relative Orbital Motion Equations in Cylindrical
Coordinates

The equations of inertial two-body orbital motion for two spacecraft (deputy and
chief) are given by.

ac = − μ

r3c
rc (2.1)

ad = − μ

r3d

rd (2.2)

The equations of motion in cylindrical coordinates can be derived by first establishing
a fixed reference orbit plane coincident with the initial orbit plane of the chief. The
normal to this plane will be denoted by iz. The components of the chief’s motion
in the reference plane are described using two unit vectors, iρc and iθc , as shown in
Fig. 1. A set of cylindrical coordinates ρc(t), θc(t), and zc(t) can then be defined to
describe the motion of the chief with respect to the nominal plane where ρc(t) and
θc(t) describe the in-plane motion, and zc(t) describes the out-of-plane motion. The
chief’s inertial position, velocity, and acceleration vectors are then given by

rc = ρciρc + zciz (2.3)

vc = ρ̇ciρc + ρcθ̇ciθc + żciz (2.4)

ac =
(
ρ̈c − ρcθ̇

2
c

)
iρc + (ρcθ̈c + 2ρ̇cθ̇c)iθc + z̈ciz (2.5)

By equating the components of Eq. 2.1 to the components of Eq. 2.5, the differential
equations of motion for the chief in cylindrical coordinates are determined.

ρ̈c − ρcθ̇
2
c = − μρc(

ρ2
c + z2c

)3/2 (2.6)

ρcθ̈c + 2ρ̇cθ̇c = 0 (2.7)
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Fig. 1 Cylindrical coordinates geometry

z̈c = − μzc(
ρ2

c + z2c
)3/2 (2.8)

Given appropriate initial conditions, the solution to these nonlinear differential equa-
tions will produce the time-history of the chief’s coordinates, ρc(t), θc(t), and
zc(t).

Next, using the same reference plane specified by the unit vector iz, we can setup
the kinematic and dynamic equations of motion for the deputy in cylindrical coordi-
nates using the unit vectors, iρd

and iθd
, to describe the deputy’s orbital motion in the

reference plane.
rd = ρd iρd

+ zd iz (2.9)

vd = ρ̇d iρd
+ ρd θ̇d iθd

+ żd iz (2.10)

ad =
(
ρ̈d − ρd θ̇2d

)
iρd

+ (ρd θ̈d + 2ρ̇d θ̇d )iθd
+ z̈d iz (2.11)

By equating the components of Eq. 2.2 to the components of Eq. 2.11, the differential
equations of motion for the deputy in cylindrical coordinates are determined

ρ̈d − ρd θ̇2d = − μρd(
ρ2

d + z2d

)3/2 (2.12)

ρd θ̈d + 2ρ̇d θ̇d = 0 (2.13)

z̈d = − μzd(
ρ2

d + z2d

)3/2 (2.14)

Given appropriate initial conditions, the solution to these nonlinear differential equa-
tions will produce the time-history of the deputy coordinates, ρd(t), θd(t), and
zd(t).

If the relative coordinates are defined as

ρrel(t) ≡ ρd(t) − ρc(t) (2.15)

θrel(t) ≡ θd(t) − θc(t) (2.16)

zrel(t) ≡ zd(t) − zc(t) (2.17)
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the second time-derivatives of ρ̈rel(t), θ̈rel(t), and z̈rel(t), can be determined by
subtracting Eqs. 2.12–2.14 from Eqs. 2.6–2.8.

ρ̈rel = ρd θ̇2d − ρcθ̇
2
c − μρd(

ρ2
d + z2d

)3/2 + μρc(
ρ2

c + z2c
)3/2 (2.18)

θ̈rel = −2ρ̇d θ̇d

ρd

+ 2ρ̇cθ̇c

ρc

(2.19)

z̈rel = − μzd(
ρ2

d + z2d

)3/2 + μzc(
ρ2

c + z2c
)3/2 (2.20)

In the absence of perturbations, the chief’s motion is entirely in the reference plane,
i.e., zc(t) ≡ 0. Substituting ρd(t) = ρc(t) + ρrel(t), θd(t) = θc(t) + θrel(t), and
zd(t) = zrel(t) into the above equations produces

ρ̈rel = [ρc(t) + ρrel][θ̇c(t) + θ̇rel]2 − ρc(t)θ̇
2
c (t) − μ[ρc(t) + ρrel]([ρc(t) + ρrel]2 + z2rel

)3/2 + μ

ρ2
c (t)

(2.21)

θ̈rel = −2[ρ̇c(t) + ρ̇rel][θ̇c(t) + θ̇rel]
ρc(t) + ρrel

+ 2ρ̇c(t)θ̇c(t)

ρc(t)
(2.22)

z̈rel = − μzrel([ρc(t) + ρrel]2 + z2rel

)3/2 (2.23)

These are the exact nonlinear two-body equations of relative orbital motion in cylin-
drical coordinates. The coordinates of the chief ρc(t), θc(t), and zc(t) are assumed to
be known.

