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Abstract For on-orbit applications where two or more spacecraft are flying in close
proximity, it is often convenient to apply the Clohessy-Wiltshire differential relative
motion equations in order to calculate the relative motion of a deputy spacecraft about
a chief spacecraft that is assumed to be in a circular orbit. Under these assumptions,
the solutions to the Clohessy-Wiltshire equations can be re-parameterized as a set of
relative orbital elements that fully characterize the relative motion of the deputy about
the chief. In contrast to the Cartesian relative position and velocity states, relative
orbital elements provide a clear geometric interpretation of the relative motion and
yield an intuitive understanding of how the unforced relative motion will evolve with
time. In this paper, the derivation of relative orbital elements is given, and the trans-
formation between relative orbital elements and Cartesian state elements expressed in
the local-vertical, local-horizontal frame is provided. The evolution of relative orbital
elements with time is evaluated, and characteristics of the unforced motion in terms
of relative orbital elements are described.
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Nomenclature

ar = semimajor axis of the instantaneous relative ellipse
aTx = radial component of acceleration resulting from external forces
aTy = along-track component of acceleration resulting from external forces
aTz = cross-track component of acceleration resulting from external forces
Ax = amplitude of the motion in the LVLH radial direction
Ay = amplitude of the motion in the LVLH along-track direction
Az = amplitude of the motion in the LVLH cross-track direction
Er = relative eccentric anomaly
ir = relative inclination
n = mean motion of the chief’s orbit

n̄r = vector normal to the instantaneous relative orbit
n̂r = unit vector normal to the instantaneous relative orbit
r = magnitude of deputy position vector with respect to center of central body
r̄ = deputy position vector with respect to center of central body

r̄C = chief position vector with respect to center of central body
r̄1 = position vector from the instantaneous center of motion to the point where

Er = 0
r̄2 = position vector from the instantaneous center of motion to the point where

Er = π/2
t = time
x = relative position vector component in LVLH radial direction
ẋ = derivative with respect to time of relative position vector component in

LVLH radial direction, taken in LVLH frame
ẍ = second derivative with respect to time of relative position vector component

in LVLH radial direction, taken in LVLH frame
x̂ = LVLH coordinate unit vector in radial direction

xr = radial coordinate of instantaneous center of motion
xq = radial coordinate of point Q on circle that circumscribes instantaneous

relative orbit ellipse
y = relative position vector component in LVLH along-track direction
ẏ = derivative with respect to time of relative position vector component in

LVLH along-track direction, taken in LVLH frame
ÿ = second derivative with respect to time of relative position vector component

in LVLH along-track direction, taken in LVLH frame
ŷ = LVLH coordinate unit vector in along-track direction

yr = along-track coordinate of instantaneous center of motion
yq = along-track coordinate of point Q on circle that circumscribes instantaneous

relative orbit ellipse
ys = secular drift in LVLH along-track direction
ẏs = secular drift rate in LVLH along-track direction
z = relative position vector component in LVLH cross-track direction
ż = derivative with respect to time of relative position vector component in

LVLH cross-track direction, taken in LVLH frame
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z̈ = second derivative with respect to time of relative position vector component
in LVLH cross-track direction, taken in LVLH frame

ẑ = LVLH coordinate unit vector in cross-track direction
γ = phase difference between relative eccentric anomaly and cross-track motion

phase angle
μ = gravitational parameter of central body
νr = relative true anomaly
ρ̄ = deputy relative position vector with respect to chief

ρ̄
IC = position vector from LVLH origin to instantaneous center of relative motion
ρ̄1 = position vector from LVLH origin to location on relative orbit whereEr = 0
ρ̄2 = position vector from LVLH origin to location on relative orbit where Er =

π/2
ψ = cross-track motion phase angle
0 = subscript indicating initial condition

Introduction

The close proximity flight of two or more spacecraft in orbit has been increasingly
utilized in order to achieve mission objectives spanning on-orbit inspection [1], for-
mation flight [2, 3], space station resupply [4], and satellite servicing [5, 6], for
commercial and defense applications. The increasing prevalence of nano- and micro-
spacecraft and emerging architectures including fractionated spacecraft have added
to the priority of robust close proximity trajectory design and control [7, 8]. While
the mission objectives related to close proximity operations are diverse, there exists
a set of relative trajectory control behaviors that are common to most close prox-
imity mission architectures, including rendezvous and station-keeping. Cooperative
formation missions often must satisfy a stringent requirement on the relative spacing
of the satellites in the cluster. For on-orbit inspection applications, circumnavigation
of the targeted space object may be desired. For satellite servicing or resupply mis-
sions, close approach and mating must occur. Underlying all of these behaviors is
the requirement to maintain safe relative trajectories, where collision avoidance is
assured [10–13].

For the above applications, the relative motion between spacecraft is of interest.
Analytical models for relative motion appeared as early as 1878 [14], while in more
recent history, the past five decades have seen a wealth of literature on the sub-
ject. Two of the most widely accepted models developed during that era are that of
Tschauner and Hempel [15] and that of Clohessy and Wiltshire [16]. Both models
linearize the motion of a “deputy” spacecraft about a “chief” spacecraft, with the
latter model assuming a circular chief orbit.

In addition to possessing an analytical model, a clear understanding of the phys-
ical motion between close proximity spacecraft on orbit is critical to the design of
safe, robust mission plans [17]. Previous works have identified constants of the rel-
ative motion. Schaub and Junkins [18] and Vallado [19] defined scalar offsets in the
orbit radial and along-track directions, representing the instantaneous center of the
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motion in the plane of the chief’s inertial orbit. Vallado described the amplitude of the
oscillatory motion in the chief’s orbital plane, and he defined a constant that is con-
sistent with the amplitude of the motion in the cross-track direction. Kaplan defined a
relative eccentricity parameter of the chase orbit [20]. Gustafson and Kriegsman uti-
lized dynamics of the relative motion to develop parametric equations for automated
station-keeping in Earth orbit [21].

