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Abstract The long-term evolution characteristics and stability of an orbit are well
characterized using a mean element propagation of the perturbed two body vari-
ational equations of motion. The averaging process eliminates short period terms
leaving only secular and long period effects. In this study, a non-traditional approach
is taken that averages the variational equations using adaptive numerical techniques
and then numerically integrating the resulting equations of motion. Doing this avoids
the Fourier series expansions and truncations required by the traditional analytic
methods. The resultant numerical techniques can be easily adapted to propagations
at most solar system bodies.

Keywords Averaging · Mean Elements · Orbits · Nonlinear Dynamics

Introduction

The mathematical basis of perturbed, two-body mean element orbits is the averaging
theory of nonlinear dynamical systems. Via averaging, short period terms (typically
less than an orbital period) are eliminated from the variational equations of motion
(EOMs) leaving only secular and long period terms. These secular and long-period
terms define the key characteristics of an orbit’s long-term evolution, and are known
as an orbit’s mean elements. Because mean elements are not obscured by short peri-
odic effects, they are ideal for use in orbit and constellation design. They also reveal
the stability characteristics of an orbit (including the possibility of chaotic motions)
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[1, 2]. As such, mean element trajectories are a necessary component for orbital
stability analyses and are essential for lifetime and planetary protection studies. From
a practical point of view, mean element propagations are often one or more order(s)
of magnitude faster than their osculating element counterparts (i.e., propagations of
the full EOMs that include the short period terms), and enable mission designers to
explore very large design spaces efficiently.

Averaging the Equations of Motion

The application of averaging theory to obtain mean orbital element propagations has
a long history in astrodynamics with roots in the non-linear dynamical systems the-
ory developed by Poincaré in the late 1800’s. More recently, the development of the
Draper Semi-Analytic Satellite Theory by Cefola et al. [3, 4] and McClain [5, 7]
represents the state of the art as it has been applied to the Earth. A similar devel-
opment by Kwok [8, 9] applied the theory to Mars and Venus (in addition to the
Earth). These theories and tools applied traditional techniques that expand the EOMs
in a Fourier series and analytically ‘average out’ the short period terms leaving only
the secular and long period terms for a numerical propagation. These ‘semi-analytic’
approaches require detailed expansions for each acceleration type; a difficult task
that usually requires some form of truncation (typically in eccentricity) to make the
problem tractable, hence limiting their effectiveness for highly eccentric orbits. Fur-
thermore, orbits around non-traditional bodies like asteroids with gravity fields that
are better modeled with ellipsoidal or polyhedral formulations currently do not have
ready analytic expressions for the averaged gravity field making application of a
semi-analytic technique difficult. In this study, the approach taken is to numerically
average the variational equations and then numerically integrate the resulting EOMs.
Doing this avoids the Fourier series expansion and truncations required by the ana-
lytic methods. Numerical approaches have been applied in the past by Uphoff [10],
Lutzky and Uphoff [11], and McClain, et al. [7]; however, they limited their investi-
gations to fixed-order numerical averaging (typically a form of Gaussian quadrature).
In addition to the fixed-order Gaussian techniques, the present study also examines
a readily available robust adaptive numerical cubature routine (CUBPACK) [12, 13].
The result is a complete numerical algorithm that has been developed to work at any
solar system body, and is more flexible and accurate than solely fixed-order methods.

1st-Order Averaging and Numerical Techniques

The trajectory of a satellite in two-body perturbed motion can be modeled in a vari-
ation of parameter formulation of six 1st-order differential equations of motion. In
its simplest form with only one fast angle and no resonances (the case of additional
‘fast’ angles and resonances will be examined later), these EOMs can be represented
as [

α̇

λ̇

]
=
[
0
n (a)

]
+ ε

[
fα (α, λ)

f λ (α, λ)

]
(1)
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where the osculating elements have been selected to be an equinoctial set with
x ≡ {α, λ} , α ≡ {a, h, k, p, q} (see the appendix for a definition of the elements),
and n (a) = √

μ/a3 is the Keplerian mean motion. For convenience in later devel-
opments, f ≡ {fα, f λ

}
has been defined. The mean longitude λ has been singled out

because it is the short periodic (‘fast’) angle in this problem. The parameter ε is a
small parameter used to asymptotically order terms. As proven by Sanders et al. [14]
in Section 7.8 of their book, there exists a near-identity transformation for a system of
the form given by Eq. 1 that eliminates the mean longitude via averaging and approx-
imates the original system to first order O (ε) on a time scale of order O (1/ε) with
a set of averaged equations of motion. The averaged equations take the form[ ˙̄α

˙̄λ

]
=
[
0
n̄ (ā)

]
+ ε

[
f̄
α

(ᾱ)

f̄ λ (ᾱ)

]
+ O

(
ε2
)

(2)

where the overbar represents the mean elements
{
ᾱ, λ̄

}
and the mean perturbing

functions f̄ (ᾱ) andn̄ (ā). These are obtained via

f̄
α

(ᾱ) ≡ 1
2π

π+λo∫
−π+λo

fα (ᾱ, λ) dλ,

n̄ ≡ n (ā) , f̄ λ (ᾱ) ≡ 1
2π

π+λo∫
−π+λo

f λ (ᾱ, λ) dλ.

(3)

The system defined by Eq. 1 may also have parameters that it depends on. As long
as these parameters are constant or have slow time variations of order O (ε), then the
averaged equations given in Eq. 2 remain valid on the O (1/ε) time scale. In Eq. 3 the
mean ᾱ elements are treated as constant parameters over the integration, and at any
given time t are determined via propagating the EOMs defined in Eq. 2 to that time.
The process is initialized via selection of suitable mean element initial conditions at
the initial time to

ᾱo � ᾱ (to) ,

λ̄o � λ̄ (to) .
(4)

Typically the perturbation functions f (α, λ) can be expanded in a Fourier series
to separate secular, short period, and long period effects. This can be represented
formally as

f (α, λ) = f̄ (α) +
∞∑

j=−∞,j �=0

fj (α) eijλ (5)

where i ≡ √−1, and performing the averaging operation identified in Eq. 3 on
Eq. 5 reveals the averaged equations of motion arise from the first term in the Fourier
series. Traditionally, the series is obtained via explicit manipulations of f (α, λ) to
arrive at analytic formulae, which can be easily averaged. In the present study, the
numerical average in Eq. 3 will be performed via numerical quadrature (or cubature
in the multivariate case).

The motivation for considering a numerical averaging approach stems from sev-
eral reasons. Foremost, any analytic theory requires some form of truncation typically
in the eccentricity functions for the tesseral harmonics and other body perturba-
tions, which limits the range of orbits that can be considered. A numerical averaging
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approach makes no such truncation. An analytic theory requires that explicit formu-
lation of the Fourier series expansion exist in order to perform the averaging; this is
not a requirement in a numerical averaging. Generalized averaging theory requires
only that Eq. 1 satisfy some continuity conditions, including a Lipschitz condition,
for an averaging operator to exist, and to have an averaged system to be asymptoti-
cally near the un-averaged system (c.f. Section 2.8 of Sanders et al. [14]). This result
is useful when considering orbital regimes where either an analytic theory hasn’t yet
been developed, or a convergent Fourier series might not exist for the perturbation
environment. An example of this is the case of small bodies with irregular shape;
analytic mean element theories haven’t been developed and may not exist. Another
is with low thrust optimal control problems. Finally, since the numerical approach is
simpler algorithmically, it represents an approach that can be efficiently implemented
and tested in software, and easily extended to new problem domains.