Assuming ρrel, θ̇rel, ρ̇rel, zrel are “small” (ρrel, zrel � R, θ̇rel � θ̇c(t), ρ̇rel �
ρ̇c(t)), the above equations can be expanded to first-order in a Taylor series to
produce

ρ̈rel ≈
[
θ̇2c (t) + 2μ

ρ3
c (t)

]
ρrel + [2ρc(t)θ̇c(t)]θ̇rel (2.24)

θ̈rel ≈
[
2ρ̇c(t)θ̇c(t)

ρ2
c (t)

]
ρrel −

[
2ρ̇c(t)

ρc(t)

]
θ̇rel −

[
2θ̇c(t)

ρc(t)

]
ρ̇rel (2.25)

z̈rel ≈ −
[

μ

ρc(t)3

]
zrel (2.26)

These are the linear-time-varying (LTV) differential equations of motion for an ellip-
tical orbit chief in the absence of perturbations. It is important to note that since
the right hand sides of Eqs. 2.21-2.23 are a function of only ρrel, θ̇rel, ρ̇rel, zrel , the
above linearized equations are valid for arbitrarily large θrel and żrel .

If the chief is in a circular orbit of constant radius R and constant orbital angular
rate n, then ρc(t) ≡ R, ρ̇c(t) ≡ 0, θ̇c(t) ≡ n. If these relations are substituted
into Eqs. 2.21-2.23, the nonlinear two-body exact equations of relative motion in
cylindrical coordinates for a circular orbit chief are determined

ρ̈rel = [R + ρrel][n + θ̇rel]2 − μ[R + ρrel]([R + ρrel]2 + z2rel

)3/2 (2.27)

θ̈rel = −2ρ̇rel[n + θ̇rel]
R + ρrel

(2.28)
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z̈rel = − μzrel([R + ρrel]2 + z2rel

)3/2 (2.29)

Assuming ρrel, θ̇rel, zrel are “small” (ρrel, zrel � R, θ̇rel � n), the above equations
can be expanded to 1st-order in a Taylor series to produce

ρ̈rel ≈ 3n2ρrel + 2Rnθ̇rel (2.30)

θ̈rel ≈ −2n

R
ρ̇rel (2.31)

z̈rel ≈ −n2zrel (2.32)

These are the linear-time-invariant (LTI) differential equations of relative motion for
a circular orbit chief in the absence of perturbations. Notice the similarity of these
equations to the HCW equations in Eqs. 1.1–1.3. However, there is a significant dif-
ference between these equations and the HCW equations. Since the right hand sides
of Eqs. 2.27–2.29 are a function of only ρrel, θ̇rel, ρ̇rel, zrel , the above linearized
equations are valid for arbitrarily large θrel and żrel . This is an important result.

For subsequent analysis, only the two-dimensional in-plane relative motion will
be considered. If we define the state vector as

X(t) =

⎡
⎢⎢⎣

ρrel(t)

θrel(t)

ρ̇rel(t)

θ̇rel(t)

⎤
⎥⎥⎦ (2.33)

the solutions to Eqs. 2.30 and 2.31 are

ρrel(t) = KT
ρ (t)X0 (2.34)

θrel(t) = KT
θ (t)X0 (2.35)

where

Kρ(t) =

⎡
⎢⎢⎣

4 − 3 cosβ

0
sinβ/n

2R(1 − cosβ)/n

⎤
⎥⎥⎦ , Kθ (t)=

⎡
⎢⎢⎣

6(sinβ − β)/R

1
2(cosβ − 1)/(Rn)

(4 sinβ − 3β)/n

⎤
⎥⎥⎦ , β =n(t − t0)

(2.36)
An alternative description of the relative motion can be obtained by introducing the

arc-length along the chief’s circular orbit,
�
y rel , and the arc-length rate,

�̇
y rel , where

�
y rel= Rθrel

�̇
y rel= Rθ̇rel

Defining xrel = ρrel and ẋrel = ρ̇rel , the new relative motion state vector becomes

x(t) =

⎡
⎢⎢⎢⎣

xrel(t)
�
y rel (t)

ẋrel(t)
�̇
y rel (t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 R 0 0
0 0 1 0
0 0 0 R

⎤
⎥⎥⎦X(t) (2.37)
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where the solutions to Eqs. 2.30 and 2.31 are used to determine xrel(t) and
�
y rel (t)

xrel(t) = kT
x (t)x0 (2.38)

�
y rel (t) = kT

�
y rel

(t)x0 (2.39)

kx(t) =

⎡
⎢⎢⎣

4 − 3 cosβ

0
sinβ/n

2(1 − cosβ)/n

⎤
⎥⎥⎦ , k�

y rel

(t) =

⎡
⎢⎢⎣

6(sinβ − β)

1
2(cosβ − 1)/n

(4 sinβ − 3β)/n

⎤
⎥⎥⎦ , β = n(t − t0)

(2.40)
For completeness a third description of the relative motion can be obtained by

introducing the arc-length along the chief’s circular orbit,
�
y rel , and changing the

independent variable from time t to a normalized time, τ = nt . (This may also help
control numerical instabilities in some numerical applications.)

xrel = ρrel (2.41)
�
y rel= Rθrel (2.42)

dxrel

dτ
= x

′
rel = ρ̇rel/n (2.43)

d
�
y rel

dτ
=�

y
′

rel= Rθ̇rel/n (2.44)

Using this description, the relative motion state vector becomes

X(τ ) =

⎡
⎢⎢⎢⎣

xrel(τ )
�
y rel (τ )

x′
rel(τ )

�
y

′
rel (τ )