Previous works have defined and utilized geometric parameterizations of relative
motion. One such common formulation is to represent the differences in classical
orbital elements between the deputy and chief as the relative states [18, 22]. A rel-
ative parameter set that has seen extensive mission application is that developed
by D’Amico and Montenbruck [23]. These particular parameters consist of either
orbital element differences between the deputy and chief, or nonlinear combinations
thereof. Ref. [24] showed that these parameters match the integration constants of
the Clohessy-Wiltshire equations. This parameter set has been applied to several
close-proximity missions, most notably PRISMA [25, 26]. Han and Yin [27] put for-
ward a set of geometric relative coordinates very similar to those of Ref. [14], and
demonstrate their use for elliptical chief relative motion.

This investigation advances the development of a parameterization called rela-
tive orbital elements (ROEs) for close proximity mission planning. ROEs represent
a direct re-parameterization of the solutions to the Clohessy-Wiltshire equations.
Lovell, Tragesser and Tollefson initially formulated ROEs in 2004 [28, 29], defin-
ing six elements that fully characterize the Clohessy-Wiltshire relative motion, and
establishing the transformation between ROEs and Cartesian coordinates in the local
vertical-local horizontal (LVLH) coordinate frame. They also showed the effect of
one or more instantaneous maneuvers on ROEs, and developed a multiple-impulse
guidance methodology for relative trajectory control. These advancements provide a
useful framework for relative orbit mission planning. Analogous to classical orbital
elements, ROEs provide a geometric interpretation of the relative motion of a deputy
spacecraft with respect to a chief spacecraft that is in a circular orbit. ROEs allow
the characterization of the deputy spacecraft relative motion in an unforced (free-
motion) trajectory, and provide a direct visualization of the effects of maneuvers on
the relative motion geometry.

Since the introduction of ROEs in 2004, the formulation has been used for the
development of several analytical guidance strategies. Bevilacqua and Lovell [30]
developed relative motion guidance solutions applying continuous, on-off thrust, and
utilizing ROEs as a geometrical representation of the dynamics. Phillips [31] utilized
ROEs for determination of satellite collision probability. Aubin [32] employed ROEs
to generate solution vectors for a particle swarm evolutionary algorithm. Schwartz
et al [33, 34] developed an ROE-based controller for station-keeping of a cluster of
spacecraft as part of the DARPA System F6 flight program. The Prox-1 small satel-
lite mission will apply impulsive control strategies based upon ROEs to implement
formation flight and circumnavigation maneuvers [35].

This article formally documents the derivation of the ROE parameterization.
Through this work, a geometric interpretation of the angular ROEs is provided, lead-
ing to a strong analogy between ROEs and classical orbital elements. Additional
parameters related to ROEs are described, including the newly defined parameters
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relative true anomaly and relative inclination. It should be noted that other geometric
formulations for relative motion exist in the literature (e.g., Ref. [23]), but the formu-
lation presented herein is beneficial in terms of the visualization of the motion and
relative orbit design for mission planning.

This article provides a detailed description of the ROE formulation. “Definition
of Relative Orbital Elements” provides an overview of the derivation of ROEs, and
describes the geometric interpretation of each element. The transformation between
ROEs and the Cartesian states in the LVLH coordinate frame is developed, and the
evolution of ROEs with time is evaluated. “Characteristics of the Unforced Motion”
describes the three primary modes of the motion, determined based upon the values
of the ROEs. Concluding remarks are given in “Conclusions”.

Definition of Relative Orbital Elements

In order to describe the ROE formulation, it is assumed that both the chief and deputy
spacecraft travel in two-body motion about the central body, with the chief con-
strained to be on a circular orbit. The central body, chief, and deputy are treated as
point masses, and all perturbations are neglected. It is further assumed that the dis-
tance from the chief to the deputy is small relative to the chief’s orbit radius. The
Clohessy-Wiltshire equations may be expressed in terms of LVLH coordinates. The
LVLH frame is defined in Fig. 1. The origin for the LVLH coordinate system is at the
chief location. The x̂-axis is in the radial direction, the ẑ-axis is in the chief’s angular

Fig. 1 Coordinate system
definition for LVLH frame
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momentum (cross-track) direction, and the ŷ-axis is obtained by ẑ× x̂. Note that for a
circular chief orbit, the ŷ-axis is in the chief’s along-track direction, i.e., aligned with
its instantaneous velocity vector. In Fig. 1, the radius vector from the central body to
the chief is denoted by r̄C , the radius to the deputy is denoted by r̄, and the relative
position vector from the chief to the deputy is denoted by ρ̄.

The Clohessy-Wiltshire equations of motion for the deputy spacecraft relative to
the chief are shown in Eqs. 1–3, where n represents the mean motion of the chief
spacecraft, and aT x , aTy and aT z are the components of acceleration resulting from
external forces acting upon the deputy:

ẍ − 2nẏ − 3n2x = aTx (1)

ÿ + 2nẋ = aTx (2)

z̈ + n2z = aTz (3)

For unforced motion, where no thrust is applied to the deputy spacecraft, the
Clohessy-Wiltshire equations reduce to Eqs. 4–6:

ẍ − 2nẏ − 3n2x = 0 (4)

ÿ + 2nẋ = 0 (5)

z̈ + n2z = 0 (6)

A detailed derivation of the solutions to the Clohessy-Wiltshire equations using
Laplace transforms is given in Ref. [19]. If the initial conditions for the LVLH Carte-
sian state are denoted by the subscript 0, then the position and velocity solutions to
the Clohessy-Wiltshire equations are given by Eqs. 7–12:

x(t) =
(
4x0 + 2ẏ0

n

)
−
(
3x0 + 2ẏ0

n

)
cos [n (t − t0)] + ẋ0

n
sin [n(t − t0)] (7)

y(t) = y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0) + 2ẋ0
n

cos [n (t − t0)]

+
(
6x0 + 4ẏ0

n

)
sin [n (t − t0)] (8)

z(t) = z0 cos [n (t − t0)] + ż0

n
sin [n (t − t0)] (9)

ẋ(t) = (3nx0 + 2ẏ0) sin [n (t − t0)] + ẋ0 cos [n (t − t0)] (10)