This study examines two specific numerical quadrature (cubature) techniques: a
classic fixed-order Gaussian method and a more recent algorithm called CUBPACK
developed by Genz and Cools [12] that uses globally adaptive techniques and is read-
ily available on the internet. The generic cubature problem of numerically evaluating
an integral can be expressed as

I [f] =
∫
T

f(y; α)dT (6)

where y is a m-vector, α is a r-vector of parameters, f is a n-vector and T is a col-
lection of m-dimensional hyperrectangles or m-simplices. For the perturbed orbit
problems considered here, y is either 1- or 2-dimensional depending on the vari-
ables that are to be averaged, α ≡ {a, h, k, p, q} , f is a 6-vector, and T is either
a line segment for single variable integration or a square for two variable integra-
tion.1 An overview of various numerical integration techniques is given in Smyth [15]
and includes the details for fixed-order Gaussian quadrature. In the current research,
the integration order can be specified to be any desired integer. For the CUBPACK
algorithm, Genz and Cools [12] describe it as ‘based on a subdivision strategy that
chooses for subdivision at each stage the subregion (of the input simplices) with the
largest estimated error. This subregion is divided into two, three or four equal vol-
ume subregions by cutting selected edges. These edges are selected using information
about the smoothness of the integrands in the edge directions. The algorithm allows
a choice from several embedded cubature rule sequences for approximate integration
and error estimation.’

Two-Body Perturbed Numerical Mean Element Theory and Results

There exist two main variation of parameter approaches used in orbit theory –
Lagrange’s equations and Gauss’ equations. The Lagrangian approach requires the
system to be derivable from a potential, and hence only applies to conservative

1The m-simplex capability of CUBPACK is not needed for this application.
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force fields. On the other hand, Gauss’ equations work directly with the acceleration
expressions and apply to any perturbative force – conservative or non-conservative.
The Gaussian approach also allows one to use the osculating accelerations directly
when performing the numerical averages, and facilitates use of an existing astrody-
namics software system (i.e., GMAT, STKTM, FreeFlyerTM, etc.) as the basis for
developing a mean element propagation capability. This research effort has imple-
mented the mean element propagation algorithms using JPL’s MONTE astrodynam-
ics toolkit for standard calculations such as coordinate transformations, osculating
perturbing acceleration calls, and numerical propagations with DIVA [16]. MONTE
is the core operational software used to navigate JPL space missions, and has been
in use for almost a decade. The DIVA algorithm, the primary propagation routine in
MONTE, is a variable-order, variable-step Adams method developed by Krogh and
currently available on the web [17–19]. Variants of DIVA have been used extensively
for over four decades, and recently Sharp [20] quantitatively compared it to other
propagator packages demonstrating DIVA’s ability to accurately propagate solar sys-
tem trajectories for thousands of years. The mean element tool couples the numerical
averaging described in the prior section (i.e., Gaussian quadrature or CUBPACK)
with numerical propagations performed by DIVA. Gauss’ variation of parameters and
the perturbations of interest are now reviewed. All results in the following examples
have been generated using a Linux workstation with two Intel XeonTM×5687 quad-
core processors operating at 3.60 GHz, a physical memory of 48 Gb, and a 64 bit
RedHat Enterprise 5 operating system.

Gauss’ Variation of Parameters

Gauss’ variation of parameter equations can be represented as

[
α̇

λ̇

]
=
[
0
n (a)

]
+
⎡
⎢⎣

∂α
∂ ṙ · ∑

ρ∈P
δr̈ρ

∂λ
∂ ṙ · ∑

ρ∈P
δr̈ρ

⎤
⎥⎦ (7)

where ṙ is the velocity vector between the satellite and the central body, δr̈ρare the
perturbing accelerations. All quantities are expressed in a common inertial coordinate
frame. For this study the set P = {Z, T , O, D, S} of perturbing accelerations that
will be considered are:

1. Zonal harmonics (Z),
2. Tesseral harmonics (T),
3. Other body accelerations (O),
4. Atmospheric drag on a spherically shaped spacecraft (D),
5. Solar radiation pressure on a spherically shaped spacecraft (S).

The first bracket in Eq. 7 is O (1) and the second term is O (ε) and is equivalent to
the perturbing term εf (α, λ) in Eq. 1. For orbit applications, the small parameter ε

is dependent on the specific perturbation. For instance, the small parameter for the
zonal harmonics is often J2 while for other body perturbations it is the ratio of the
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satellite’s semimajor axis to the other body’s apparent semi-major axis around the
central body a/aO . The derivatives in Eq. 7 have been obtained by many authors for
the equinoctial elements (c.f. Danielson et al. [21]), and, for convenience, have been
repeated in the appendix. Each of the perturbations in set P is now examined.

Zonal Harmonic Perturbations2

The non-spherical axial symmetric gravity acceleration perturbations (i.e., the zonal
harmonics) from a central body can be expressed as the gradient of the following
potential

δr̈Z = −∇ μ

r

∞∑
l=2

Rl
e

rl
JlPl0 (sinφ) (8)

where {r, φ, L} are the planet-centric spherical coordinates of {radial distance, lati-
tude, and East longitude}, Re is the central body’s equatorial radius, Plm (sinφ) are
the associated Legendre polynomials (which for the zonals have m ≡ 0), {Jl} are
the unnormalized zonal harmonic coefficients. A key observation regarding (8) for
the numerical averaging is that the acceleration is dependent only on the spacecraft
state x and not any other variables, such as the orientation of the central body (as
will be the case with the tesseral harmonics). Considering only the zonal harmonics
accelerations, Gauss’ equations take the functional form

[
α̇

λ̇

]
=
[
0
n (a)

]
+ ε

[
fα,Z (α, λ)

f λ,Z (α, λ)

]
=
[
0
n (a)

]
+
[

∂α(x)
∂ ṙ · δr̈Z (x)

∂λ(x)
∂ ṙ · δr̈Z (x)

]
, (9)

which is an autonomous system that conforms to the basic averaging results identified
in Eqs. 2 and 3.

Example 1 Consider a low altitude lunar orbiter with initial osculating and mean
orbital elements3 given in Table 1 below.