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1/n 0
0 0 0 1/n

⎤
⎥⎥⎦ x(t) =

⎡
⎢⎢⎣
1 0 0 0
0 R 0 0
0 0 1/n 0
0 0 0 R/n

⎤
⎥⎥⎦X(t) (2.45)

where the solutions to Eqs. 2.30 and 2.31 can be used to determine xrel(τ ) and
�
y rel (τ )

xrel(τ ) = KT
x (τ )X0 (2.46)

�
y rel (τ ) = KT

�
y rel

(τ )X0 (2.47)

KT
x (τ ) =

⎡
⎢⎢⎣

4 − 3 cosβ

0
sinβ

2(1 − cosβ)

⎤
⎥⎥⎦ , K�

y rel

(τ ) =

⎡
⎢⎢⎣

6(sinβ − β)

1
2(cosβ − 1)
(4 sinβ − 3β)

⎤
⎥⎥⎦ , β = τ − τ0

(2.48)

Measurement Equation in Cylindrical Coordinates

In two dimensions, the line-of-sight angle measurement with respect to the chief’s
radial direction, α(t), is shown in Fig. 1. To obtain this measurement, it is assumed
that the inertial position and inertial orientation of the camera is known. The error
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in the angle measurement is due to uncertainties in the chief’s position and attitude,
uncertainties in the camera resolution/accuracy, uncertainties in the pixel location of
the deputy’s center-of-mass in the camera image plane, and uncertainties in the ori-
entation of the camera in the chief’s body frame. If the camera orientation and the
chief’s position and attitude are assumed to be known perfectly, the angle measure-
ment error is due only to camera resolution/accuracy and uncertainties in the pixel
location of the deputy’s center-of-mass.

Using the geometry in Fig. 1, the position of the deputy with respect to the chief
is given by

rd − rc = [ρd cos θrel − ρc] iρc + ρd sin θrel iθc (3.1)

and the angle measurement α(t) is given by

tanα = ρd sin θrel

ρd cos θrel − ρc

= (ρc + ρrel) sin θrel

(ρc + ρrel) cos θrel − ρc

= sin θrel[
cos θrel − ρc

ρc+ρrel

]

(3.2)
or

cosα = (ρc + ρrel) cos θrel − ρc√
(ρc + ρrel)2 + ρ2

c − 2ρc(ρc + ρrel) cos θrel

(3.3)

sinα = (ρc + ρrel) sin θrel√
(ρc + ρrel)2 + ρ2

c − 2ρc(ρc + ρrel) cos θrel

(3.4)

Thus far, the above nonlinear measurement equation is completely general, i.e., no
assumptions have been made except for formulating the measurement equations in
two dimensions.

Another useful form of the measurement equation is the case where the chief is in
a circular orbit ρc = R and ρrel � R. This is relevant since the linearized dynamics
in cylindrical coordinates make these same assumptions. In this case, Eq. 3.2 to first-
order in ρrel becomes

tanα ≈

sin θrel

[ρrel/R + cos θrel − 1]
(3.5)

where

cosα ≈

(R + ρrel) cos θrel − R√
2R(R + ρrel)(1 − cos θrel)

(3.6)

sinα ≈

(R + ρrel) sin θrel√
2R(R + ρrel)(1 − cos θrel)

(3.7)

Observability

While a rigorous proof of relative state observability in cylindrical coordinates is not
presented in this paper, the evidence provided below shows that the initial relative
state is observable when the angles-only relative navigation problem is formulated in
cylindrical coordinates. This is an important result because if analysis is conducted
using the Cartesian coordinates formulation of the problem, a different conclusion
will be reached.
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The observability question asks whether or not the time-history of α(t) or
tanα(t) is unique for every possible combination of initial conditions, ρrel(t0),
θrel(t0), ρ̇rel(t0), θ̇rel(t0). Alternatively, the observability question can be examined
by substituting Eqs. 2.34–2.35 into Eq. 3.2

tanα(t) = sin[KT
θ (t)X0][

cos[KT
θ (t)X0] − ρc

ρc+KT
ρ (t)X0

] (4.1)

and asking whether or not the time-history of tanα(t) is unique for each initial state
vector X0. Given the highly nonlinear nature of Eq. 4.1, it seems likely that each
time-history α(t) can be associated with a unique set of initial conditions. Even when
the chief is in a circular orbit and ρrel � R, the measurement equation in Eq. 3.5
continues to be highly nonlinear in X0, as seen by substituting Eqs. 2.34–2.35 into
Eq. 3.5:

tanα(t) = sin
[
KT

θ (t)X0
]

{
KT

ρ (t)X0/R + cos
[
KT

θ (t)X0
] − 1

} (4.2)

indicating that the initial state may be observable.
Note however that when the relative downrange position of the deputy is small, as

is required in the linearized Cartesian formulation of the problem, θrel must also be
small. In this case, if Eqs. 3.5 and 4.2 are expanded to first-order in θrel they reduce to

tanα(t) ≈ Rθrel(t)

ρrel(t)
= RKT

θ (t)X0

KT
ρ (t)X0

(4.3)

where it becomes apparent that any scalar multiple of the state will produce the same
LOS time-history, i.e., the initial state is unobservable. The assumption of small θrel

is of course unnecessary in the cylindrical coordinate formation of the problem, and
the evidence provided below shows that the initial relative state is observable in the
cylindrical coordinates formulation of the angles-only relative navigation problem.

