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Abstract A symmetric flexible rotating spacecraft can be modeled as a distributed
parameter system of a rigid hub attached to two flexible appendages with tip masses.
First, Hamilton’s extended principle is utilized to establish a general treatment for
deriving the dynamics of multi-body dynamical systems to establish a hybrid sys-
tem of integro-partial differential equations that model the evolution of the system in
space and time. A Generalized State Space (GSS) system of equations is constructed
in the frequency domain to obtain analytic transfer functions for the rotating space-
craft. This model does not include spatial discretization. The frequency response of
the generally modeled spacecraft and a special case with no tip masses are presented.
Numerical results for the system frequency response obtained from the analytic
transfer functions are presented and compared against the classical assumed modes
numerical method with two choices of admissible functions. The truncation-error-
free analytic results are used to validate the numerical approximations and to agree
well with the classical widely used finite dimensional numerical solutions. Funda-
mentally, we show that the rigorous transfer function, without introduction of spatial
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discretization, can be directly used in control law design with a guarantee of Lya-
punov stable closed loop dynamics. The frequency response of the system is used in a
classical control problem where the Lyapunov stable controller is derived and tested
for gain selection. The correlation between the controller design in the frequency
domain utilizing the analytic transfer functions and the system response is analyzed
and verified. The derived analytic transfer functions provide a powerful tool to test
various control schemes in the frequency domain and a validation platform for exist-
ing numerical methods for distributed parameters models. The same platform has
been used to obtain the frequency response of more complex beam models following
Timoshenko beam theory and the control problem for such models can be pursued in
future works.

Keywords Flexible spacecraft · Rigid flexible coupling · Generalized state space ·
Analytic transfer functions · Lyapunov stability · Frequency domain control

Introduction

A maneuvering flexible spacecraft is often modeled as coupled rigid hub with
attached flexible beam-like sub-structures. A widely used, albeit simplified model
describing such systems is shown in Fig. 1 where a flexible rotating spacecraft is
modeled as two symmetric flexible appendages with identical tip masses attached to
a rotating rigid hub. Such models are described by coupled systems of Integro-Partial
Differential Equations (IPDEs), [15–19, 21, 22, 28]. Solution techniques presented
in these works are mainly numerical based on spatial discretization approaches that
apply the finite element method or the assumed modes technique. Numerical solu-
tions in general are approximate and the accuracy is a function of the number of
elements/modes chosen, which can impose high computational cost, and also intro-
duces truncation errors associated with the spatial discretization. Also in the case of
the assumed modes technique the number of accurate modes can be limited by the
numerical errors introduced by the matrix operation, [15, 28]. As a natural extension
for such techniques, the control problem is developed in several works with empha-
sis on optimality and/or robustness, [2–4, 12, 13, 15, 23–25, 28, 29]. The effect of
truncation errors and possible poor choice of basis functions on closed loop response
characteristics including stability are issues that are difficult to assess in general.

The control of a single axis rotating flexible spacecraft has been addressed exten-
sively in the late 80’s through the 90’s utilizing several controls and modeling
techniques. A simple quadratic cost function with the application of Euler-Lagrange

Fig. 1 Symmetric rotating spacecraft
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equations is first introduced to control a slewing spacecraft, [4]. Based on the
assumed modes solution open-loop and feedback control are developed to drive the
spacecraft to rest while mitigating the vibrations of the flexible modes. As the number
of modes is increased eigendecomposition is used to perform the matrix inversion.
An experiment is also introduced to verify the numerical results. The optimal con-
trol problem of a rotating hub with symmetric four flexible appendages is presented
as a numerical example with an admissible function that meets both physical and
geometrical boundary conditions. The effectiveness of the minimization is shown to
rely on the number of modes retained in the series of the chosen admissible func-
tion, [9]. Finite elements techniques and the assumed modes approach are both used
to solve similar problems, [15, 28]. The natural frequencies are calculated and the
two methods are compared in terms of accuracy and the required number of ele-
ments/modes. The optimal control problems for several other flexible structures are
similarly addressed for various control schemes and penalty functions including free
final time, free final angle and control rate penalty methods, [13]. Optimality con-
ditions for large angle maneuvers of a flexible spacecraft comprising a rigid hub
and four flexible appendages are derived and solved for, [25]. Moreover, a single
stage continuation method is introduced for the two-point boundary value problems
and kinematic nonlinearities, [24]. More recently, the adaptive control problem is
investigated for a rigid-hub flexible-appendage model, [20]. Analytic solution of the
integro-partial differential equation of motion is used with a control scheme that
is independent of the truncation error generated from the numerical series approxi-
mations. The reader is referred to a comprehensive literature survey that covers the
modeling and control of flexible appendages in the controls literature, [5]. Generally,
both the aerospace and the control communities have been content with the numerical
approximations following finite elements or assumed modes techniques for the past
decade. Building on previous developments, this work presents a new approach for
the dynamics and control of distributed parameters models by deriving the analytic
transfer functions to obtain the system truncation-error-free frequency response, [6,
8, 26, 27]. The existence of the exact transfer functions is then utilized in frequency
domain control for gains selection of a Lyapunov stable controller designed to drive
the system from its initial state to a target state while suppressing the vibrations of
the flexible appendages.