The selected elements are for a low-altitude ‘frozen’ orbit where the argument of
periapsis ω and the eccentricity e librate with respect to each other. The only per-
turbation accelerations present are from the lunar zonal harmonics to the 50th order
(a sufficient size based on findings by Lara [23]). The e-ω phase space results are
shown in Fig. 1 for a 5-yr propagation of the numerically averaged EOMs (labeled
‘mean’) and the propagation of the direct osculating EOMs (labeled ‘osc’). Note that

2It should be noted that second order effects from J2 can be significant to specific problems. A numerical
second-order averaging method is forthcoming; however, was not available for this research. For the cases
examined in this paper, second-order effects did not significantly affect the results or the conclusions.
3The initial mean elements were obtained from the initial osculating elements using a first-order
near-identity transformation that was derived using the methods described in the companion paper
‘Transforming Mean and Osculating Elements using Numerical Methods,’ written by the author.
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Table 1 Initial conditions and parameters for frozen low lunar orbiter example

Initial Osculating {a, e, i,�, ω,M} {1858.0 km, 0.04300, 89.4◦, 0◦, 270◦, 0◦}

Initial Mean {a, e, i,�, ω,M} {1858.5 km, 0.04334, 89.4◦, 0◦, 270◦, 0◦}
Epoch January 1, 2000 00:00:00 ET

Duration 5 years

{J2, ..., J50} LP150Q gravity field [22]

μ 4902.801076 km3/sec2

Frames IAU Moon Pole and Fixed

the osculating EOMs are in standard Cartesian form and integrated using DIVA’s abil-
ity to directly integrate second-order equations; they are not in a VOP formulation.
The results clearly show the libration oscillation which has a characteristic period of
about ∼ 2.5 years. They also demonstrate that the averaged EOMs accurately capture
the qualitative motion and have done so in a fraction of the computational cost/time
of their osculating counterparts, as presented in Table 2.

Two different mean element propagations were executed, one with a 130th-order
Gaussian numerical quadrature and the other with CUBPACK set to an absolute
tolerance of 1.0E-10 and a relative tolerance of 1.0E-7. The numerical integration
tolerance for all propagations, mean and osculating, was set to 1.0E-10. The results
illustrate the dramatic reduction in required function calls (and speed) needed by the
mean element propagations over their osculating counterpart. The CUBPACK-based
propagation required 100 times fewer function calls and was 215 times faster than the

Fig. 1 Argument of periapsis and eccentricity phase space of lunar orbiter
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Table 2 Comparing 5-yr propagations of the numerically averaged EOMs to the osculating EOMs for the
low lunar orbiter

Mean Mean Osculating

Gauss CUBPACK

Fixed Order 1.E-10/1.E-7

130

Mean Step Size 228.5 221.5 0.002

(# orbital periods)

# of Function Calls 24,960 220,605 18,869,502

CPU Time (secs) 1.2 9.9 545.4

Speed-Improvement Factor 447 55

(osculating/mean CPU time)

osculating propagation. The fixed-order Gaussian result is even faster; however, the
selection of order 130 was only arrived at after experimenting with several different
orders and consideration of the 50th-degree zonal harmonic field. If the selected order
is too low (say 100) the quadrature yields errors that cause the numerical integration
routine to compensate via selecting progressively smaller step sizes resulting in sig-
nificantly longer propagation times (of the same order as the osculating propagation).
If the selected order is large, the averaging is accurate, but efficiency is lost during the
propagation because the numerical integrator can only select step sizes that are con-
sistent with its own error tolerance. That is, it cannot take advantage of the improved
averaging accuracy because it is already operating at its limit of required accuracy.
In comparison, the adaptive quadrature using CUBPACK worked well without such
an investigation. This leads to a preliminary conclusion that the adaptive routines are
useful for initial studies and establishing expected results. Then, with careful tuning,
the analyst can select an appropriate fix-ordered method to maximize efficiency of
parametric trade studies.

Tesseral/Sectorial Harmonic Perturbations

The non-spherical non-symmetric gravity acceleration perturbations (i.e., the
tesseral/sectorial harmonics) from a central body can be expressed as the gradient of
the following potential

δr̈T = ∇ μ

r

∞∑
l=2

l∑
m=1

Rl
e

rl
Plm (sinφ) (Clm cos (mL) + Slm sin (mL)) (10)

where again Plm (sinφ) are the associated Legendre polynomials, now with m �= 0
and {Clm, Slm} are the unnormalized harmonic coefficients (note that Jl = −Cl0).
Unlike the zonal harmonic accelerations, accelerations induced by the tesseral
harmonics (m �= l) and sectorial harmonics (m = l) are dependent on the central
body’s orientation relative to the spacecraft, in particular via the sidereal angle θ .
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This too can be a ‘fast’ variable or ‘slow’ one depending on the selected central
body. For instance the Earth’s sidereal period is ∼ 1 day while Venus’ sidereal period
is 243 days. The relationship between the mean longitude λ and sidereal angle θ

can be made explicit by computing the Fourier expansion of Eq. 10 in equinoctial
elements as has been done by several authors including: Cefola [24], McClain [6],
and Danielson et al. [21]. The current analysis can benefit by examining the formal
Fourier series expansion in a functional form (for generality this also includes the
zonal harmonics)

ε

[
fα,T (α, λ, θ)

f λ,T (α, λ, θ)

]
=
[

∂α(x)
∂ ṙ · δr̈T (x)

∂λ(x)
∂ ṙ · δr̈T (x)

]
=

∞∑
j=−∞

l∑
m=0

fTjm(α)ei(jλ−mθ) (11)

where i ≡ √−1 and fTjm(α) are Fourier coefficients, which are often associated
with infinite expansions as well that need to be carefully truncated in any practical
analytic averaging theory. In a purely numerical approach to averaging, the fTjm(α)

coefficients functions do not need to be explicitly determined to perform the averag-
ing. However, the relationships involving the mean longitude λ and the sidereal angle
θ need to be explicitly exposed (as has been done in Eq. 11) to conduct a correct
numerical averaging analysis. Examination of Eq. 11 reveals the possibility of three
important cases:

1. Resonant Case: The mean longitude rate λ̇ (∼ mean motion n) is O(1) and the
sidereal rate θ̇ is O(1) and initial conditions are such that a deep resonance or
shallow resonance exists. Deep resonance exists when the mean longitude and
the sidereal rate are commensurate. That is, there exists a rational ratio of two
integers that satisfies

λ̇

θ̇
= Q

P
→ Q : P resonance forQ andP integers.. (12)

For instance, at Earth a resonance of Q : P = 2 : 1 is a ∼ 12 hr orbit. A shallow
(or near) resonance occurs when λ̇/θ̇ are close to Q/P in some sense. Typically,
for the resonance to be significant Q and P should be smaller integers. That is
a 2:1 resonance that excites gravity harmonics of order 2 will have much more
effect than, say, a 30:1 resonance that excites the typically much smaller order
30 harmonics.

2. Non-resonant Case: The mean longitude rate λ̇ (∼ mean motion n) is O(1)
and the sidereal rate θ̇ is O(1) and the initial conditions are such that no sig-
nificant resonances exist (i.e., an orbit that is outside of a shallow resonance
region). In this case, the integers that satisfy Eq. 12 are too large to be signifi-
cant. The conditions that need to exist to make this determination are the subject
of Kolmogorov-Arnold-Moser (KAM) theory of nonlinear dynamical systems
theory [25].

3. Adiabatic (or Two Time Scales) Case: The mean longitude rate λ̇ (∼ mean
motion n) is O(1) and the sidereal rate θ̇ is O(ε). This is another non-resonant
case; however, here the sidereal rate is slow enough to be considered a constant
during an averaging interval. This applies to Venus, sometimes the Moon, and
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often other bodies that are tidally locked in a 1:1 spin resonance. Again, the inte-
gers that satisfy Eq. 12 are too large to be of importance. Differences with the
previous non-resonant case will become apparent in the following development.