For example, it is known that when the deputy is in the same circular orbit as
the chief, i.e., a leader-follower orbit, the Cartesian formulation of the HCW equa-
tions produces the same LOS measurements independent of the relative displacement
position of the deputy as shown [6]. In the cylindrical coordinates formulation of
the problem, the LOS measurements are seen to be unique to each leader-follower
angular displacement. This case can be seen by setting ρrel = 0 in Eq. 3.2

tanα = sin θrel

cos θrel − 1
(4.4)

and examining how the measurement α changes for each value of angular displace-
ment θrel . Fig. 2 shows that the change in α from the local horizontal, 	α = α−π/2,
is in fact a unique function of the relative angular displacement of the deputy θrel .
Hence it may be possible to determine the range of the deputy for leader-follower
orbits (contrary to Woffinden’s dilemma) if the LOS measuring device has suffi-
cient accuracy. The required accuracy can be estimated by determining the sensitivity
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Fig. 2 Change in LOS measurement angle from the local horizontal, 	α = α − π/2, as a function of the
relative angular displacement of the deputy

of α to changes in θrel . Using Eq. 4.4, the sensitivity of the measurement α to
displacements along the v-bar θrel reduces to

∂α

∂θrel

= 1

2
(4.5)

This rather simple result is important. If two spacecraft are known to be in
leader-follower co-circular 7000 km LEO orbits, a measurement error of ±1 mrad
corresponds to an orbit angular displacement error equal to ±2 mrad, equivalent to
an along-track error of 7000 km ×0.002 rad = ±14 km. That is, an along-track nav-
igation error < ±14 km will not be discernible by a camera measurement with ±1
mrad accuracy. For a 42,000 km GEO orbit, an angle measurement error of ±1 mrad
corresponds to an along-track error of 42,000 km ×0.002 rad = ±84 km.

It is also known that when the deputy is in a co-circular orbit with altitude	h

above or below the chief, i.e., a flyby orbit, the Cartesian formulation of the HCW
equations produce the same LOS time-history independent of the altitude [6]. In con-
trast, in the cylindrical formulation of the problem the LOS measurements are seen
to be unique to each flyby orbit. Consider the case where the deputy coasts from a
position above and well ahead of the chief to a position above and well behind the
chief. Given the initial conditions ρrel(t0) = 	h, ρ̇rel(t0) = 0, θrel(t0) = 3π	h/2R,
and θ̇rel(t0) = −3n	h/2R, Eqs. 2.34-2.35 show that the resulting relative motion is
ρrel(t) = 	h and θrel(t) = 3	h(π − nt)/2R, i.e., the deputy will pass directly over
the chief in one-half orbital period, and the final along-track position after one orbital
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period is θrel(tf ) = −3π	h/2R. Substituting these expressions for the flyby rela-
tive motion into Eq. 3.2 provides the LOS time-history for a particular flyby altitude
	h.2

tanα =
(R + 	h) sin

[
3	h(π−nt)

2R

]

(R + 	h) cos
[
3	h(π−nt)

2R

]
− R

(4.6)

Using this equation, the time-histories of α can be computed for various values of
	h and subtracted from a baseline time-history associated with 	h = 1 m. The
results are shown in Fig. 3 for a 7000 km circular chief orbit, where it is seen that the
LOS time-histories for flyby orbits are indeed different and unique to each 	h . This
figure also shows, for example, that a measurement accuracy < 2 mrad is required to
discern the 	h of a 100 km flyby orbit from another nearby flyby orbit 10 km above
or below. Notice also that the ability to discern 	h drops dramatically as the deputy
approaches the point directly above the chief.

Similar results can be seen in Fig. 4 for a natural motion circumnavigating foot-
ball orbit with semimajor axis a. Given the initial conditions ρrel(t0) = 0, ρ̇rel(t0) =
na/2, θrel(t0) = a/R, and θ̇rel(t0) = 0, Eqs. 2.34-2.35 show that the resulting rel-
ative motion is periodic, ρrel(t) = a sin(nt)/2 and θrel(t) = a cos(nt)/R, where
a is the arc-length of the semi-major axis of the football orbit. Substituting these
expressions for the relative motion into Eq. 3.2 provides the LOS time-history for a
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Fig. 3 Flyby orbit LOS measurement angle time-histories for several values of 	h subtracted from a
baseline time-history 	h = 1 m using the nonlinear measurement equation and linearized relative motion
dynamics in cylindrical coordinates (R = 7000 km)
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Fig. 4 Football orbit LOS measurement angle time-histories for several values of semi-major axis a sub-
tracted from a baseline time-history associated with a = 1 m using the nonlinear measurement equation
and linearized relative motion dynamics in cylindrical coordinates (R = 7000 km)

particular football orbit. In this case, the measurement angle time-histories α(t) are
given by

tanα =
(
R + a sin nt

2

)
sin

[
a cos nt

R

]
(
R + a sin nt

2

)
cos

[
a cos nt

R

] − R
(4.7)

While the Cartesian formulation of the CW equations produces the same LOS time-
history for any size football orbit, the cylindrical formulation produces different and
unique LOS time-histories for each value of semimajor axis a. Similar to the flyby
example, here the ability to discern the value of the semimajor axis drops dramatically

at certain times
(
in this case 1

2 and 3
4 orbital periods

)
.