The paper is organized as follows; in “Dynamics of Multi-body Hybrid
Coordinate Systems” a general framework for the derivation of multi-body dynam-
ics is presented. Using that framework, the dynamical equations for the model in
Fig. 1 are derived. In “The Generalized State Space Model” the concept of the Gen-
eralized State Space (GSS) is presented with the steps to obtain its closed form
solution and the associated analytic transfer functions. Numerical results of the fre-
quency response for the general system in Fig. 1 and the no tip-mass special case
are presented in “Frequency Response Numerical Results” to validate two admissi-
ble assumed modes functions. In “The Control Problem” the control problem in the
frequency domain is presented. The derived analytic transfer functions are utilized
and numerical results are shown for the rigid and flexible coordinates responses.
Finally, a brief discussion of the presented results and possible future extensions are
discussed.
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Dynamics of Multi-body Hybrid Coordinate Systems

A hybrid system of coordinates is described by m generalized coordinates describing
the rigid body motion, denoted by qi = qi(t), i = 1, . . . , m and n elastic coordinates,
wj = wj(p, t), j = 1, . . . , n, describing the relative elastic motion of a spatial
position p, [15]. Hence, q = [q1, . . . , qm]T and w = [w1, . . . , wn]T constitute the
configuration vector for this system.

For a general multi-body system of n beam-like flexible bodies and one spatial
independent variable xi , the kinetic and potential energy are assumed to have the
general structure,

T = TD(q, q̇) +
n∑

i=1

∫ li

l0i

T̂i (arg) dxi + TB(argB) (1)

V = VD(q, q̇) +
n∑

i=1

∫ li

l0i

V̂i (arg) dxi + VB(argB) (2)

where, (∗)D denotes the energy of the rigid body, ˆ(∗) denotes the energy in the
elastic domain, (∗)B denotes the energy at the boundaries of the elastic domain,
arg = {

q(t), q̇(t),wi (t,pi ), ẇi (t,pi ),w
′
i (t,pi ),w

′′
i (t,pi )

}
, pi = pi (xi), argB ={

q(t), q̇(t),w(t, l), ẇ(t, l),w′(t, l), ẇ′(t, l)
}
, (∗̇) denotes the time derivative and (∗)′

denotes the spatial derivative.
The Lagrangian can then be expressed as,

L = T − V

= LD +
n∑

i=1

∫ li

l0i

L̂i dxi + LB (3)

where, arg, argB are dropped for brevity, LD ≡ TD − VD , L̂i = T̂i − V̂i , and LB =
TB − VB . The non-conservative virtual work can then be expressed as,

δWnc = QTδq +
n∑

i=1

{∫ li

l0i

f̂
T

i (xi)δwi dxi + fT
i δwi (li ) + gT

i δw
′
i (li )

}
(4)

where, Q is the non-conservative force associated with the rigid body coordinates
q, fi is the non-conservative force associated with the elastic coordinates with fi
and gi are the non-conservative force and torque, respectively, applied at the bound-
ary, xi = li . Hamilton’s extended principle, Eq. (5), is then applied to obtain the
set of coupled hybrid ordinary and partial differential equations and the associated
boundary conditions, Eq. (6) through Eq. (9)

∫ t2

t1

(δL + δWnc) = 0 δq = δwi = 0 at t = t1, t2 (5)

d

dt

(
∂L
∂q̇

)
− ∂L

∂q
= QT (6)

d

dt

(
∂L̂i

∂ẇi

)
− ∂L̂i

∂wi

+ ∂

∂xi

(
∂L̂i

∂w′
i

)
− ∂2

∂x2
i

(
∂L̂i

∂w′′
i

)
− ∂2

∂xi∂t

(
∂L̂i

∂ẇ′
i

)
= f̂

T

i (7)
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{
∂L̂i

∂w′
i

− ∂

∂xi

(
∂L̂i

∂w′′
i

)}
δwi

∣∣∣∣∣

li

l0i

+
{

∂LB

∂wi(li)
− d

dt

(
∂LB

∂ẇi(li)

)}
δwi(li)

+ fT
i δwi (li ) = 0 (8)

∂L̂i

∂w′′
i

δw′
i

∣∣∣∣∣

li

l0i

+
{

∂LB

∂w′
i (li )

− d

dt

(
∂LB

∂ẇ′
i (li )

)}
δw′

i (li ) + gT
i δw

′
i (li ) = 0 (9)

where, LB ≡ LB +
n∑

i=1

∫ li

l0i

L̂i dxi . Equation (6) through Eq. (9) are used to derive

the dynamics of the hybrid model presented in Fig. 1.
Considering the deformation and the coordinate system presented in Fig. 2, the

inertial position and velocity of a point on the i-th flexible appendage for the multi-
body system is given by,

pi = (xi + r) b̂1 + yi b̂2 (10)

vi = ẏi b̂2 + θ̇ b̂3 ×
[
(xi + r) b̂1 + yi b̂2

]
(11)

where, r is the rotating hub radius, L the length of the flexible appendage, x ∈
[0, L] the position on the flexible appendage and y the transverse deflection of the
flexible appendage. Neglecting the yθ̇ term in the velocity and assuming that the two
appendages have the same deflection profiles, y1(x, t) = y2(x, t), the kinetic and the
potential energy for the model in Fig. 1 can be expressed as,