ẏ(t) = − (6nx0 + 3ẏ0) − 2ẋ0 sin [n (t − t0)]+(6nx0 + 4ẏ0) cos [n (t − t0)](11)

ż(t) = −nz0 sin [n (t − t0)] + ż0 cos [n (t − t0)] (12)

Derivation of Relative Orbital Elements

Similar to classical orbital elements that convey the orbit geometry of a single space
object in orbit about a central body in an inertially-fixed reference frame, ROEs pro-
vide a geometric interpretation of the relative orbit between two objects expressed
in the LVLH frame. The six ROE parameters fully define the relative orbital state
of the deputy with respect to the chief. The ROEs are derived from the solution to
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the Clohessy-Wiltshire equations. Application of the Harmonic Addition Theorem to
Eqs. 7–9 results in the equations:

x(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4x0 + 2ẏ0
n

+ 1
2 sgn

[
−
(
3x0 + 2ẏ0

n

)] [(
6x0 + 4ẏ0

n

)2 +
(
2ẋ0
n

)2]1/2

cos

[
n(t − t0) + tan−1

(
ẋ0/n

3x0+ 2ẏ0
n

)]
, 3x0 + 2ẏ0

n
�= 0

4x0 + 2ẏ0
n

+ ẋ0
n
sin [n(t − t0)] , 3x0 + 2ẏ0

n
= 0

(13)

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0) + sgn
(
2ẋ0
n

)
cos [n (t − t0)] + tan1

(
− 6ẋ0+4ẏ0/n

2ẋ0/n

)
, ẋ0 �= 0

y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0)+
(
6ẋ0 + 4ẏ0

n

)
sin [n (t − t0)] , ẋ0 = 0

(14)

z(t) =
⎧⎨
⎩
sgn(z0)

[
z20 +

(
ż0
n

)2]1/2
cos
[
n (t − t0) + tan−1

(
− ż0/n

z0

)]
, z0 �= 0

ż0
n
sin [n (t − t0)] , z0 = 0

(15)

Through introduction of the atan2 function, it can be shown that Eqs. 13–15 may be
expressed as:

x(t) = 4x0 + 2ẏ0
n

− 1

2

√(
6x0 + 4ẏ0

n

)2

+
(
2ẋ0
n

)2

× cos

[
n (t − t0) + atan2

(
2ẋ0
n

, 6x0 + 4ẏ0
n

)]
(16)

y(t)=y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0)

+
√(

6x0+ 4ẏ0
n

)2

+
(
2ẋ0
n

)
sin

[
(t − t0) + atan2

(
2ẋ0
n

, 6x0 + 4ẏ0
n

)]
(17)

z(t) =
√

z20 +
(

ż0

n

)2
sin

[
n(t − t0) + atan2

(
z0,

ż0

n

)]
(18)

In Eqs. 16–18, the atan2(a, b) function is related to the arctangent function tan−1
(

a
b

)
,

where −π < atan2(a, b) ≤ π based upon which quadrant contains the two argu-
ments a and b. The atan2 function eliminates the need for the sgn function, as well
as the need to account for two different cases that appear in each of Eqs. 13–15. Note
that for each equation, if both arguments of the atan2(a, b) function are equal to zero,
the coefficient of the sinusoid also equates to zero, resulting in a zero value for the
periodic term.

The expressions for the deputy spacecraft position in the orbital plane of the
chief spacecraft, (16–17), each have periodic terms and constant terms. The along-
track expression (17) also has a term that varies linearly with time, resulting in a
secular drift motion. The first two ROEs describe the deputy spacecraft’s instanta-
neous center of motion relative to the chief, encompassing the constant and linear
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time-varying terms. Expressed in terms of the LVLH Cartesian state initial condi-
tions, the instantaneous center of motion ROEs are defined as:

xr = 4x0 + 2ẏ0
n

(19)

yr = y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0) (20)

Equations 19–20 indicate how the instantaneous center of the relative motion moves
with time.

From Eq. 17, the amplitude of the sinusoidal motion in the along-track direction
is given by:

Ay =
√√√√(6x0 + 4ẏ0

n

)0

+
(
2ẋ0
n

2
)

(21)

From Eq. 16, the amplitude of the sinusoidal motion in the radial direction is:

Ax = 1

2

√(
6x0 + 4ẏ0

n

)2

+
(
2ẏ0
n

)2

(22)

Note that the amplitude of the sinusoidal motion in the radial direction is half of that
in the along-track direction. Thus, the motion in the x̂ − ŷ plane is always along an
“instantaneous ellipse” with the major axis in the along-track direction and with a
length that is twice that of the minor axis in the radial direction. Therefore, a sin-
gle parameter can specify the shape of the instantaneous ellipse in the x̂ − ŷ plane.
This parameter, ar , is the ROE representing the semimajor axis of the instantaneous
relative orbit ellipse, equal to the along-track amplitude of the sinusoidal motion, Ay :

ar =
√(

6x0 + 4ẏ0
n

)2

+
(
2ẋ0
n

)2

(23)

The fourth ROE parameterizes the angular position of the chaser spacecraft as it
moves along the instantaneous relative orbit ellipse in the x̂−ŷ plane. For reasons that
are explained below (and shown graphically in Fig. 2) this ROE is termed the relative
eccentric anomaly, Er . It represents the argument of the sine and cosine functions in
Eqs. 16 and 17, and can be written:

Er = Er0 + n (t − t0) (24)

where

Er0 = atan2

(
2ẋ0
n

, 6x0 + 4ẏ0
n

)
(25)

A geometric interpretation of the first four ROE’s is shown on an instantaneous
relative motion ellipse in Fig. 2. The semimajor axis of the ellipse is given by ar . The
instantaneous center of the ellipse is given by xr and yr , and the deputy’s periapsis is
annotated as point P. The instantaneous deputy position along the ellipse is annotated
as point D, with coordinates (x, y). A circle of radius ar is circumscribed about the
ellipse, and a dashed line, perpendicular to the major axis, is extended through point
D, intersecting with the circumscribed circle at point Q. Relative eccentric anomaly,
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Fig. 2 Relative orbit geometry in the LVLH x̂ − ŷ plane

Er , measures the angle centered on (xr , yr), between the periapsis point P and point
Q. Relative eccentric anomaly increases from zero at periapsis with motion in the
counter-clockwise direction.