Initial Relative Orbit Determination Performance Analysis
and Geometric Dilution of Precision

Since the empirical results above indicate that the angles-only relative navigation
problem is observable when formulated in cylindrical coordinates, a preliminary
analysis of IROD performance utilizing the cylindrical coordinates formulation of
the problem is warranted. To be useful and provide a better understanding of the
IROD problem, such analysis should depend only on the geometry of the problem
(i.e., the relative motion), the time-interval between measurements, and the expected
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sensor accuracy. It is important to point out that such an analysis using the Carte-
sian formulation of the problem is impossible since the results will always show that
the IROD problem is unobservable. On the other hand, a preliminary performance
analysis based on the full nonlinear models may produce more accurate results, but
the benefits of the semi-analytical linearized models in cylindrical coordinates are
the speed with which analysis can be conducted and the insight that can be gained
using the semi-analytical models. Finally, since the linearized cylindrical coordinate
formulation properly captures the curvature of the underlying inertial orbits, second-
order effects such as J2, drag, or SRP, over relatively short (less than 1 orbit period)
measurement periods, are expected to provide minimal additional observability and
improvement in IROD performance.

To conduct this performance analysis, a useful metric, the Cramer-Rao lower
bound, will be employed. The Cramer-Rao lower bound is given by [18]

P ≥ σ 2
α

[
HT H

]−1
(5.1)

where P is the covariance of the initial state estimate, and σ 2
α is the variance of the

LOS angle measurements. Note that the matrix HT H will be singular if the problem
is unobservable.

Given 4 measurements at times ti , i = 0, 1, 2, 3, the matrix H in the above
equation is given by

H =

⎡
⎢⎢⎣

hT (t0)

hT (t1)(t1, t0)

hT (t2)(t2, t0)

hT (t3)(t3, t0)

⎤
⎥⎥⎦ (5.2)

where the state transition matrix (ti, t0) is obtained from the linear differen-
tial equation in Eqs. 2.30-2.32 and the measurement geometry vectors hT (ti) are
computed from Eq. 3.2

hT (ti) = ∂α

∂X

∣∣∣∣
ti

=
[

∂α
∂ρrel

∂α
∂θrel

0 0
]
ti

(5.3)

where

∂α

∂ρrel

= − cos2 α

(
ρc sin(θrel)

{ρd cos θrel − ρc}2
)

== −ρc

d2
sin θrel (5.4)

∂α

∂θrel

= − cos2 α

(
ρdρc cos θrel − ρ2

d

{ρd cos θrel − ρc}2
)

= ρ2
d − ρcρd cos θrel

d2
(5.5)

and where d is the distance between the chief and the deputy.

d =
√

ρ2
d + ρ2

c − 2ρcρd cos θrel (5.6)

Conceptually, each measurement geometry vector hT (ti) reflects the direction and
sensitivity of the information that α(ti) provides about Xi . The information in these
measurement geometry vectors is effectively converted to information about the ini-
tial state X0 using the state transition matrix in Eq. 5.2. Thus, although this has
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been formulated as a Cramer-Rao lower bound, it is more fundamentally a geomet-
ric problem that answers the question of how well the 4 row vectors in H span the
4-dimensional space of X0.

Note that the above measurement geometry vectors are valid for completely arbi-
trary chief/deputy positions (in 2 dimensions). The state transition matrices however
are based upon the linearized equations of relative motion in cylindrical coordinates
in Eqs. 2.30-2.32 where the chief is assumed to be in a circular orbit with radius R.
Since the 3rd and 4th elements of the measurement geometry vectors are zero, the
3rd and 4th rows of the transition matrices are not required. Thus, each row of H is
given simply by

hT (ti)(ti , t0) = −ρc(ti)

d2(ti)
sin θrel(ti)K

T
ρ (ti)

+
[

ρ2
d(ti) − ρc(ti)ρd(ti) cos θrel(ti )

d2(ti)

]
KT

θ (ti), i = 0, 1, 2, 3

(5.7)

Using this expression to populate the rows of H , Eq. 5.1 can be used to compute
the relative altitude (xrel) geometric dilution of precision (GDOP) as defined in [19].

GDOPxrel
= √

P11/σα =
√[

HT H
]−1
11 (5.8)

The relative altitude GDOP is not strictly in the radial direction, it will be referred to
as the radial GDOP.

The GDOP for the along-track arc-length (
�
y rel), radial-rate (ẋrel), and along-track

arc-length rate (
�̇
y rel) are similarly given by

GDOP�
y rel

= R × √
P22/σα = R ×

√[
HT H

]−1
22 (5.9)

GDOPẋrel
= √

P33/σα =
√[

HT H
]−1
33 (5.10)

GDOP�̇
y rel

= R × √
P44/σα = R ×

√[
HT H

]−1
44 (5.11)

Notice that the GDOP is based only on the geometry of the information vectors, i.e.,
the 4 measurement geometry vectors (rows) in Eq. 5.2. The measurement geome-
try vectors are easily computed using Eq. 5.7 when measurement time-interval, the
radius of the chief’s circular orbit, and the relative motion of the deputy with respect
to the chief are specified.