T = Thub + 2Tappendage + 2Ttip

T = 1

2
Ihubθ̇

2 +
∫ L

0
ρ
(
ẏ + (x + r)θ̇

)2
dx (12)

+mtip
(
(r + L)θ̇ + ẏ(L)

)2 + Itip
(
θ̇ + ẏ′(L)

)2

V =
∫ L

0
EI

(
y′′)2 dx (13)

The Lagrangian can then be constructed as,

L = 1

2
Ihubθ̇

2 +
∫ L

0
ρ
(
ẏ + (x + r)θ̇

)2
dx −

∫ L

0
EI

(
y′′)2 dx

+mtip
(
(r + L)θ̇ + ẏ(L)

)2 + Itip
(
θ̇ + ẏ′(L)

)2
(14)

Fig. 2 Deformation & axis of flexible appendage



J of Astronaut Sci (2015) 62:168–195 173

where from Eq. (6) and Eq. (7) we have, LD = 1
2Ihubθ̇

2, L̂ = ρ
(
ẏ + (x + r)θ̇

)2 −
EI

(
y ′′)2, LB = mtip

(
(r + L)θ̇ + ẏ(L)

)2 + Itip
(
θ̇ + ẏ′(L)

)2
and LB = LB +∫ L

0 L̂ dx. The equations of motion and the boundary conditions are then derived from
Eq. (6) through Eq. (9) as,

Ihubθ̈ + 2
∫ L

0
ρ(x + r)

(
ÿ + (x + r)θ̈

)
dx

+ 2mtip(L + r)
(
(L + r)θ̈ + ÿ(L)

)+ 2Itip
(
θ̈ + ÿ′(L)

) = u (15)

ρ
(
ÿ + (x + r)θ̈

)+ EIyIV = 0

at x = 0 : y = 0, y′ = 0

at x = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip
(
(L + r)θ̈ + ÿ(L)

)
, (16)

EI
∂2y

∂x2

∣∣∣∣
L

= −Itip
(
θ̈ + ÿ′(L)

)

It is noted that by setting mtip = Itip = 0 a simpler no-tip-mass model dynamics
and boundary conditions are obtained as,

Ihubθ̈ + 2
∫ L

0
ρ(x + r)

(
ÿ + (x + r)θ̈

)
dx = u

ρ
(
ÿ + (x + r)θ̈

)+ EIyIV = 0 (17)

at x = 0 : y = 0, y′ = 0

at x = L : EI
∂3y

∂x3

∣∣∣∣
L

= 0, EI
∂2y

∂x2

∣∣∣∣
L

= 0 (18)

The Generalized State Space Model

A generalized state space (GSS) model is developed by taking the Laplace transform
of Eq. (15) such that,

s2J θ̄ + 2s2ρ

∫ L

0
(r + x)ȳ dx + 2s2mtip(r + L)ȳ(L) + 2s2Itipȳ

′(L) = ū

s2ρ
(
ȳ + (x + r)θ̄

)+ EIȳIV = 0 (19)

where J is the total inertia of the system given by,

J ≡ Ihub + 2mtip(r + L)2 + 2Itip + 2
∫ L

0
ρ(r + x)2 dx (20)
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θ̄ is the rigid rotation in the Laplace domain and ȳ is the flexible deformation in
the Laplace domain. Integration by parts is then utilized to decouple the deformation
parameter ȳ from the spatial variable x such that,

∫ L

0
(r + x)ȳ dx = (r + x)

∫ L

0
ȳ dx −

∫∫
ȳ dx dx ′ (21)

Plugging Eq. (21) into Eq. (19) yields the generalized integral equation,

s2J θ̄ + 2s2ρ

(
(x + r)

∫ L

0
ȳ dx −

∫∫
ȳ dx dx′

)
+ 2s2(r + L)ȳ(L) + 2s2Itipȳ

′(L) = ū

s2ρ

EI

(
ȳ + (x + r)θ̄

)+ ȳIV = 0 (22)

Similar to the equations of motion, the boundary conditions are expressed in the
Laplace/frequency domain as,

at x = 0 : ȳ = 0, ȳ′ = 0

at x = L : ȳ′′′ = s2mtip

EI

[
(r + L)θ̄ + ȳ(L)

]
, ȳ′′ = − s2Itip

EI

[
ȳ′(L) + θ̄

]
(23)

and a generalized state space system can be constructed as,

z1 = ∫∫
ȳ dx dx′ z′

1 = z2
z2 = ∫

ȳ dx z′
2 = z3

z3 = ȳ z′
3 = z4

z4 = ȳ′ z′
4 = z5

z5 = ȳ′′ z′
5 = z6

z6 = ȳ′′′ z′
6 = −β

(
z3 + (r + x)θ̄

)

where, β ≡ s2ρ

EI
(24)

In state space representation Eq. (24) can be simply expressed as,
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z′
1

z′
2

z′
3

z′
4

z′
5

z′
6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −β 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z1
z2
z3
z4
z5
z6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0