Each of these cases will be treated separately.

Case 1- Resonance In deep resonance or shallow resonance, the commensurability
of the mean motion with the planet rotation rate introduces a new slow variable that
can be revealed in Eq. 11 by introducing the resonant node ψ . It is defined as

ψ � Pλ − Qθ. (13)

This definition of the node is consistent with the equinoctial elements in that it is
non-singular for orbits that are circular or have inclinations below 180◦. However,
for missions where repeating ground tracks are relevant, this definition is not as use-
ful as the following that accounts for the fact that the orbital plane and the line of
apsides precess when orbiting an oblate central body. This form of the node, called
the stroboscopic node ψs by Gedeon [26], is defined using

ψs � P (λ − �) − Q(θ − �) (14)

where it should be noted thatψs becomes undefined for equatorial orbits (in this event
use of the resonant node, given in Eq. 13, should be made). A particular quantity of
interest to repeating ground track orbits is the separation between two consecutive
equator crossings, called the ground track shift λs , and is found using

λs = PN

(
θ̇ − �̇

)
(15)

where the nodal period PN of the orbit is approximately

PN
∼= 2π

Ṁ + ω̇
= 2π

λ̇ − �̇
. (16)

The condition on λs for a ground track to repeat every Q orbits in P days is given by

Qλs = 2πP, (17)

which is equivalent to the following condition

P
(
λ̇ − �̇

)− Q
(
θ̇ − �̇

) = 0 → ψ̇s = 0. (18)

Hence the stroboscopic node is stationary for an exactly repeating ground track.
Reformulating Gauss’ equations with a change of variables using these two defini-
tions is now examined.

First, examine a change of variable to Gauss’ equations in Eq. 7 using the resonant
node ψ definition given in Eq. 13. Executing the change of variable leads to a new
variation of parameter formulation that takes the form

[
α̇

ψ̇

]
=
⎡
⎢⎣

∂α
∂ ṙ · ∑

ρ∈P
δr̈ρ

Pn (a) − Qθ̇ + P ∂λ
∂ ṙ · ∑

ρ∈P
δr̈ρ

⎤
⎥⎦ (19)
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where, in resonance or near resonance, Q and P have been selected to satisfy the
following property

ψ̇ = P λ̇ − Qθ̇ = P
(
n + ω̇ + �̇

)− Qθ̇ = O (ε) . (20)

Note that the change of variables is a generic change to the system; no restriction
to only tesseral harmonics being active in Eq. 19 has been made. Hence, if other
perturbations (i.e., zonal harmonics, other bodies, drag, and solar pressure) are active
they will also participate in the new system of equations as indicated in Eq. 19. This
change of variables has eliminated theO (1) dependence on the isolated mean motion
resonance, and now all of the components of the right hand side of Eq. 19 areO (ε) or
higher. To affect the change of variable in the acceleration expressions δr̈ρ in Eq. 19
the following expressions prove convenient

θ(t) = − 1
Q

ψ(t) + P
Q

λ(t),

λ(t) = n(t − to) + λo.
(21)

For all perturbations other than the tesseral harmonics, this change of variable has no
impact on the acceleration because they have no dependence on the sidereal angle;
only the tesseral harmonics require a special treatment for this change of variable.
Hence, going forward with the analysis in this section the perturbation expressions
have been restricted to only the tesseral harmonics. Given that, converting the argu-
ment to the exponential in Eq. 11 to a resonant node formulation via substituting
Eq. 21 into Eq. 11 yields

jλ (t) − mθ (t) =
(

j − m
P

Q

)
λ(t) + m

Q
ψ(t) = (jQ − mP)

λ(t)

Q
+ m

Q
ψ(t) (22)

and produces the following explicit expression for the tesseral harmonics

ε

[
fα,T (α, ψ, λ)

f ψ,T (α, ψ, λ)

]
=
[

∂α
∂ ṙ · δr̈T

P ∂λ
∂ ṙ · δr̈T

]
=

∞∑
j=−∞

l∑
m=1

P�fTjm(α) exp i

[
m

Q
ψ

]
exp i

[
(jQ − mP)

λ

Q

]

(23)

where P ≡ {1, 1, 1, 1, 1, P }, and � is the element-wise product of the two vectors P
and fTjm(α). Near a resonance the resonant node is a slowly varying variable by the
property in Eq. 20 and the mean longitude continues to be the fast variable.

In a first order formulation of averaging, the node is treated as a constant, and the
mean longitude is averaged using

ε

[
f̄
α,T

(α, ψ)

f̄ ψ,T (α, ψ)

]
≡ 1

2πN

Nπ∫
−Nπ

∞∑
j=−∞

l∑
m=1

P � fTjm(α) exp i

[
m

Q
ψ

]
exp i

[
(jQ − mP)

λ

Q

]
dλ

= 1

2πN

∞∑
j=−∞

l∑
m=1

P � fTjm(α) exp i

[
m

Q
ψ

] Nπ∫
−Nπ

exp i

[
(jQ − mP)

λ

Q

]

= Q

πN

∞∑
j=−∞

l∑
m=1

P � fTjm(α) exp i

[
m

Q
ψ

] sin [N
Q

π (jQ − mP)
]

jQ − mP
. (24)
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where the integral number N of the averaging operation is indeterminate at this point.
If N is assumed to be equal to Q then the following average results

ε

[
f̄
α,T

(α, ψ)

f̄
ψ,T

(α, ψ)

]
=

∞∑
j=−∞

l∑
m=1

P � fTjm(α) exp i
[

m
Q

ψ
]
, N = Q, mP = jQ

ε

[
f̄
α,T

(α, ψ)

f̄
ψ,T

(α, ψ)

]
= 0, N = Q, mP �= jQ

.

(25)

which is consistent with McClain’s [6] findings. Equation 25 illustrates that terms
satisfying mP = jQ are resonant long-period terms and survive the averaging, and
those terms with mP �= jQ are short periodic and average to zero. Note that for
the zonal terms (m = 0) only the j = 0 terms survive the averaging. However, in
a numerical averaging approach performing the quadrature over N integral periods
can be computationally prohibitive. This motivates further investigation of Eq. 24.
Setting N = 1 reveals the following

ε

[
f̄
α,T

(α, ψ)

f̄ ψ,T (α, ψ)

]
= Q

π

∞∑
j=−∞

l∑
m=1

P � fTjm(α) exp i
[

m
Q

ψ
] sin[ π

Q (jQ−mP)
]

jQ−mP
, N = 1 .

(26)
Examining this result shows that some terms in the argument for sine will be frac-
tional and survive, hence contributing short periodic terms. However, if the values for
m are restricted to those that are integral multiples of Q (i.e., setting m = rQ where
s is an integer), then the averaging isolates the long period terms (i.e., those that sat-
isfy j = sP ) and still, appropriately, eliminates the short periodic terms (i.e. those
that satisfy j �= sP ). This is expressed as follows

ε

[
f̄
α,T

(α, ψ)

f̄ ψ,T (α, ψ)

]
= ∑

s<int (l/Q)

P � fT(sP )(sQ)(α) exp i [sψ] , N = 1, m = sQ, j = sP, s < int (l/Q)

ε

[
f̄
α,T

(α, ψ)

f̄ ψ,T (α, ψ)

]
= 0, N = 1, m = sQ, j �= sP

.