Results - Leader/Follower Orbits

First consider the case where the deputy is placed in the same 7000 km circular LEO
orbit as the chief. Using Eqs. 5.8–5.9, the expected position GDOP in the along-
track and radial directions are shown in Figs. 5 and 6 as a function of the relative
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Fig. 5 Leader-follower along-track GDOP as a function of measurement rate 	t and relative along-track
position of deputy for 7000 km circular orbit chief. The relative radial position of deputy is zero

angular displacement between the chief and the deputy and the time-interval between
measurements 	t . These results are based only on geometry of the problem and
represent the best case IROD performance given 4 angle measurements separated
by a time-interval 	t , i.e., there are no unmodeled dynamics, sensor misalignment,
sensor biases, etc., in the problem.

Figure 5 shows that the along-track errors are consistently reduced as the
deputy/chief separation is increased (the results for 	h = 0.01 km and 	h = 0.1
are off the scale of the plot). This is due to the additional curvature in the trajectory
as the deputy is moved further away from the chief. The figure also shows that the
along-track error is very dependent on the time increment between measurements	t .
The along-track error is seen to decrease as 	t is increased from zero and reaches
a minimum in the range of 2000s < 	t < 4000s, with the exception of a spike
in the performance when 	t is equal to one-half the orbital period (not seen in the
figure is another spike at one orbital period). Since the natural frequency of the lin-
earized dynamics is the orbit rate, this is equivalent to the problem of estimating the
amplitude of a harmonic oscillator by sampling it at intervals of nπ/2.

The data also shows, for example, that a camera with an accuracy of 1 mrad will
be useful only when the deputy/chief separations are on the order of 1000 km or
greater, since only then will the downrange errors be less than the separation. For
separations of 100 km or less, significantly more accuracy is required. Since these
are best-case results, the leader-follower IROD problem with only 4 measurements
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Fig. 6 Leader-follower radial GDOP as a function of measurement rate 	t and relative along-track
position of deputy for 7000 km circular orbit chief. The relative radial position of deputy is zero

will be difficult to solve when measurement accuracy is only on the order of 1 mrad.
From the standpoint of practicability, measurement accuracy on the order of 0.1 mrad
is possible, while to the author’s knowledge, accuracy better than 0.01 mrad is, at this
time, difficult to obtain.

Figure 6 shows that the radial errors are relatively independent of deputy/chief
separations (i..e most of the curves lie on top of each other), but are again dependent
on 	t . The radial error is seen to decrease as 	t is increased from zero and reaches
a minimum in the range of 2000s < 	t < 4000s, with a spike in the error when
time increment between measurements is equal to one-half the orbital period (another
spike occurs at one orbital period). The data also shows that a camera with 1 mrad
accuracy will be useful only when the deputy/chief separations are greater than 10
km, since only then will the radial errors be smaller than the range. For separations
less than 10 km, improved measurement accuracy will be required.

The GDOP results in Figs. 5–6 reflect how well the rows of H span the 4-
dimensional in-plane space. Using Eq. 5.7 it can be seen that when βi = n(ti −
t0) � 1 (i.e., small measurement time-intervals, 	t) the row vectors of H for the
leader-follower case are given by

hT (ti)(ti , t0) = −ρc

d2
sin θrelK

T
ρ (ti) + ρ2

c

d2 (1 − cos θrel)KT
θ (ti) (6.1)
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where θrel , d, and ρc = ρd are constants, and

Kρ(ti) ≈

⎡
⎢⎢⎣

1
0

βi/n

0

⎤
⎥⎥⎦ , Kθ (ti) ≈

⎡
⎢⎢⎣

0
1
0

βi/n

⎤
⎥⎥⎦ , βi = n(ti − t0), i = 0, 1, 2, 3

Denoting the coefficients of KT
ρ (ti) and KT

θ (ti) by cρ and cθ , the four rows of the H

matrix are

H ≈

⎡
⎢⎢⎣

cρ cθ 0 0
cρ cθ cρβ1/n cθβ1/n

cρ cθ cρβ2/n cθβ2/n

cρ cθ cρβ3/n cθβ3/n

⎤
⎥⎥⎦ (6.2)

In this case the rows ofH are linear dependent, row1 = β2row2−β1row3/(β2−β1),
and they do not span the 4-dimensional in-plane space. This accounts for the large
GDOP shown in Figs. 5–6 as 	t approaches zero.

When the measure time-interval is equal to one-half the orbital period, 	t = π/n

and βi = iπ, i = 0, 1, 2, 3, the rows of H are

H ≈

⎡
⎢⎢⎢⎣

cρ cθ 0 0

7cρ − 6πcθ

R
cθ − 4cθ

Rn

4cρR−3πcθ

n

cρ − 12πcθ

R
cθ 0 − 6πcθ

n

7cρ − 18πcθ

R
cθ − 4cθ

Rn

4cρR−9πcθ

n

⎤
⎥⎥⎥⎦ (6.3)

Although it is not as obvious as in the previous case, the rows of H are again linearly
dependent, row1 = row2 − row4 + row3, and they do not span the 4-dimensional
in-plane space. This accounts for the large GDOP “spikes” shown in Figs. 5 and 6
when 	t = π/n .