−β(r + x)θ̄

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(25)

or in the more compact form,

{
Z′} = A {Z} + {b} (26)

The state space is generalized in the sense that the states consist of a distributed
parameter variable, spatial partial derivatives, and first and second order integrals,
which mix solutions at points in the flexible body domain with global response
variables. The generalized state space model system of equations is solved by first
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developing the homogeneous and the forced solutions for the linear state space model
in Eq. (26),

{Z(x)} = exp[Ax] {Z(0)}︸ ︷︷ ︸
ZH

+
∫ x

0
exp [A(x − τ)] {b(τ)} dτ

︸ ︷︷ ︸
ZF

(27)

where the homogeneous solution ZH is given by,

{ZH } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − f )z5/β − (βx + f ′′′)z6/β
2

−f ′z5/β + (1 − f )z6/β

−f ′′z5/β − f ′z6/β

−f ′′′z5/β − f ′′z6/β

f z5 − f ′′′z6/β

f ′z5 + f z6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(28)

and the forced part is evaluated from,

{ZF } =
∫ x

0
exp [A(x − τ)] {b(τ)} dτ

= −βθ̄

∫ x

0
(r + τ)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
β(x − τ) + f ′′′(x − τ)

)
/β2

(1 − f (x − τ)) /β

−f ′(x − τ)/β

−f ′′(x − τ)/β

−f ′′′(x − τ)/β

f (x − τ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dτ (29)

The function f that represents the elements of the solution is derived from the matrix
exponential solution of the flexible appendage sub-problem, [6, 27], and is given by

f (x) = cos

(
β1/4x√

2

)
cosh

(
β1/4x√

2

)
(30)

Observing that the function f represents the real part of the complex function

f = Re {cos(σx)} , where,σ ≡
√

i
√

β (31)

the homogeneous solution in Eq. (28) follows,

{ZH } =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − cos(σx))z5/β + (βx + σ 3 sin(σx))z6/β
2

σ sin(σx)z5/β + (1 − cos(σx))z6/β

σ 2 cos(σx)z5/β + σ sin(σx)z6/β

−σ 3 sin(σx)z5/β + σ 2 cos(σx)z6/β

cos(σx)z5 − σ 3 sin(σx)z6/β

−σ sin(σx)z5 + cos(σx)z6

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(32)
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Similarly, the forced part of the solution, Eq. (29), is obtained as the six integrals

{ZF } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
6β

(−3βrx2 − βx3 + 6σ 2r cos(σx) + 6σ sin(σx) − 6σ 2r − 6σ 2x
)
θ̄

1
2σ 2

(−2σ 2rx − σ 2x2 + 2σr sin(σx) − 2 cos(σx) + 2
)
θ̄

1
σ

(σ r cos(σx) + sin(σx) − σr − σx) θ̄

(−σr sin(σx) + cos(σx) − 1) θ̄

−σ (σr cos(σx) + sin(σx) − σr − σx) θ̄

− 1
σ 2 (β (σr sin(σx) − cos(σx) + 1)) θ̄

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

I1(x)

I1(x)

I3(x)

I4(x)

I5(x)

I6(x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

θ̄ (33)

Equations (32) and (33) are combined to produce the full GSS solution as a function
of the GSS variables z5 and z6.

{Z(x)} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − cos(σx))z5/β + (βx + σ 3 sin(σx))z6/β
2 + I1(x)θ̄

σ sin(σx)z5/β + (1 − cos(σx))z6/β + I2(x)θ̄

σ 2 cos(σx)z5/β + σ sin(σx)z6/β + I3(x)θ̄

−σ 3 sin(σx)z5/β + σ 2 cos(σx)z6/β + I4(x)θ̄

cos(σx)z5 − σ 3 sin(σx)z6/β + I5(x)θ̄

−σ sin(σx)z5 + cos(σx)z6 + I6(x)θ̄

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(34)

The expressions obtained can then be expressed in the general compact form as,

{Z(x)} =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g1(x)

g2(x)

g3(x)

g4(x)

g5(x)

g6(x)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

θ̄ (35)

where, gi(x) are the elements of the vector in Eq. (34). The solution of the GSS
model in Eq. (34) is obviously invariant to many aspects of the modeling assump-
tions, and holds for all infinity of model parameters (e.g., EI, ρ, L, r), and clearly
admits a variety of boundary conditions. By applying the specific model bound-
ary conditions and solving for the unknown GSS variables, z5, z6, the solution is
complete in terms of the known system parameters. This makes the GSS solu-
tion capable of handling a wide range of distributed parameters problems as the
need to apply the model specific boundary conditions arises at the last step of the
solution.
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GSS Solution for the No-Tip-Mass Model

By setting the inertia and the tip mass to 0 and by applying the model depen-
dent boundary conditions, Eq. (36), for the no-tip-mass model, z5, z6 are completely
solved for as shown in Eq. (37)

at x = 0 : {Z} = [
0 0 0 0 z5 z6

]T

at x = L : z5(L) = 0, z6(L) = 0 (36)

{
z5

z6

}
= 1

σ 4 sin(σL)/β − cos(σL)2

[
cos(σL) σ 3 sin(σL)/β

σ sin(σL) cos(σL)