(27)

The practical procedure for restricting m = sQ is to explicitly eliminate from
consideration those coefficients {Clm, Slm} from the gravity field that do not satisfy
the condition before the averaging operation. For example, in a 4 x 4 gravity field and
a Q : P = 2 : 1 resonance (i.e., a 12 hr Earth orbiter) the tesseral Clm terms retained
in the field would be {C22, C32, C42, C44} while the Clm terms that are set to zero
would be {C21, C31, C33, C41, C43}. Similar results apply for the Slm coefficients.
This procedure of setting appropriate terms in the field to zero, and averaging over
the interval −π < λ < π yields a more efficient numerical averaging procedure.
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Now turning to the repeating ground track formulation using the stroboscopic node
ψs as defined in Eq. 14, an appropriate change of variables to Gauss’ equations yields

[
α̇

ψ̇s

]
=
⎡
⎢⎣

∂α
∂ ṙ · ∑

j∈P
δr̈j

Pn (a) − Qθ̇ + P ∂λ
∂ ṙ · ∑

j∈P
δr̈j + (P − Q) ∂�

∂ ṙ · ∑
j∈P

δr̈j

⎤
⎥⎦ . (28)

The appearance of the longitude of the ascending node in Eq. 28 has not introduced an
additional independent variable because it can be related to the equinoctial elements
via the following

sin� = p√
p2+q2

,

cos� = q√
p2+q2

,

�̇ = qṗ−pq̇

p2+q2
,

∂�
∂ ṙ = q

p2+q2
∂p
∂ ṙ − p

p2+q2
∂q
∂ ṙ .

(29)

Following a similar process as with the resonant node, it can be shown that the func-
tional form of the equinoctial rates due to the non-spherical gravity harmonics as a
function of the stroboscopic node ψs and the other equinoctial elements takes the
form

ε

[
fα,T (α, ψs, λ)

f ψ,T (α, ψs, λ)

]
=
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p,T
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q,T
jm (α)

)]
×

exp i
[
m
(

1
Q

ψs + P−Q
Q

�
)]

exp i
[
(jQ − mP) λ

Q

]
⎫⎬
⎭

(30)

where 1 � {0, 0, 0, 0, 0, 1}. The resulting equation has the same functional depen-
dency on the mean longitude as in Eq. 23. Continuing with the averaging analysis in
the same fashion as was done for the resonant node yields a result that is similar in
form to Eq. 27, that is

ε

[
f̄
α,T

(α, ψs)

f̄ ψ,T (α, ψs)

]
= ∑

s<int(l/Q)

[
P � fT(sP )(sQ)(α) + 1 �

(
(P−Q)q

p2+q2
f

p,T

(sP )(sQ)(α) − (P−Q)p

p2+q2
f

q,T

(sP )(sQ)(α)
)]

× exp i [r (ψs + (P − Q) �)] , N = 1, m = sQ, j = sP, s < int (l/Q)

ε

⎡
⎣ f̄

α,T
(α, ψs)

f̄ ψ,T (α, ψs)

⎤
⎦ = 0, N = 1, m = rQ, j �= sP

(31)

The same restriction on the included gravity field terms applies, namely restricting
to those degree terms that conform to m = sQ.

Case 2 – Non-Resonant: When both the mean longitude and sidereal rate are of
the same order and not resonant, Eq. 11 can be examined directly with a focus on the
tesserals only (m �= 0). Note that terms with j = 0 yields terms with frequencies of
mθ̇ (at Earth these are called the ‘m-dailies’), which for tesserals {Cl1, Sl1} produce
oscillatory effects at the same frequency as the planet rotation; often a lower fre-
quency than the spacecraft orbit frequency but still ‘fast’ enough to justify averaging.
The averaging operator that is appropriate is a double average over the two angles;
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performing this average yields

ε

[ ¯̄fα,T
(α)

¯̄f λ,T (α)

]
≡ 1

4π2

π∫
−π

π∫
−π

∞∑
j=−∞

l∑
m=1

fTjm(α) exp i [jλ − mθ]dλdθ

= 1

4π2

∞∑
j=−∞

l∑
m=1

fTjm(α)

π∫
−π

exp i [jλ]dλ

π∫
−π

exp i [−mθ ]dθ

= 0. (32)

Clearly, the non-resonant tesseral harmonics yield no long period or secular effects
on the orbit. That is, the tesserals introduce only short period terms that are multiples
of the mean longitude and the sidereal rate. The result in Eq. 32 leads to the following
conclusion: For satellite orbits that do not have significant mean motion resonances
and θ̇ = O (1) , average over only the zonal harmonic terms and explicitly exclude
the tesseral harmonics in the mean element propagation.

Case 3 - Adiabatic (or Two Time Scales): This case is also non-resonant, but now
θ̇ � λ̇ such that θ̇ can be considered constant (or adiabatic) over the averaging
interval of the mean longitude. As such, no change of variables is required and Eq. 11
can be examined directly (with the zonals included)

ε

[
f̄
α,T

(α, θ)

f̄ λ,T (α, θ)

]
≡ 1

2π

π∫
−π

∞∑
j=−∞

l∑
m=0

fTjm(α) exp i [jλ − mθ]dλ,

= 1

2π

∞∑
j=−∞

l∑
m=0

fTjm(α) exp i [−mθ ]

π∫
−π

exp i [jλ]dλ,

=
l∑

m=0

fT0m(α) exp i [−mθ]. (33)

With the mean longitude eliminated the numerical propagator’s step size is deter-
mined by the terms with mθ̇ (assuming the other angular rate terms perturbing α

remain of O (ε)), and as m increases the frequencies increase. If the coefficients of
these terms fTjm(α) do not diminish fast enough, then they could cause the numer-
ical propagator to select small step sizes and diminish the utility of the numerical
averaging method. Clearly the presence of these frequencies depends on the order
m of the gravity field that an analyst has included in their analysis – the higher the
order the more abundant the higher frequency terms. This indicates the need to per-
form another average over selected terms in Eq. 33; however a more direct method
is to simply limit the order of the gravity field to ensure short period terms from the
sidereal rotation have been eliminated. Later examples with Venus will illustrate the
procedure.

Example of Case 1 Consider a Mars orbiter that is in a deep 2:1 resonance with
Mars’ rotation rate. The initial conditions and associated parameters are indicated
below in Table 3. The orbit was selected to have a repeating ground track with initial
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Table 3 Initial conditions4 and parameters for Mars resonant orbiter example

Initial Osculating {a, e, i,�, ω,M} {12866.984 km, 0.1630, 55.00◦, 139.00◦, 269.75◦, 45.00◦}
Initial Mean {a, e, i,�, ω,M} {12868.619 km, 0.1631, 55.00◦, 138.99◦, 269.76◦, 44.99◦ }
Epoch January 1, 2000 12:00:00 ET

Duration 5 years

{C2 · · · C20, S2 · · · S20} MGS75E gravity field [7]

μ 42828.377043 km3/sec2

Frames IAU 2000 Mars Pole and Mars Fixed

stroboscopic node to induce a libration near a stable fixed point in the semi-major
axis stroboscopic node phase space (see Ely [1] for a discussion of this phase space
phenomenon). Furthermore, the selected inclination induces a critical inclination-like
effect where the line of apsides oscillates, in this case between 269.5◦ and 269.9◦
with a period of ∼ 20 years. A surprising result is the inclination, at 55◦, is much
lower than is typical of critically inclined orbits at Earth.