The fifth ROE, Az, is defined as the amplitude of the sinusoidal motion in the
cross-track direction. The cross-track component of the relative motion is a simple
harmonic oscillator that is independent of the x̂ − ŷ motion under the Clohessy-
Wiltshire assumptions. From Eq. 18, the amplitude of the cross-track motion is:

Az =
√

z20 +
(

ż0

n

)2

(26)

The sixth ROE, ψ , is defined as the phase angle in the cross-track harmonic
motion, representing the argument of the sine function in Eq. 18:

ψ = ψ0 + n(t − t0) (27)

where

ψ0 = atan2

(
z0,

ż0

n

)
(28)

A geometric interpretation of Az and ψ is shown in Fig. 3, where the three-
dimensional relative motion is projected onto the x̂ − ẑ plane. The deputy position
along the relative motion ellipse is annotated as initial condition D0 at time t0 and
as point D at time t . A circle of radius Az is drawn, with the center of the circle
coincident with the center of the ellipse at point C. A dashed line, perpendicular to
the ẑ-axis, is extended through point D0, intersecting with the circumscribed circle
at point F0. Point G0 is shown where a line parallel to the ẑ-axis through point F0
intersects the x̂-axis. The angle ψ then represents the angle, centered on point C with
coordinates (xr , yr , 0), between the −x̂-axis and the segment CF on the circle. The
deputy’s relative motion intersects the chief’s orbit plane at ψ = 0 and ψ = π .
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Fig. 3 Cross-track motion phase angle geometry, projected onto the x̂ − ẑ plane

These points are referred to as the relative ascending and descending nodes, respec-
tively [28, 29]. The relative ascending node is the point where the deputy spacecraft
passes through z = 0 with ż > 0; the direction of the deputy’s motion is indi-
cated by an arrow in Fig. 3. At t = t0, the cross-track motion phase angle is ψ0. As
the deputy progresses in its relative motion about the chief, the cross-track motion
phase angle changes according to Eq. 27 as point F progresses at a constant rate
(equal to the chief’s mean motion) about the circle. At the point in the ellipse where
z = Az, ψ = π

2 . The relative descending node occurs at ψ = π , and z = −Az at
ψ = −π

2 .
Expressions for ROEs in terms of the time-varying Cartesian state elements may

be found as follows. Equation 19 may be combined with Eqs. 7 and 11 to show that:

xr = 4x + 2ẏ

n
(29)

(For Cartesian state elements without the subscript 0, time dependence is implied.)
Likewise, Eq. 20 may be combined with Eqs. 8 and 10 to give:

yr = y − 2ẋ

n
(30)
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For unforced motion, the time derivative of xr may be taken using Eq. 29, and by
substituting for the ÿ acceleration term using Eq. 5, ẋr , is shown to be equal to zero.
Therefore, xr is invariant with time. However, taking the time derivative of yr in
Eq. 30 and substituting for the ẍ acceleration term using Eq. 4 shows that yr has a
secular drift that varies linearly with time.

Equation 23 may be combined with Eqs. 7, 10, and 11 to show that:

ar =
√(

6x + 4ẏ

n

)2

+
(
2ẋ

n

)2
(31)

Taking the time derivative of ar as expressed in Eq. 31 and substituting for ẍ using
Eq. 4 and for ÿ using Eq. 5, it is shown that ȧr is equal to zero. Therefore, ar is a
constant for unforced motion. Equations 29 – 31 indicate that while the instantaneous
center of the motion in the x̂− ŷ plane may drift in the along-track direction, its radial
component and size are invariant with time.

Equations 24 and 25 may be combined with Eqs. 7, 10, and 11 to show that:

Er = atan2

(
2ẋ

n
, 6x + 4ẏ

n

)
(32)

From Eq. 24, it is seen that the time derivative of Er is equal to n.
Equation 26 may be combined with Eqs. 9 and 12 to show that:

Az =
√

z2 +
(

ż

n

)2

(33)

Taking the time derivative of Az as expressed in Eq. 33, and substituting for the z̈

term using Eq. 6, it is shown that Ȧz is equal to zero. Therefore, Az is a constant of
the unforced motion.

Equations 27 and 28 may be combined with Eqs. 9 and 12 to show that:

ψ = atan2

(
z,

ż

n

)
(34)

From Eq. 27, it is seen that the time derivative of ψ is equal to n.
Table 1 summarizes the expressions for the six ROEs in terms of the LVLH

Cartesian states, both at the initial time and at any instantaneous time.

Transformation from Relative Orbital Elements to LVLH Cartesian State

It is frequently desirable to be able to transform from ROEs to LVLHCartesian states.
These transformations are developed here. The position components of the LVLH
Cartesian state can be found as follows: Eqs. 19, and 23–25 may be substituted into
Eq. 16 to yield:

x = xr − 1

2
ar cos Er (35)

Similarly, Eqs. 20 and 23–25 may be substituted into Eq. 17 to give:

y = yr + ar sinEr (36)
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Table 1 Expressions for ROEs in terms of LVLH Cartesian state elements

Relative Orbital Element Expressed in terms of LVLH Expressed in terms of Instantaneous

Cartesian State Initial Conditions LVLH Cartesian State Elements

xr 4x0 + 2ẏ0
n

4x + 2ẏ
n

yr y0 − 2ẋ0
n

− (6nx0 + 3ẏ0) (t − t0) y − 2ẋ
n

ar

√(
6x0 + 4ẏ0

n

)2 +
(
2ẋ0
n

)2 √(
6x + 4ẏ

n

)2 +
(
2ẋ
n

)2

Er atan2
(
2ẋ0
n

, 6x0 + 4ẏ0
n

)
+ n(t − t0) atan2

(
2ẋ
n

, 6x + 4ẏ
n

)

Az

√
z20 +

(
ż0
n

)2 √
z2 + ( ż

n

)2
ψ atan2

(
z0,

ż0
n

)
+ n(t − t0) atan2

(
z, ż

n

)