]{
I5(L)

I6(L)

}
θ̄ (37)

For the no-tip-mass model, from Eq. (17) the rotation angle of the rigid hub is
associated with the control torque by the transfer function,

s2 [J1 + 2ρ ((r + x)g2(x) − g1(x))] θ̄ = ū

θ̄ = ū

s2 [J1 + 2ρ ((r + x)g2(x) − g1(x))]
(38)

and from the GSS model, Eq. (24), the beam deformation is given by,

ȳ = g3(x)θ̄ = g3(x)

s2 [J1 + 2ρ ((r + x)g2(x) − g1(x))]
ū (39)

where, the total inertia J1 is given by,

J1 = Ihub + 2
∫ L

0
ρ(r + x)2 dx (40)

GSS Solution for the Tip-mass Model

For the general model with tip mass shown in Fig. 1, the boundary conditions are
expressed in terms of the GSS variables as,

at x = 0 : {Z} = [
0 0 0 0 z5 z6

]T

at x = L : z5(L) = −α
[
z4(L) + θ̄

]
, z6(L) = γ

[
z3(L) + (r + L)θ̄

]

where,α ≡ s2Itip

EI
and γ ≡ s2mtip

EI
(41)

where the unknown z5, z6 are obtained from,
{

z5
z6

}
= 1

σ 4 sin(σL)2/β − cos(σL)2

[ −α cos(σL) γ σ 3 sin(σL)/β

−ασ sin(σL) γ cos(σL)

]{
z4(L)

z3(L)

}

+
[

σ 3 (γ (r + L) − I6(L)) /β (−α − I5(L))

σ (−α − I5(L)) γ (r + L) − I6(L)

]{
sin(σL)

cos(σL)

}
θ̄ (42)

{
z4(L)

z3(L)

}
= 1

β

[−σ 3 sin(σL) σ 2 cos(σL)

σ 2 cos(σL) σ sin(σL)

]{
z5
z6

}
+
{
I4(L)

I3(L)

}
θ̄
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The beam deformation ȳ is represented as a function of the input torque ū as,

s2 [J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x) − g1(x))
]
θ̄ = ū

θ̄ = ū

s2
[
J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x) − g1(x))

]

ȳ = g3(x)

s2
[
J2 + 2mtip(r + L)g3(L) + 2Itipg4(L) + 2ρ ((r + x)g2(x) − g1(x))

] ū (43)

where the total inertia in that case, J2, is given by,

J2 = Ihub + 2mtip(r + L)2 + 2Itip + 2
∫ L

0
ρ(r + x)2dx (44)

The analytic transfer functions obtained in Eq. (38), Eq. (39) and Eq. (43) are utilized
to accurately obtain the frequency response of the hybrid system and in control of
the flexible modes when performing large angle maneuvers as presented in the next
sections.

Frequency Response Numerical Results

From Eq. (39) and Eq. (43), the transfer function of the no-tip-mass model, G1(s, x),
and the tip-mass model, G2(s, x), are expressed as,

G1(s, x) = g3(x)

s2 [J1 + 2ρ ((r + x)g2(x) − g1(x))]
(45)

G2(s, x) = g3(x)

s2
[
J2+2mtip(r + L)g3(L)+2Itipg4(L) + 2ρ ((r + x)g2(x) − g1(x))

]

The GSS transfer functions in Eq. (45) are used to validate the frequency response
obtained from the classical assumed modes solution, [15]. The method assumes a
decoupled spatial and time dependent beam response expressed by,

y(x, t) =
N∑

i=1

qi(t)φi(x) (46)

The spatial function φi(x) describes the i-th spatial “assumed mode” shape function
of the flexible structure and is designed to meet the physical and the geometrical
boundary conditions of the beam. A widely used admissible function that satisfies
the boundary conditions is,

φi(x) = 1 − cos(iπx)

L
+ 1

2
(−1)i+1

(
iπx

L

)2

where, 0 ≤ x ≤ L (47)

The admissible function in Eq. (47) is known to produce very accurate results and
has been adopted widely, [15, 24]. However, the GSS transfer function solution can
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be used to validate any assumed numerical approximation. For that purpose another
spatial spatial discretization is introduced as,

ψi(x) = 1 + 1

2
(−1)i+1

(
iπx

L

)2

(48)

Notice that the simple polynomial basis function of Eq. (48) satisfies the geometric
(left) boundary conditions at the rigid hub. Using Eq. (46) with Eq. (12) and Eq. (13)
and following the Lagrangian approach,

d

dt

(
∂T

∂ ẋ

)
− ∂T

∂x
+ ∂V

∂x
= F (49)

the system of equations of motion for the tip mass model is represented in the matrix
form, [

J2 MT
θq

Mθq Mqq

]
ẍ +

[
0 0
0 Kqq

]
x =

{
u

0

}
(50)

where the elements of the mass and the stiffness matrices are defined as,

J2 = Ihub + 2mtip(r + L)2 + 2Itip + 2
∫ L

0
ρ(r + x)2 dx

[
Mθq

]
i

= 2

[
ρ

∫ L

0
(r + x)φi(x) dx + mtip(r + L)φi(L) + Itipφ

′
i (L)

]

[
Kqq

]
ij

= 2
∫ L

0
φ′′

i (x)φ′′
j (x) dx (51)

where, for the function in Eq. (48), φ is simply replaced with ψ .
In order to obtain the no-tip-mass model equations, one can set mtip = Itip =

0 in Eq. (51) to obtain the mass and stiffness matrices elements for the model. A
comparison between the frequency response of the GSS analytic transfer functions
and the numerical assumed modes method, assuming 10 modes, is presented at the
beam mid-point at x = L/2 and at the beam tip at x = L. The set of parameters
values used in this comparison are extracted from a physical model and are shown
in Table 1, [15].