For the numerical average computations, the 20×20 field is restricted to include
only those orders that are multiples of Q = 2 (as required in the preceding the-
ory). The numerical averaging results (labeled ‘mean’) and the associated osculating
results (labeled ‘osc’) are shown in Fig. 2. The figure contains two subplots, the
top plot is the (a, ψs) phase plane showing the expected libration between the mean
semi-major axis and the mean stroboscopic node with period near 200 days, and the

Fig. 2 Semimajor axis solution for an elliptical and inclined Mars orbiter in a 2:1 resonance
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bottom plot is the ground track. The mean element solution correctly captures the
resonant, long-period motions without the ‘blur’ associated with short periodic oscil-
lations present in the osculating trajectory. Also note that in the ground track plot
(bottom), the mean orbit overlays the osculating orbit so that they are indistinguish-
able at the resolution of the plot. In fact, the repeating ground track of the mean orbit
design could be further refined via additional iterations on initial values for (a, ψs)

that approach the fixed-point solution with near zero amplitude oscillations in the
phase space. This would be difficult to do with the osculating orbits because even at
an exact mean-fixed point the osculating solution oscillates around this point.

Tabular results of the propagation performance are presented in Table 4. Two dif-
ferent mean element propagations were executed, one with an 80th-order Gaussian
numerical quadrature and the other with CUBPACK set to an absolute tolerance of
1.0E-10 and a relative tolerance of 1.0E-7. The numerical integration tolerance for
all propagations, mean and osculating, was set to 1.0E-10. Relative to the zonal-
only results given in Table 2 the performance benefit of the averaging is not as
pronounced. Nonetheless when doing parametric design, Monte Carlo studies, or
any orbit propagation process that involves large number of propagations such a
speed up can become significant. As with the zonal-only results, Gaussian averaging
retains a relative performance advantage over CUBPACK averaging; hence, a design
process combining both techniques would prove to be most effective. In fact, a pro-
cess of comparing Gaussian averaged results with different quadrature orders with
a CUBPACK-based result until the trajectory differences are minimized would lead
to a minimally sufficient Gaussian quadrature order. This order would be sufficient
to capture the fastest short period terms with the most significant amplitudes, while
relegating terms with even faster periods and smaller amplitudes as being insignifi-
cant. Finally, for comparison, the orbit specified in Table 3 was also propagated using
the semi-analytical propagation tool developed by Kwok [9]. The results (not shown
in the figure) were identical to within the single precision output level of the semi-
analytic tool. The propagation speed was 2.2 seconds thus; in this case, the two tool’s
propagation efficiency was commensurate.

Table 4 Comparison of numerically averaged EOMs 5-yr propagation to osculating EOMs for the Mars
resonant orbiter

Mean Mean Osculating

Gauss CUBPACK

Fixed Order 80 1.E-10/1.E-7

Mean Step Size 10.1 10.1 0.010

(# orbital periods)

# of Function Calls 56,320 102,765 715,794

CPU Time (secs) 2.6 4.7 20.3

Speed-Improvement Factor 8 4

(osculating/mean CPU time)
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Table 5 Initial conditions and parameters for Venus orbiter example

Initial Osculating {a, e, i,�, ω,M} {10082.179 km, 0.375, 85.000◦, 51.831◦, 10.036◦, 0.000◦}
Initial Mean {a, e, i,�, ω,M} {10082.121 km, 0.375, 85.000◦, 51.831◦, 10.039◦, 0.000◦ }
Duration 10 years

{C2 · · · C10, S2 · · · S10} MGNP180U gravity field [28]

μ 324858.77 km3/sec2

Frames IAU 2000 Venus Pole and Fixed

Example of Case 3 with θ̇ � λ̇ Consider an orbiter at Venus with initial con-
ditions similar to the Magellan orbiter as given below in Table 5. Two scenarios
are examined. In the first scenario the numerical averaging technique will include
only the zonal harmonics through degree 10, and in the second scenario the full
10×10 field will be included. The osculating propagation will include the 10×10
field in both propagations. Recall, that the Venus’ sidereal rate is slow (with a 243-
day period), hence can be treated as a slowly varying variable in the EOMs and
retained in the mean element propagation. Results of a 10-year propagation for the
eccentricity are shown in Fig. 3. The mean and osculating solutions with the full
10×10 field overlay each other (their differences shown in the right plot), while
the mean solution with only the zonals (10×0) exhibits only a secular-like behavior
on this time scale. Indeed, 200-year propagations (not shown) yield an eccentricity
behavior that is indeed long-period (and not secular). The difference between the
results illustrates the tesseral harmonics long-period effects (on scales of hundreds of
days) are small relative to the 0.03 eccentricity change induced by the zonals over the
10-year period. Here the zonals are sufficient for capturing the long-term motion of
the satellite. The numerical averaging in both mean cases used CUBPACK set to an
absolute tolerance of 1.0E-10 and a relative tolerance of 1.0E-7. Both averaging cases
were faster than their osculating counterpart with the results shown in Table 6. The

Fig. 3 Eccentricity solutions for a Venus orbiter. Note that the ‘mean with a 10x10 field’ (green) and ‘osc
with 10x10 field’ (blue) solutions overlay each other with their differences shown in plot at the right. The
‘mean with 10x0 field’ (red) solution appears secular in this time scale without any apparent long period
motion. Differences between the osculating with 10 x 10 field (blue) and mean with 10 x 10 field (green)
shown at right
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numerical integration tolerance for all propagations, mean and osculating, was set to
1.0E-10. In this example, the zonal-only solution provides a sufficient representation
of the long period motion and provides an extremely efficient model for orbit design.
As has been seen in the prior cases, using a properly selected Gaussian numerical
averaging would further improve efficiency. Indeed, a zonal-only case with Gaussian
order 48 averaging ran in 0.26 seconds.