Equations 26–28 may be substituted into Eq. 18 to give:

z = Az sinψ (37)

The velocity LVLH state components can be found as follows. Equation 30 may
be substituted into Eq. 36 and rearranged to yield:

ẋ = n

2
ar sinEr (38)

Equation 29 can be substituted into Eq. 35 and rearranged to give:

ẏ = −3

2
nx + nar cosEr (39)

Equation 29 can be rewritten as:

x = xr

4
− ẏ

2n
(40)

Substituting Eq. 40 into 39 and solving for ẏ gives:

ẏ = −3

2
nxr + nar cosEr (41)

Rearranging Eq. 33 gives:

ż2 = n2
(
A2

z − z2
)

(42)

Substituting Eq. 37 into 42 gives:

ż = n2A2
z cos

2 ψ (43)

Taking the square root of both sides of Eq. 43 gives:

ż = ±nAz cosψ (44)

Referencing Fig. 3, because ż > 0 when ψ = 0, then

ż = nAz cosψ (45)

A summary of the transformation from ROEs to LVLH Cartesian state elements is
given in Table 2.
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Table 2 Expressions for LVLH
Cartesian state elements in
terms of ROEs

LVLH Cartesian State Element Expressed in Terms of ROEs

x xr − 1
2ar cosEr

y yr + ar sinEr

z Az sinψ

ẋ n
2 ar sinEr

ẏ − 3
2nxr + nar cosEr

ẋ nAz cosψ

Evolution of Relative Orbital Elements with Time

Previously, expressions for the time variation of ROEs were developed in terms of
LVLH Cartesian state elements. In this section, expressions for the time variation of
each ROE are developed in terms of initial ROE values. The initial condition for each
ROE at time t0 is denoted with a subscript 0.

Equations 19 and 20 express the variation of the instantaneous center of motion
with time, given initial conditions expressed in terms of the LVLH Cartesian state.
From Eq. 19, it is clear that at t = t0 :

xr0 = 4x0 + 2ẏ0
n

(46)

As described in “Derivation of Relative Orbital Elements”, the radial coordinate of
the instantaneous center of the motion is shown to be constant for unforced motion:

xr = xr0 (47)

Evaluating (20) at t = t0 yields:

yr0 = y0 − 2ẋ0
n

(48)

Multiplying (19) by a factor of 3n
2 , and substituting with Eq. 48 into Eq. 20 gives:

yr = yr0 −
(
3

2

)
nxr0 (t − t0) (49)

As discussed in “Derivation of Relative Orbital Elements”, for unforced motion ar

does not vary as a function of time:

ar = ar0 (50)

Relative eccentric anomaly varies with time as expressed in Eq. 24, and repeated
here:

Er = Er0 + n (t − t0) (51)

The amplitude of the cross-track motion, Az, is given by Eq. 26 as a function of the
LVLH Cartesian state initial conditions. Once established by the initial conditions,
Az does not vary with time, therefore:

Az = Az0 (52)
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Finally, the phase angle in the cross-track harmonic motion is given by Eq. 27,
repeated here:

ψ = ψ0 + n (t − t0) (53)

In summary, for unforced motion the ROEs xr , ar and Az remain constant, yr varies
linearly with time proportional to the secular drift rate, while the angular ROEs Er

and ψ vary at a constant angular rate equal to the chief’s mean motion, n. A summary
of the expressions for ROEs in terms of the ROE initial conditions is provided in
Table 3.

Additional Parameters Related to Relative Orbital Elements

In addition to the ROEs summarized in Table 1, there are several related parameters
that provide insight into the relative motion. The additional parameters described
here include along-track secular drift and drift rate, relative true anomaly, phase angle
difference, and relative inclination.

Along-Track Secular Drift and Drift rate

The linear time-varying along-track secular drift term in Eq. 17 indicates the direction
and rate of the instantaneous center of motion in the x̂ − ŷ plane. The secular drift
parameter ys is defined as:

ys = − (6nx0 + 3ẏ0) (t − t0) (54)

In Eq. 54, ys equals the distance in the along-track direction that the instantaneous
center of motion has moved during the time period t − t0. At a given time, the secular
drift rate can be written as:

ẏs = (6nx0 + 3ẏ0) (55)

For unforced motion, the secular drift rate is a constant. By taking the time derivative
of Eq. 20, it is clear that ẏs is equivalent to ẏr . From Eqs. 19 and 55, it is apparent
that:

ẏs = 3

2
nxr (56)

Thus, the secular drift rate of the instantaneous ellipse in the x̂− ŷ plane is negatively
proportional to the radial coordinate of the instantaneous center of motion; if xr is

Table 3 Expressions for ROEs in terms of ROE initial conditions

Relative Orbital Element Expressed in terms of ROE Initial Conditions

xr xr0

yr yr0 − 3
2nxr0 (t − t0)

ar ar0

Er Er0 + n (t − t0)

Az Az0

ψ ψ0 + n (t − t0)
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greater than zero, the secular drift is in the negative along-track direction, and vice-
versa. If xr equals zero, there is no drift. From Eqs. 20 and 55 it can be seen that:

yr = yr0 + ẏs (t − t0) (57)

where

yr0 = y0 − 2ẋ0
n

(58)

An example is shown in Fig. 4. The initial coordinates of the instantaneous center
of motion in the x̂ − ŷ plane at t − t0 are

(
xr0 , yr0

)
. Three orbit periods later, the

instantaneous center coordinates are (xr , yr ). In this case, xr0 > 0, so ẏs is negative,
and the secular drift is from right to left, in the negative along-track direction. Secular
drift rate may be used as an alternative to xr within the set of ROEs.

Relative true Anomaly

An angle termed relative true anomaly may be defined that is analogous to the classi-
cal orbital element true anomaly, except that it is defined strictly in the x̂−ŷ plane. As
shown in Fig. 5, relative true anomaly, νr , is the angle, centered on (xr , yr), between
the periapsis point P and point D, the instantaneous deputy position along the ellipse.
Point Q on the circumscribed circle is always twice as far as point D from the semi-
major axis of the instantaneous relative motion ellipse. This can be shown as follows.