First, the spatial discretization presented in Eq. (48) is used and results are pre-
sented for the no-tip mass model at the beam mid-point and tip in Figs. 3 and 4,

Table 1 System parameters
values Parameter Value

Ihub 8 slug-ft2

ρ 0.0271875 slug/ft

E 0.1584 × 1010 lb/ft2

L 4 ft

r 1 ft

I 0.47095 × 10−7 ft4

m 0.1569 slug

Itip 0.0018 slug-ft2
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Fig. 3 Frequency response comparison no tip mass model at beam mid-point, x = L/2, using ψi(x)

Fig. 4 Frequency response comparison no tip mass model at beam tip, x = L, using ψi(x)
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respectively. Whereas, the tip mass model frequency response is shown for the same
two locations on the beam in Figs. 5 and 6.

For the admissible function in Eq. (47), the frequency reponse for the no-tip
mass model is shown in Figs. 7 and 8 at x = L/2 and x = L, respectively.
Similar results are obtained for the tip-mass model and are shown in Figs. 9
and 10.

It is shown that the numerical results obtained from the analytic transfer func-
tions can be used to validate existing numerical approximations. In the case of the
poor approximation in Eq. (48), the approximation clearly fails to capture the com-
plete frequency response of the system. Whereas, the more accurate approximation
in Eq. (47) is shown to agree more accurately with the GSS solution. It is also noted
that in Figs. 7 and 9 for the beam mid-point the truncation error is more observable
than at the beam tip in Figs. 8 and 10.

In the case of the function in Eq. (47), this assumed model has previously been
selected because it is known to match experimental results, so it is not a huge sur-
prise that the distributed parameter model, with zero truncation error, was in good
agreement with the known to be reasonably well converged discretized model. Dis-
cretization can be considered the core of numerical analyses in structural dynamics,
[1]. All finite elements software packages adopt a form of discretization as it offers
a computationally efficient, easy to implement and a generally less involved solu-
tion. More generally however, it is important to note that the distributed parameter
approach affords a rigorous means to address the issue of whether or not the discrete

Fig. 5 Frequency response comparison tip mass model at beam mid-point, x = L/2, using ψi(x)
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Fig. 6 Frequency response comparison tip mass model at beam tip, x = L, using ψi(x)

Fig. 7 Frequency response comparison no tip mass model at beam midpoint, x = L/2, using φi(x)
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Fig. 8 Frequency response comparison no tip mass model at beam tip, x = L, using φi(x)

Fig. 9 Frequency response comparison tip mass model at beam midpoint, x = L/2, using φi(x)
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Fig. 10 Frequency response comparison tip mass model at beam tip, x = L, using φi(x)

model has unacceptable truncation errors as in the case of the model in Eq. (48), and
to design controllers, as shown below, which are free of truncation errors.

The Control Problem

For the general hybrid system of equations in Eq. (7), a globally stabilizing control
law is developed, [14, 15]. A positive definite Lyapunov function based on the system
total energy is defined as,

U = T + V + af (eq) (52)

where, T is the kinetic energy as defined in Eq. (1), V is the potential energy in
Eq. (2), a > 0 is a constant coefficient, eq = q − qf is the error vector relative
to a constant final state qf and f (eq) > 0. By taking the time derivative of U and
substituting the dynamics, Eq. (6) and Eq. (7), and the boundary conditions, Eq. (8)
and Eq. (9), the following expression is obtained, [14, 15]

dU

dt
= q̇T

[
Q + a

∂f (eq)

∂eq

]
+

n∑

i=1

[∫ li

l0i

ẇT
i f̂i dxi + ẇT

i (li )fi + ẇ′
i (li )gi

]
(53)
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Lyapunov stability requires that dU
dt

< 0. Hence, a feedback control law can be
established as,

Q = −K1q̇ − a
∂f (eq)

∂eq

f̂i = −K2iẇi

fi = −K3iẇi (li )

gi = −K4iẇ′
i (li ) (54)

where K1, K2, K3 and K4 are positive definite gain matrices which will guarantee
that dU

dt
≤ 0. The control law in Eq. (54) is general and is not affected by any

spatial discretization which makes it essential to the present development that does
not include any spatial discretization or truncation errors.

Building on the analytical solution obtained for the more general tip mass model,
the control problem is analyzed. To gain some insight on the system behavior, the
unit step input Bode plots are generated at the midpoint of the appendage at x = L/2
for both the responses of the rigid body, θ̄ (jω), and the flexible appendage, ȳ(jω),
as shown in Figs. 11 and 12 respectively.