Other Body Perturbations

Perturbation accelerations from another celestial body can be modeled with the
following expression

δr̈O = μO

(
rC→O − r∣∣rC→O − r

∣∣3 − rC→O∣∣rC→O
∣∣3
)

(34)

where rC→O is the vector from the central body to the perturbing body and μO is the
gravitational constant of the perturbing body. If there are several perturbing bodies
then Eq. 34 applies to each body and the total acceleration is generated via summing
the individual contributors. Clearly, Eq. 34 indicates a dependency on both the state
of the satellite and the other body. This introduces a time dependency that impacts
the averaging process and stems from the orbital motion of the other body. Typically,
the associated orbital motion is slow and the other body’s position can be treated as a
constant over the satellite’s mean longitude averaging interval. As the period reduces,
there is a resultant reduction in the integrator step size to accommodate the increas-
ing frequencies present in the single averaged equations. If the frequencies get too
large, a second average over the other bodies mean longitude may be warranted. The
choice to do this is dependent on the specific problem being analyzed. As with the
tesseral harmonics, an explicit Fourier expansion in the equinoctial elements can be

Table 6 Comparison of numerically averaged EOMs 10-yr propagation to osculating EOMs for the Venus
orbiter

10x0 Field 10x0 Field 10x0 Field

Mean Mean Osculating

CUBPACK CUBPACK

1.E-10/1.E-7 1.E-10/1.E-7

Mean Step Size 533.2 13.7 0.006

(# orbital periods)

# of Function Calls 22,065 983,280 8,972,072

CPU Time (secs) 0.9 34.6 196.2

Speed-Improvement Factor 218 6

(osculating/mean CPU time)
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performed with an example of a specific expansion in equinoctial elements devel-
oped by Giacaglia [29]. A formal expansion in the satellite’s mean longitude λ and
the other body’s mean longitude λO (of its apparent orbit around the central body)
takes the form

ε

[
fα,O

(
α, λ, λO

)
f λ,O

(
α, λ, λO

)
]
�
[

∂α(x)
∂ ṙ · δr̈O (x)

∂λ(x)
∂ ṙ · δr̈O (x)

]
=

∞∑
j=−∞

∞∑
t=−∞

fOjt (α)ei(jλ−tλO). (35)

Compared to Eq. 11, this result is very similar to the tesseral case with a few subtle
differences that will be explored. For most practical situations there are no sig-
nificant resonances between the two mean longitude rates. Examination of Eq. 35
shows that there exist some combinations of {j, t} that result in a resonance. But
as j or t increase, the coefficients fOjt (α) diminish in magnitude for a conver-
gent Fourier series. These higher resonances are not significant in most situations
on time scales of order O (1/ε) (again these statements can be made more pre-
cise via using the KAM theorem). Hence, resonances with other bodies will not be
considered further. With this elimination, there are two distinct cases that need to
be examined:

1. Adibatic Single Average Case: The other body mean longitude rate is sufficiently
slow λ̇O � λ̇ such that λ̇O = O (ε), as will be seen this case involves the typical
single average over the satellite’s mean longitude λ.

2. Non-Adiabatic Double Average Case: The other body mean longitude rate is still
slow λ̇O < λ however the order of the rate is not distinctly between zeroth and
first; that is, O(ε) < λ̇O < O(1). In this scenario a second average over the
other body’s mean longitude λO may be warranted.

Case 1 – Adiabatic Single Averaging Since the other body’s mean longitude rate is of
O (ε) this case is equivalent to the adiabatic Case 3 for tesseral harmonics. A single
average over the satellite’s mean-longitude λ yields

ε

[
f̄
α,O (

α, λO
)

f̄ λ,O
(
α, λO

)
]

≡ 1

2π

π∫
−π

∞∑
j=−∞

∞∑
t=−∞

fOjt (α) exp i
[
jλ − tλO

]
dλ =

∞∑
t=−∞

fO0t (α) exp i
[
−tλO

]
.

(36)

where, noting that λO ≈ nO(t)t + λO
o , shows that the single average still

results in a non-autonomous system due to the motion of the other body. The
numerical propagator will select a step size that depends on the remaining sec-
ular terms, long period terms, and those terms with significant frequencies that
are integral multiples of nO (t). In many situations, this first average over the
satellite’s mean longitude is sufficient for an efficient propagation. Indeed, per-
turbations from the Sun almost never need a double average – the single average
suffices.
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Case 2 – Non-Adiabatic Double Averaging In this case, the other body’s mean
longitude rate is becoming significant (however still less than spacecraft mean lon-
gitude rate). The practical consequence of this is the numerical integration with
the single average is beginning to select smaller step sizes to accommodate the
higher frequency terms present from the mean motion of the other body. At some
point it may become warranted to perform a second average over λO to elim-
inate the dependence on it. This can be performed formally with the following
result

ε

[ ¯̄fα,O (α)
¯̄f λ,O (α)

]
≡ 1

2π

+π∫
−π

∞∑
t=−∞

fO0t (α) exp i
[
−tλO

]
dλO = fO00(α). (37)

This result contains only terms with long period or secular frequencies. Unlike
the expression for the central body spherical harmonics that conveniently sepa-
rates into zonal (i.e., no dependency on the central body’s sidereal angle) and
tesseral terms, the expression in Eq. 34 cannot be similarly separated. For the
non-resonant tesseral harmonics case (Case 2) this separation allowed the averag-
ing process to operate only on the zonals and eliminated the tesseral harmonics
altogether. No such separation exists here so to eliminate the other body mean lon-
gitude requires a double average on the system of equations in Eq. 34. The effect
of a single average versus double average is now examined for the lunar orbiter
case.

Example 2 Consider the same low altitude lunar orbiter as presented earlier in
Table 1 except perturbations from the Earth and Sun are included. As an initial
investigation, both the Earth and Sun are modeled with two-body orbits with ini-
tial elements defined from DE421 at the J2000 epoch [30]. The e-ω phase space
results are shown in Fig. 4 for a 5-yr propagation of the numerically single aver-
aged EOMs that include only the zonal perturbations (labeled ‘Zonal Single Avg’
– a repeat of the first example); a single averaged propagation that includes zonals
and the Earth/Sun perturbations (labeled ‘Single Avg’) using a 130th-order Gaus-
sian quadrature; a double average propagation (labeled ‘Double Avg’) with zonals
and Earth/Sun perturbations where the Earth is double averaged using a 130 ×20
order Gaussian cubature and the Sun is single averaged using a 130th-order Gaus-
sian quadrature; and, finally, a direct propagation of the osculating EOMs (labeled
‘Osculating’). All propagations used a 1.0E-10 integration tolerance.

The libration oscillation is clearly evident, but significantly different than the prior
zonal-only case. The interaction of the Earth and Sun perturbations has caused the
libration motion to be ‘lower’ in eccentricity space, and not close as with the zonal-
only case. Using the ‘Osculating’ result as a reference, both the ‘Single Avg’ and
‘Double Avg’ cases capture the correct qualitative dynamics. Tabular results of the
propagation performance are presented in Table 7. The results illustrate the inclu-
sion of the other body perturbations significantly increases the number of required
function calls for both the single average and double average cases as compared to
the zonals-only. Relative to the osculating results, both averaged solutions are more
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Fig. 4 Argument of periapsis and eccentricity phase space of lunar orbiter that includes other body
perturbations from the Sun and Earth

efficient; however, the double average did not improve sufficiently over the single
average to warrant its use. This might seem counterintuitive since the propagator’s
average step size has increased, but the additional computational expense of a 2-d
averaging required more overall function calls in this problem.