Fig. 4 Secular along-track drift in the x̂ − ŷ plane
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Fig. 5 Geometry of relative eccentric anomaly and relative true anomaly

From the standard equation of an ellipse, the instantaneous relative motion ellipse
equation is:

(y − yr)
2

a2r
+ (x − xr)

2

(
ar

2

)2 = 1 (59)

Solving (38) for x − xr gives:

x − xr = 1

2

√
a2r − (y − yr)

2 (60)

From the standard equation for a circle, the equation for the circumscribed circle can
be written as: (

yq − yr

)2
a2r

+
(
xq − xr

)2
a2r

= 1 (61)

Solving (61) for xq − xr , and noting that yq = y, gives:

xq − xr =
√

a2r − (y − yr)
2 (62)

From Eqs. 60 and 62, the desired result is obtained:

x − xr = 1

2

(
xq − xr

)
(63)

From Fig. 5 it is clear that:

tanEr = y − yr

2 (xr − x)
(64)

Substituting for xr and yr in Eq. 64 using Eqs. 29 and 30 and simplifying gives:

tanEr = ẋ

3nx + 2ẏ
(65)



J of Astronaut Sci (2014) 61:341–366 357

From Fig. 5, it is apparent that:

tan υr = y − yr

xr − x
(66)

Substituting for xr and yr in Eq. 66 using Eqs. 29 and 30 and simplifying, yields:

tan υr = 2ẋ

3nx + 2ẏ
(67)

Therefore, relative true anomaly can be expressed as:

υr = tan−1
(

2ẋ

3nx + 2ẏ

)
(68)

Comparing Eq. 68 with Eq. 65, the relationship between relative eccentric anomaly
and relative true anomaly is then:

υr = tan−1 (2 tanEr) (69)

Relative true anomaly may be used as an alternative to relative eccentric anomaly
within the set of ROEs.

Phase Angle Difference

The phase angle difference between the relative eccentric anomaly,Er , and the cross-
track motion phase angle, ψ , can be expressed as:

γ = ψ − Er (70)

The cross-track motion phase angle and relative eccentric anomaly both change at a
rate that is equal to the chief’s mean motion, as seen in Eqs. 24 and 27. Therefore,
the phase difference γ is a constant, equal to the difference between the two angles
at any chosen instant in time. Equation 70 may be used to replace ψ with γ + Er .
The advantage of this approach is that four of the six ROEs are then constant, with yr

and Er being the only time-varying ROEs. (Note that one could alternatively replace
Er with ψ − γ and also achieve four constant ROEs.) The phase difference may be
written in terms of LVLH Cartesian state elements as:

γ = atan2

(
z,

ż

n

)
− atan2

(
2ẋ

n
, 6x + 4ẏ

n

)
(71)

Relative Inclination

An important parameter related to the three-dimensional relative motion is the rela-
tive inclination, the angle between the relative orbit plane and the chief’s orbit plane
(i.e., the x̂ − ŷ plane). As shown in Fig. 6, the normal vector to the instantaneous
relative orbit plane, n̄r , is found by taking the cross-product of two position vectors
on the relative orbit, corresponding to Er = 0 and Er = π

2 . In Fig. 6, the LVLH
ẑ − ŷ − ẑ coordinate system is translated to parallel axes ẑ′ − ŷ′ − ẑ′ with the origin
at (xr , yr , 0). The relative inclination is the angle between the relative orbit normal,
n̂r and the ẑ′ axis.
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Fig. 6 Geometry of relative inclination

The position of the instantaneous center (IC) of the relative motion with respect to
the origin of the LVLH coordinate system is given by the vector:

ρ̄IC = [xr , yr , 0]
T (72)

The vector from the origin of the LVLH coordinate system to the relative orbit
position corresponding to Er = 0 (periapsis) is given by Eqs. 35 – 37 as:

ρ̄1 =
⎡
⎣ xr − 1

2ar

yr

Az sin γ

⎤
⎦ (73)

where, from Eq. 70, γ is equal to ψ for Er = 0. The position vector from the instan-
taneous center to the location on the relative orbit corresponding to Er = 0 is given
by:

r̄1 = ρ̄1 − ρ̄IC (74)

From Eqs. 72 – 74, r̄1 can be evaluated as:

r̄1 =
⎡
⎣ − 1

2ar

0
Az sin γ

⎤
⎦ (75)
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The vector from the origin of the LVLH coordinate system to the relative orbit
position corresponding to Er = π

2 is:

ρ̄2 =
⎡
⎣ xr

yr + ar

Az cos γ

⎤
⎦ (76)

Note that for Er = π
2 , γ = ψ − π

2 . From Eq. 37, the ẑ-component of the position
vector is equal to Az sinψ , which equates to Az sin

(
γ + π

2

)
for Er = π

2 . This is
simplified to Az cos γ in Eq. 76. The position vector from the instantaneous center to
the deputy at Er = π

2 is given by:

r̄2 = ρ̄2 − ρ̄
IC (77)

From Eqs 72, 76 and 77, r̄2 can be evaluated as:

r̄2 =
⎡
⎣ 0

ar

Az cos γ

⎤
⎦ (78)

Using the two position vectors on the instantaneous relative orbit, the cross-product
can be taken to find the relative orbit normal, n̄r:

n̄r = r̄1 × r̄2 (79)

Using Eqs. 75 and 78, the relative orbit normal vector can be evaluated as:

n̄r =
⎡
⎣−arAz sin γ

1
2arAz cos γ

− 1
2a

2
r

⎤
⎦ (80)

The unit vector in the direction of the relative orbit normal is given by:

n̂r = n̄r
|n̄r| (81)

The relative inclination, ir , is the angle between the instantaneous relative orbit plane
and the chief orbit plane. The angle between the relative orbit normal and the chief’s
orbit normal, ẑ, can be found through the dot product of the two normal unit vectors:

n̂r · ẑ = cos ir (82)

The relative inclination is given by:

ir = cos−1 (n̂r · ẑ) (83)