Lastly, if the sin(θrel) and cos(θrel) in Eq. 6.1 are expanded to second-order (θrel ≈
d/R < 0.1), the rows of H for arbitrary βi (and arbitrary fixed values of 	t) are
given approximately by

hT (ti)(ti , t0) ≈ − 1

d
KT

ρ (ti) + 1

2
KT

θ (ti) (6.4)

and H is given by

H ≈

⎡
⎢⎢⎢⎣

− 1
d

1
2 0 0

− 4−3 cosβ1
d

+ 3(sinβ1−β1)
R

1
2 − sinβ1

dn
+ cosβ1−1

Rn
− 2R(1−cosβ1)

dn
+ 3(4 sinβ1−3β1)

2n
− 4−3 cosβ2

d
+ 3(sinβ2−β2)

R
1
2 − sinβ2

dn
+ cosβ2−1

Rn
− 2R(1−cosβ2

dn
+ 3(4 sinβ−3β2)

2n
− 4−3 cosβ3

d
+ 3(sinβ3−β3)

R
1
2 − sinβ3

dn
+ cosβ3−1

Rn
− 2R(1−cosβ3)

dn
+ 3(4 sinβ3−3β3)

2n

⎤
⎥⎥⎥⎦

(6.5)

This H is generally non-singular (as verified by the results in the figures above and
below).
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However, as d approaches zero (for a fixed value of 	t), H reduces to the singular
matrix below

H ≈

⎡
⎢⎢⎢⎣

− 1
d

1
2 0 0

− 4−3 cosβ1
d

1
2 − sinβ1

dn
− 2R(1−cosβ1)

dn

− 4−3 cosβ2
d

1
2 − sinβ2

dn
− 2R(1−cosβ2)

dn

− 4−3 cosβ3
d

1
2 − sinβ3

dn
− 2R(1−cosβ3)

dn

⎤
⎥⎥⎥⎦ (6.6)

In this case it is easier to show that the columns of H (rather than the rows) are
linearly dependent, col2 = 3nd

4R col4 − d
2 col1, and thus the columns do not span the

4-dimensional in-plane space. This is an important result — for a given fixed value
of 	t the GDOP will increase as the inter-satellite separation, d = Rθrel,becomes
smaller. This accounts for the increase in the along-track GDOP shown in Fig. 5 as
the inter-satellite separation is reduced.

Results - Flyby Orbits

Next consider the case where the deputy travels from a position well ahead of a chief
that is in a 7000 km circular orbit to a position well behind the chief. Given the
initial conditions ρrel(t0) = 	h, ρ̇rel(t0) = 0, θrel(t0) = 3π	h/2R, and θ̇rel(t0) =
−3n	h/2R, Eqs. 2.34-2.35 show that the resulting relative motion is ρrel(t) = 	h

and θrel(t) = 3	h(π −nt)/2R, i.e., the deputy will pass directly over the chief after
1
2 orbital period, and final along-track position after one orbital period is θrel(tf ) =
−3π	h/2R. Substituting these expressions for the flyby relative motion into Eq. 3.2
provides the LOS time-history as shown in Eq. 4.6 for a particular flyby altitude 	h.

The expected position GDOP in the along-track and radial direction for this case
using Eqs. 5.8-5.9 is shown in Figs. 7 and 8 for several different flyby altitudes above
the chief. Once again, these results are based fundamentally on the geometry of the
problem and represent best case IROD performance given 4 angle measurements.

Figure 7 shows that the along-track errors are relatively independent of
deputy/chief separations and very dependent on	t . The errors are seen to decrease as
	t is increased from zero and reaches a minimum in the range of 3000s < 	5000s.
Curiously, there are 3 spikes in the along-track performance, none of which seem to
be a rational fraction of the orbital period. The best results occur at approximately
	t = 3500 sec and 	T = 4500 sec where the along-track errors are 6 km/mrad and
3 km/mrad, respectively.

Figure 8 shows that the radial errors are also relatively independent of deputy/chief
separations, and again very dependent on 	t . Similar to the along-track error, the
radial error decreases as 	t is increased from zero and reaches a minimum in the
range of 3000s < 	5000s. The 3 spikes observed in the along-track error results
are also found in the radial error results. The best results occur at approximately
	t = 3500 sec and 	T = 4500 sec where the radial errors are approximately 1
km/mrad.
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Fig. 7 Flyby orbit along-track GDOP as a function of measurement rate	t and the altitude of the deputy’s
flyby orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1

2 orbital periods

The initial conditions for the above flyby cases were modified such that the deputy
passes over the chief after 1 orbital period instead of 1

2 an orbital period. The expected
position GDOP in the along-track and radial direction are shown in Figs. 9 and 10 for
several different flyby altitudes above the chief. The best results are approximately
10 km/mrad in the along-track direction and 1 km/mrad in the radial direction for
	t > 3000 sec. While the results in the radial direction are similar to the previous
case, the GDOP in the along-track direction has increased to approximately 7-10
km/mrad. While this represents a decrease in absolute performance by a factor of 2,
the deputy in this case is 2 times further away from the chief . Hence, the percent
error is approximately unchanged.

The initial conditions for the above flyby cases were modified again such that
the deputy passes over the chief after 1 1

2 orbits. The expected position GDOP in the
along-track and radial directions are shown in Figs. 11 and 12 for several different
flyby altitudes above the chief. Although the best results at 	t = 2500 sec and
	t = 5000 sec are approximately the same as in the previous cases, a spike near
4000 sec has curiously reappeared.