The resonant behavior of the system previously obtained from the GSS tranfer
function, Eq. (45), is clearly present in this analysis with the phase angle shift-
ing between +90◦ and −90◦ at those frequencies. For further insights, the assumed
modes method is used to generate the model time response for a unit step input for
θ(t), ˙θ(t), as shown in Figs. 13 and 14, and for y(x, t), ẏ(x, t), as shown in Figs. 15
and 16.

Fig. 11 Bode plot θ̄ at beam midpoint, x = L/2
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Fig. 12 Bode plot Ȳ at beam midpoint, x = L/2

A case study is constructed for the more general tip mass model applying a
Lyapunov stable controller, [12, 15]. First, Eq. (15) is rewritten as,

Ihubθ̈ = u + 2 (M0 − rS0)

− (M0 − rS0)=
∫ L

0
ρ(x + r)

(
ÿ+(x + r)θ̈

)
dx + mtip(L+r)

(
(L + r)θ̈ + ÿ(L)

)

ρ
(
ÿ + (x + r)θ̈

)+ EIyIV = 0 (55)

0 5 10 15
0

1

2

3

4

5

6

7

8

Fig. 13 Step input response θ(t)
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0 5 10 15
0

0.2

0.4

0.6

0.8

1

Fig. 14 Step input response θ̇ (t)

where, (M0, S0) represent the bending moment and shear force at the root of the
beam. The effect of the tip mass inertia is left out for simplification and can be con-
sidered as a disturbance error or as part of the model uncertainty the controller needs
to overcome. The set of boundary conditions in Eq. (16) can then be simplified as,

at x = 0 : y = 0, y′ = 0

at x = L : EI
∂3y

∂x3

∣∣∣∣
L

= mtip
(
(L + r)θ̈ + ÿ(L)

)
, EI

∂2y

∂x2

∣∣∣∣
L

= 0 (56)

0 5 10 15

−0.02

−0.015

−0.01

−0.005

0

Time (sec)

Fig. 15 Step input response at beam midpoint, y(x = L/2, t)
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Fig. 16 Step input response at beam midpoint, ẏ(x = L/2, t)

We are interested in large angle maneuvers with a target final state given by,
[
θ, θ̇ , y(x, t), ẏ(x, t)

]
Target = [

θf , 0, 0, 0
]

(57)

Following Lyapunov’s direct (second) method a weighted Lyapunov function is
given by,

2U = w1Ihubθ̇
2 + w2

(
θ − θf

)2

+ 2w3

[∫ L

0
ρ
(
ẏ + (x + r)θ̇

)2
dx + mtip

(
(r + L)θ̇ + ẏ(L)

)2 +
∫ L

0
EI

(
y′′)2 dx

]
(58)

where an extra term that includes a penalty for the current state versus the target
state,

(
θ − θf

)
is added to achieve the required maneuver. The Lyapunov function

in Eq. (58) is continuous and positive definite for all the system states. We seek
stability by differentiating the Lyapunov function, Eq. (58) w.r.t. time and substi-
tuting the dynamics, Eq. (55), and the boundary conditions, Eq. (56), U̇ can be
expressed as,

U̇ = w1uθ̇ + w2
(
θ − θf

)
θ̇

+2 (w3 − w1)

[∫ L

0
ρ(x + r)

(
ÿ + (x + r)θ̈

)
dx + mtip(L + r)

(
(L + r)θ̈ + ÿ(L)

)]
θ̇

= [
w1u + w2

(
θ − θf

)+ 2 (w3 − w1) (rS0 − M0)
]
θ̇ (59)

In order to ensure stability, U̇ should meet the condition U̇ ≤ 0 and the control
law is chosen as,

u = −1

w1

[
w2
(
θ − θf

)+ 2 (w3 − w1) (rS0 − M0) + w4θ̇
]

(60)
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By substituting Eq. (60) into Eq. (59), the negative semi-definite expression,
U̇ = −w4θ̇

2 ≤ 0 is obtained which according to Lyapunov’s direct method ensures
stability. Even though U̇ = −w4θ̇

2 is only negative semi-definite, we can substi-
tute the control law of Eq. (59) into Eq. (55) and confirm that the only equilibrium
state for which the acceleration state variables

{
θ̈ , ÿ(x, t), ÿ(L, t)

}
is the desired

fixed point,
{
θ = θf , θ̇ = 0, y(x, t) = 0, ẏ(x, t) = 0

}
. In order to simplify the gain

choices associated with the control law, Eq. (60) can be re-written as,

u = − [k1
(
θ − θf

)+ k2 (rS0 − M0) + k3θ̇
]

(61)

where, k1 ≡ w2
w1

, k2 ≡ 2(w3−w1)
w1

and k3 ≡ w4
w1

. By substituting Eq. (61) into Eq. (59),
we obtain k1 ≥ 0, k2 > −2 and k3 ≥ 0 for stability. It should be noted that the
shear and bending moment at the root of the beam can be measured by strain gauges.
The sign and value of k2 will determine whether the beam vibration energy, w3 >

w1, or the hub motion energy, w1 > w3 is dissipated. To investigate the frequency
domain response applying the control law, the Laplace transformation of Eq. (61) is
expressed as,