Substituting Eqs. 80 and 81 into 83 and simplifying yields:

ir = cos−1

⎛
⎜⎝ −ar√

3A2
z sin

2 γ + A2
z cos2 γ + a2r

⎞
⎟⎠ (84)

From Eq. 84, it is seen that relative inclination is a function of the semi-major
axis of the instantaneous relative ellipse in the x̂ − ŷ plane, ar , the amplitude of
the cross-track motion, Az, and the phase difference, γ . For unforced motion, each
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of these parameters is constant, so relative inclination is a constant as well. If the
relative ellipse has a secular along-track drift rate due to a non-zero value for xr ,
the instantaneous relative ellipse lies in a plane that is translating in the along-track
direction, with a constant relative inclination angle. Note that for relative motion
constrained to the direction, resulting in a relative inclination of 180 deg. Because ir
is a function of ar , Az, and γ , it may be used to replace any of these three quantities
within the set of ROEs.

To express relative inclination in terms of LVLH Cartesian state elements, Eqs. 31,
33 and 71 are substituted into Eq. 84 to give:

ir = cos−1

⎧⎪⎪⎨
⎪⎪⎩

−
√(

6x + 4ẏ
n

)2 +
(
2ẋ
n

)2
√
3
[
z2 + ( ż

n

)2]
sin2

[
atan2

(
z, ż

n

)− atan2
(
2ẋ
n

, 6x + 4ẏ
n

)]
+ z2 + ( ż

n

)2 +
(
6x + 4ẏ

n

)2 +
(
2ẋ
n

)2

⎫⎪⎪⎬
⎪⎪⎭

(85)

A summary of the useful parameters that are related to ROEs is provided in Table 4.

Characteristics of the Unforced Motion

Utilizing the ROEs defined in “Definition of Relative Orbital Elements”, the unforced
“free drift” deputy spacecraft trajectory relative to the chief can be easily character-
ized. Similar to classical orbital elements, ROEs provide a physical understanding of
the relative motion that is not obvious from the relative Cartesian state.

The relative motion is characterized in terms of three primary modes of the motion,
based upon the values of the ROEs xd , ar , and Az. As seen in Table 5, the first mode
of the relative motion is dependent upon the value for xr . If xr = 0 (Mode 1A),
then there is no secular drift of the relative motion in the along-track direction. If
xr �= 0 (Mode 1B), then the instantaneous relative ellipse in the x̂ − ŷ plane will
have a secular drift with a rate that is dependent upon the value for xr : a negative
value for xr results in a positive secular drift rate in the along-track direction, and a
positive value for xr results in a negative rate for secular along-track drift. Note that
this behavior makes physical sense when one considers that xr = 0 implies that the
chief and deputy possess the same orbit period, xr > 0 implies that the deputy is on a

Table 4 Expressions for useful parameters related to ROEs

Parameter Expressed in terms of LVLH Cartesian State Elements Expressed in terms of ROEs

ys − (6nx0 + 3ẏ0) (t − t0) − 3
2nxr0 (t − t0)

ẏs −(6nx + 3ẏ) − 3
2nxr

υr tan−1
(

2ẋ
3nx+2ẏ

)
tan−1 (2 tanEr)

γ atan2
(
z, ż

n

)− atan2
(
2ẋ
n

, 6x + 4ẏ
n

)
ψ − Er

ir See Eq. 85 cos−1

(
−ar√

3A2
z sin

2 γ+A2
z cos

2 γ+a2r

)
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Table 5 Modes of unforced relative motion

Mode Initial Condition Description

1 1A xr = 0 No secular along-track drift of instantaneous ellipse

1B xr �= 0 Secular along-track drift of instantaneous ellipse :

xr > 0 ⇒ ẏs < 0

xr < 0 ⇒ ẏs > 0

2 2A ar = 0 No instantaneous ellipse in the x̂ − ŷ plane

2B ar > 0 Instantaneous ellipse in the x̂ − ŷ plane

3 3A ar = 0 No cross-track motion

3B Az > 0 Simple harmonic oscillatory cross-track motion

larger inertial orbit (longer period) than the chief, and xr < 0 implies that the deputy
is on a smaller orbit (shorter period) than the chief.

The second mode of the relative motion depends upon the value for ar . If ar = 0
(Mode 2A), then there is no instantaneous relative ellipse in the x̂ − ŷ plane. Stated
differently, the instantaneous relative ellipse devolves to a point. If ar > 0 (Mode
2B), then the instantaneous relative ellipse in the x̂ − ŷ plane has the typical 2:1 ratio
of semi-major axis in the along-track direction to semiminor axis in the radial direc-
tion. This behavior makes physical sense when one considers that ar = 0 implies
that the chief and deputy are both on circular orbits, whereas ar > 0 implies that the
deputy is on an elliptical inertial orbit.

The third mode of the relative motion is dependent upon the value for Az. If Az =
0 (Mode 3A), then there is no cross-track motion. If Az > 0 (Mode 3B), then there
is simple harmonic oscillatory motion in the cross-track direction. It is noted that
the initial value for yr does not define a primary mode for the relative motion; yr

simply gives the initial along-track coordinate of the instantaneous relative ellipse in
the x̂ − ŷ plane. The angular ROEs Er and ψ are used to define the location of the
deputy on the relative orbit in-plane and out-of-plane of the chief’s orbit, respectively.
The phasing between these angles impacts the three-dimensional shape of the relative
orbit, and determines the locations of the relative ascending and descending nodes
where the deputy’s inertial trajectory intersects the chief’s orbit plane.