In the previous section, an analytic examination of the rows of H for the leader-
follower orbit was used to validate many of the trends in the associated GDOP results.
Unfortunately, an analytic examination of the rows of H for the flyby orbit is not
possible due to the dynamics nature of the flyby orbit, i.e., θrel and d are functions
of time, and ρc 	= ρd .
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Fig. 8 Flyby orbit radial GDOP as a function of measurement rate 	t and the altitude of the deputy’s
flyby orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1

2 orbital periods
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Fig. 9 Flyby orbit along-track GDOP as a function of measurement rate	t and the altitude of the deputy’s
flyby orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1 orbital period
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Fig. 10 Flyby orbit radial GDOP as a function of measurement rate 	t and altitude of the deputy’s flyby
orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1 orbital period

Results - Summary

For leader-follower orbits, the along-track position determination performance
improves as the deputy/chief separation is increased. The along-track position estima-
tion performance is strongly dependent on the time-interval between measurements
and is optimum when the time-interval between measurements is somewhat less than
or greater than one-half orbital period. The radial position estimation performance
however is nearly independent of the deputy/chief separation, but is also strongly
dependent on the time-interval between measurements exhibiting the same properties
as in the along-track performance. In both cases, a singularity exists when the mea-
surement time-interval is a multiple of 1

2 the orbit period indicating that the initial
state is not observable when observations are taken at this rate.

For flyby orbits where the deputy passes directly over or under the chief, the per-
formance analysis results are markedly different. In all cases the along-track and
radial position estimation performance is nearly independent of the deputy/chief
initial separation and generally improves monotonically as the time between obser-
vations increases. There are also singularities at multiple measurement time-intervals
indicating that the initial state is not observable when observations are taken at these
rates. These singularities however have yet to be explained, but the results show that
they tend to be eliminated as the initial separations between the deputy and chief are
significantly increased.
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Fig. 11 Flyby orbit along-track GDOP as a function of measurement rate 	t and altitude of the deputy’s
flyby orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1 1

2 orbital periods

More importantly, the above results show that the IROD performance with only 4
measurements for flyby and leader-follower orbits is poor when, for example, cam-
era accuracy is on the order of 1 mrad. In general, higher camera accuracy will be
required to achieve realistic IROD performance. From the standpoint of practicabil-
ity, measurement accuracy on the order of 0.1 mrad is possible, while to the author’s
knowledge, accuracy better than 0.01 mrad is, at this time, difficult to obtain.

Although the effects of orbital perturbation such as J2, drag, and SRP have been
ignored in this analysis, these second-order effects will likely have a minimal effect
on the above results except perhaps where GDOP spikes occur, i.e., the second-order
perturbations may add a bit more observability to the problem.

Additionally, it must be remembered that if this analysis had been conducted
using the Cartesian coordinate formulation of the CWH equations, there would be
no results to present – the problem would be deemed unobservable and the GDOP
would have been infinity for all cases.

Finally, since all of the GDOP results are based on the geometry of the relative
deputy/chief positions at 4 measurements times, the above results for a 7000 km LEO
orbit can be scaled to obtain the results for any arbitrary circular chief orbit. For
example, the GDOP results for a 42,000 km GEO leader-follower and flyby orbits
can be obtained by scaling the LEO results by a factor of 42,000 km/7000 km = 6.
This can be seen in the GDOP equations in Eqs. 5.1–5.9.
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Fig. 12 Flyby orbit radial GDOP as a function of measurement rate 	t and altitude of the deputy’s flyby
orbit 	h for 7000 km circular orbit chief. Deputy passes over the chief after 1 1

2 orbital periods

Conclusions

While a rigorous observability proof for the angles-only relative orbit determination
problem in cylindrical coordinates has not been provided in this paper, the empiri-
cal evidence shows that the problem is observable when formulated with linearized
dynamics and nonlinear measurements in cylindrical coordinates. In contrast to the
Cartesian coordinates formulation, cylindrical coordinates preserve more information
about the curvature of the orbits. This is primarily due to the fact that the magnitude
of the relative downrange angular displacements are unrestricted in the linearized
equations of motion. The evidence provided indicates full-relative-state observability,
including the problem of relative range observability.

The preliminary IROD performance analysis presented in this paper shows that
IROD solutions are achievable for leader-follower and flyby orbits with only 4 mea-
surement (for the in-plane case). However, measurement accuracy on the order of 1
mrad will not yield very good performance. For example, if the measurement error is
equal to 1 mrad the expected best case relative orbit determination performance for
a chief in a 7000 km LEO orbit and a deputy in a nearby leader-follower or flyby
orbit is on the order of 1 km of position error in the radial direction and 4 km in the
along-track direction. The analysis also shows that performance is highly dependent
on the time-interval between measurements. For GEO orbits, performance is reduced
further by a factor of approximately RGEO/RLEO = 6. In general, camera accuracy
greater than 1 mrad will be required to achieve realistic IROD performance for LEO
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and GEO leader-follower and flyby orbits. However, this may be problematic since
while measurement accuracy on the order of 0.1 mrad is possible, to the author’s
knowledge, accuracy better than 0.01 mrad is, at this time, difficult to obtain.
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