ū = −k1

(
θ̄ − θf

s

)

−k2s
2
(

ρ

∫ L

0
(x + r)

(
ȳ + (x + r)θ̄

)
dx + mtip(L + r)

(
(L + r)θ̄ + ȳ(L)

))

−k3sθ̄ (62)

Fig. 17 Bode plot Θ̄ with unit gains
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Fig. 18 Bode plot Ȳ with unit gains

Utilizing integration by parts the transformed control law is expressed in terms of
the GSS state variables as,

ū =
[
−k1 − k2ρs2

∫ L

0
(r + x)2 dx − k2mtips

2(L + r)2 − k3s

]
θ̄

+k1
θf

s
− k2ρs2 ((x + r)g2(x) − g1(x)) − k2mtips

2(L + r)g3(L) (63)

Fig. 19 Bode plot Θ̄ with designed gains
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Fig. 20 Bode plot Ȳ with designed gains

Substituting Eq. (63) into the transfer function, Eq. (43), and collecting variables
produced the transfer function for the hub angle θ̄ as,

θ̄ =
[
k1

θf

s
− k2ρs2 ((x + r)g2(x) − g1(x)) − k2mtips

2(L + r)g3(L)

]
/

s2
[
k1

s2
+ k2ρ

∫ L

0
(r + x)2 dx + k2mtip(L + r)2 + k3

s
+ J2

+mtip(r + L)g3(L) + Itipg4(L) + ρ ((r + x)g2(x) − g1(x))

]
(64)
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Fig. 21 Response θ(t) with designed gains



192 J of Astronaut Sci (2015) 62:168–195

0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

Fig. 22 Response θ̇ (t) with designed gains

The deformation transfer function can then be expressed in terms of θ̄ as,

ȳ = g3(x)θ̄ (65)

After some trial and error the controller gains are adjusted to obtain a highly stable
response. To illustrate the effect of gain changes on the system frequency response
the gains are first set to k1 = 1, k2 = 1, k3 = 1. Figures 17 and 18 show the
amplitude and phase plots associated with the two transfer functions, Eq. (64) and
Eq. (65), respectively, for unit gains. More generally, we can adapt a parameter
optimization approach for optimizing the gains over the stable set defined by the con-
straints: k1 > 0, k3 > 0, k2 > −2 and selecting some specific performance metric for
optimization. Such an approach constitutes a ”Lyapunov optimal control method”.
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Fig. 23 Response y(x = L/2, t) with designed gains
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Fig. 24 Response ẏ(x = L/2, t) with designed gains

Clearly, the frequency response highlights potential resonant response with order
of magnitude gain amplifications and a −180◦ phase angle. The gains are then
adjusted to k1 = 12, k2 = 0, k3 = 16. The amplitude and phase plots associated with
the new set of gains are shown in Figs. 19 and 20.

With the reduced amplitude amplification, the chosen set of parameters can be
suitable for a controller to drive the rigid hub to its target final angle while mitigating
the vibrations effect of the flexible appendages. The time response plots for the sys-
tem are shown for θ(t), θ̇ (t), in Figs. 21 and 22, and for y(x = L/2, t), ẏ(x = L/2, t)

in Figs. 23 and 24.
The results show achieving the target state for θ and θ̇ while reducing the vibra-

tions in, y(x, t) and ẏ(x, t), It has to be noted that no controls are applied to the
flexible appendage and the control torque is solely driving the hub while achiev-
ing acceptable results on the vibrations control. Several works discussed techniques
of controlling the flexible structure by applying controls to the flexible appendages
[10, 11].

Discussion & Conclusion

The generalized state space approach provides analytic transfer functions for the sys-
tem frequency response for both the tip-mass and the no-tip-mass models, without
introducing spatial discretization. The fact that nontrivial problems can be solved
by these methods, using distributed parameter models, does not appear to be widely
appreciated. These special case models and control design methods serve impor-
tant roles in evaluating the applicability and validity of the approximations implicit
in more generally applicable spatial discretization methods. Several other boundary
conditions and constituitive assumptions can be applied and the analogous steps to
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those presented here can be followed in order to obtain the analytical distributed
parameter solution. By utilizing the full transfer function solution provided by the
GSS approach any control problem design in the frequency domain can be addressed.
A case study is constructed for the gain selection of a Lyapunov stable control law.
By looking at the frequency response and changing the gains an acceptable perfor-
mance was achieved driving the structure from a stationary initial state to a target
state while suppressing the beam vibrations. The GSS approach can be considered
a platform through which distributed parameters models can be addressed. Recently,
the more complex model following the Timoshenko beam theory is addressed with
possible extensions to a variety of boundary conditions and control problems [7].

The presented control problem has potential for several extensions. Optimization
was not considered in this work whereas several techniques exists for optimization
in the frequency domain based on Parseval’s theorem. The GSS solution provides a
general framework for any control scheme in the frequency domain. This is shown
to be a very powerful tool. When it is possible to use discretization and truncation-
free distributed parameter model transfer function solutions provided by the GSS
approach, any control problem design in the frequency domain can be addressed
rigorously.
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