Each of the three primary modes of relative motion can be superposed to capture
the full motion of the deputy spacecraft relative to the chief. For Mode 1A, there is
no secular drift in the along-track direction, so the motion in the x̂ − ŷ plane is either
a stationary point with x = 0 (Mode 1A, 2A), or a stationary ellipse (Mode 1A, 2B)
with the characteristic 2:1 ratio of the major-axis to minor-axis length in the x̂ − ŷ

plane.
For Mode 1B, where there is a secular drift of the instantaneous ellipse in the

along-track direction, the x̂ − ŷ projection of the deputy’s motion will take on one
of four different shapes. Figure 7 shows an example of each of these relative motion
shapes, for a case where the chief’s circular orbit altitude is 500 km, the initial along-
track coordinate for the deputy is 100 m, and xr for the deputy is 5 m, resulting in
a negative secular drift rate in the along-track direction. One orbit period is shown.
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Fig. 7 Four types of relative drifting motion in the x̂ − ŷ plane. Mode 1B, 2A: solid line, ar = 0. Mode
1B, 2B: dashed quasi-sinusoidal curve, ar < 3

2 |xr |; bolded cycloid-like curve with cusp, ar = 3
2 |xr |;

bold-dashed cycloid-like curve with curl, ar > 3
2 |xr |. In all cases, motion is from right to left

The shape of the relative drifting motion in the x̂ − ŷ plane is determined by the
value of ar relative to xr . For ar =0 (Mode 1B, 2A), the deputy is on a circular orbit,
and the motion with respect to the chief is a straight line in the LVLH frame, with
a fixed radial component. For ar > 0 (Mode 1B, 2B), the relative motion may be a
quasi-sinusoidal curve, a cycloid-like curve that cusps at the extrema, or a cycloid-
like curve that curls at the extrema. For all three of the cases in Mode 1B, 2B, the
minimum radial coordinate occurs at perigee in the deputy’s orbit, and the max-
imum radial coordinate occurs at apogee. The quasi-sinusoidal curve is produced
when the along-track component of the LVLH Cartesian state increases or decreases
monotonically.

Substituting Eq. 35 into Eq. 39, and using Eq. 56 it is found that:

ẏ = ẏs + nar cosEr (86)

For the case where the along-track component is monotonically decreasing (as shown
by the dashed curve in Fig. 7),

ẏs + nar < 0 (87)

Substituting for ẏs with Eq. 56 gives:

ar <
3

2
xr (88)
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Written generally, to account for both the monotonically increasing and decreasing
cases, the condition for a quasi-sinusoidal curve can be written as:

ar

3

2
|xr | (89)

For a cycloid-like curve that cusps, ẏ = 0 at either periapsis or apoapsis in the
deputy’s orbit (i.e., at Er or Er = π ). From Eq. 86, it is found that the condition
reduces to:

ar = 3

2
|xr | (90)

It is noted that for the case where the secular drift rate in the along-track direction is
negative, cusps occur at perigee (as shown by the bolded curve in Fig. 8), while for a
positive secular drift rate cusps occur at apogee. Finally, cycloid-like curves that curl
occur for all other values of ar , when:

ar = 3

2
|xr | (91)

70 80 90 100 110 120 130
−30

−20

−10

0

10

20

30

y (m)

x 
(m

)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

z (m)

x 
(m

)

70 80 90 100 110 120 130
−30

−20

−10

0

10

20

30

y (m)

z 
(m

)

70
80

90
100

110
120

130

−30
−20

−10
0

10
20

30
−30

−20

−10

0

10

20

30

y (m)
z (m)

x 
(m

)

a c

b d
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For Mode 3A, there is no cross-track motion and z = 0. For the combination of
Modes 1A, 2A, 3B, the motion is a simple oscillation in the cross-track direction, and
there is no motion in the x̂ − ŷ plane.

For Mode 1A, 2B, 3B, the relative orbit is stationary and in a fixed plane. The
angular difference between the relative eccentric anomaly and cross-track phase
angle (equal to the parameter γ defined in “Derivation of Relative Orbital Elements”)
determines the shape and orientation of the projection of the motion in the ẑ − x̂ and
ẑ−ŷ planes, as shown in Fig. 8. The motion in the x̂−ẑ plane is an ellipse centered on
x = 0, z = 0. The motion in the ŷ − ẑ plane is an ellipse centered on y = yr , z = 0.
Figure 8 shows an example where xr = 0, yr = 100 m, ar = 20 m, and Az = 10 m.
Relative orbits associated with four different values for γ are shown: 0, π/2, π , and
3π/2. While the motion in the x̂ − ŷ plane is unchanged for each case, the shape and
orientation of the ellipses in the x̂ − ẑ and ŷ − ẑ planes are determined by the value
of γ . Note that for γ = π�2 and γ = 3π�2, the projection of the motion onto the
x̂ − ẑ and ŷ − ẑ planes are straight lines.

For Mode 1B, 2B, 3B, a secular along-track drift is superimposed upon the three-
dimensional relative motion. Figure 9 shows an example where xr = 1 m, yr =
100 m, ar = 20 m, Az = 10 m, and γ = 0. The “corkscrew” motion apparent in
the three-dimensional plot, Fig. 9d, results from the translation of the instantaneous
plane of the motion in the along-track direction.
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Fig. 9 Mode 1B, 2B, 3B motion. a ŷ − x̂ projection, b ẑ − x̂ projection, c ŷ − ẑ projection, d 3D plot
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Conclusions

Relative orbital elements provide a useful formulation for characterizing the geom-
etry of relative motion between a chief and deputy space object, leading to an
intuitive understanding of the unforced relative motion within the context of the
Clohessy-Wiltshire assumptions. Through this work, ROEs have been derived, and
the geometric interpretation of each element has been established. It is noted that
there is a strong analogy between classical orbital elements, which provide the orbital
geometry of a spacecraft about a central body in an inertial reference frame under
the two-body assumption, and ROEs which provide the geometry of a relative orbit
in the LVLH reference frame under the Clohessy-Wiltshire assumptions.

A direct transformation between ROEs and the relative Cartesian state has been
developed. Expressions for the time-variation of ROEs, in terms of both relative
Cartesian state parameters and initial ROEs, have been derived. Additional useful
parameters related to ROEs have been defined.

Utilizing the ROE parameters, categories of relative motion can be visualized
based upon three modes, depending upon values for three particular ROEs: the radial
coordinate of the instantaneous center of motion, semimajor axis of the instantaneous
relative ellipse, and amplitude of the cross-track motion. By superposing the modes,
the behavior of the free-drift trajectory can be determined.
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