Table 7 Comparison of numerically single/double averaged EOMs 5-yr propagation to osculating EOMs

Zonal-Only Zonals, Earth, Zonals, Earth, Zonals, Earth,

and Sun and Sun and Sun

Single Average Single Average Double Average Osculating

Gauss Gauss Gauss

Fixed Order Fixed Order Fixed Order

130 130 130 ×20

Mean Step Size 228.5 5.9 20.1 0.002

(# orbital periods)

# of Function Calls 24,960 1,937,520 7,501,000 39,383,884

CPU Time (secs) 1.2 67 316 747

Speed-Improvement Factor 447 11.2 2.4

(osculating/mean CPU time)
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Solar Radiation Pressure

A simplified form of the perturbation accelerations from solar radiation pressure can
be modeled using

δr̈S = −PSCR

A

m

A.U.2

‖rS − r‖2
rS − r

‖rS − r‖ (38)

where

PS = Radiation pressure on a perfectly absorbing surface at 1 A.U. ∼=
4.56x10−6Nm−2,

CR = 1+γ = Solar radiation pressure coefficient,
γ = Reflectivity factor: γ =0 full absorption, γ= 1 full specular reflectiv-

ity, γ ∼ 0.4 diffuse reflectivity,
A = Spacecraft area projected in the direction of the Sun,
m = Spacecraft mass,

A.U. = Astronomical Unit= 149,597,870.7 km,
r = Position vector of the spacecraft relative to the central body,

rS = Position vector of the Sun relative to the central body.

In developing Eq. 38 it has been implicitly assumed that the normal of the cross-
sectional area A pointed in the direction of the Sun and the solar radiation pressure
coefficient CR are constant or have slow variations (i.e, Ȧ or ĊR = O (ε) and can
be considered adiabatic). For a more detailed high accuracy model development that
accounts for complex shapes and orientations the reader is directed to the textbook by
Milani, Nobili, and Farinella [31]. However, complex shapes or attitudes can intro-
duce short periodic time dependencies that can negatively impact the efficiency of a
mean element propagation. In these cases, it is appropriate to pre-average any param-
eter in Eq. 38 that might have short periodic time dependent variations and provide
the ‘mean valued’ parameters as inputs to the mean element propagation. This is jus-
tified, since short periodic effects do not impact mean element propagations on the
O (1/ε) time scale of interest.

Equation 38 conforms to the standard form given in Eq. 1 with averaged results
given by Eq. 2. However, the averaging interval is dependent on the period of time
that the spacecraft is exposed to the Sun. That is, the entry into shadow by the central
body and exit from it are defined by(

Lentry, Lexit
) = True longitudes of entry/exit, (39)

and dictate a reduced averaging interval for solar radiation pressure as follows

δ ˙̄xS = 1

2π

L̄+Lentry∫

L̄−Lexit

∂x
∂ ṙ

· δr̈S dλ

dL
dL. (40)

The solution to Eq. 40 assumes a cylindrical shadow with the Sun being modeled as a
point light source. Higher fidelity models exist for a Sun modeled as a finite size body
that yield penumbra regions of partial shadowing and umbra regions of full shadow;
however, calculating these regions is computationally expensive and result in mean
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element propagations that are slower than their osculating counterparts. Given that
typical penumbra regions are much smaller relative to the umbra and fairly symmetric
(hence averaging to a near-cylindrical shadow result), the cylindrical model is suffi-
cient for predicting mean solar pressure effects. The algorithm used for calculating
the limits specified in Eq. 39 is standard and exists in numerous sources. A version
that is adapted to the equinoctial elements and implemented in the current study has
been documented by Danielson et al. [21].

Atmospheric Drag

Perturbation accelerations from atmospheric drag can be modeled as follows

δr̈D = −1

2
CD

A

m
ρ (rB; β) vB • vB

vB

‖vB‖ (41)

where the parameters are defined as,

CD = Drag coefficient,
A = Spacecraft area projected in the direction of the spacecraft body fixed

velocity vector vB ,
vB = Velocity relative to the fixed frame of the center body,
m = Spacecraft mass,

ρ(rB; β) = Atmospheric densityfunction of the body fixed position vector rB and
parameters β.

As with the solar pressure acceleration discussed previously, the drag acceleration
in Eq. 41 conforms to the standard form given in Eq. 1 with averaged results given by
Eq. 2 provided that the drag coefficient CD , spacecraft drag normal area A, and the
parameters of the density function β are constants, or vary slowly with O (ε) time
rates of change. As an example, an acceptable time variation in density would be a
multi-year dependency due to long term solar flux cycle variations; while an unac-
ceptable one would have a daily density variation (which would result in a significant
loss in efficiency for a mean element propagation). Also, as with the solar pressure,
it is appropriate to pre-average any parameter in Eq. 41 that might have short peri-
odic time dependent variations and provide the ‘mean valued’ parameters as inputs
to a mean element propagation.

For eccentric orbits the spacecraft will enter and exit the atmosphere on each orbit,
for efficiency the averaging operation should be limited to the period of the orbit that
is in the atmosphere. This condition can be specified as the radial distance rA to the
top of the atmosphere (which is assumed larger than the periapsis radius rP of the
satellite) and then finding the limits in the true longitude that represent the entry/exit
points (LEN, LEX). The first order mean rates for the atmospheric drag then take the
form

δ ˙̄xD = 1

2π

L̄+LEX∫

L̄−LEN

∂x
∂ r

· δr̈D dλ

dL
dL (42)
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where

LEN = −fA + ω + �,

LEX = fA + ω + �,

fA = arccos

[
a

rA

(
1 − e2

e

)
− 1

e

]
. (43)

Of course, if the eccentricity is sufficiently small then the satellite is always in the
atmosphere and the limits are restored to

(
L̄ − π, L̄ + π

)
.

Lifetime studies of spacecraft in an atmosphere have shown that a correction to the
altitude for the density calculation in Eq. 42 must be made. The correction originally
found by Izsak [32] and then shown by Green [33] to be a 2nd-order coupling between
drag and J2 takes the form

�h = J2R
2
CB

4a
(
1 − e2

)
[
sin2 i cos 2 (f + ω) +

(
3 sin2 i − 2

)(
1 + e cos f

1 + √
1 − e2

+ 2
√
1 − e2

1 + e cos f

)]

(44)

where the correction �h is added to the calculation of height above the central body
in evaluating the density ρ (rB; β).

Example 3 This example considers the orbit lifetime prediction of the Mars Odyssey
orbiter. The atmospheric model used for the analysis has been developed by
Vincent [34] and Vincent et al. [35] for use in lifetime studies of Mars orbiters. It is
a simple empirical model that has been fit to the higher fidelity MarsGRAM 2000
density model [36] and retains the essential long-term characteristics due to solar
flux variations, but eliminates short periodic dependencies. The atmospheric density
is modeled as follows

ρ = ρo10
ASz10

A11 sin
(
2π

t−t11
T11

)
10

−AA sin 2π t−tA
TA e

−
(

h−ho
H

)
(45)

where

ρo = Reference density = 1.5E-5 kg/km3

AS = Amplitude of the stochastic factor = 0.35,
z = Deviation from the mean of a random variable with a Gaussian normal

distribution,
A11 = Amplitude of the mean 11-year solar cycle term = 0.35,
t11 = Epoch in Julian Days for the solar cycle term = JD 2451057.5,
T11 = 11-year solar cycle period = 4014.1 days,
AA = Amplitude of the Martian annual term = 0.2,
tA = Epoch in Julian Days for the Martian annual term = JD 2450992.0,
TA = Martian annual period = 686.98 days,
h = Height above the Martian reference ellipsoid,

ho = Reference height = 378.1 km,
H = Scale height = 46.0 km. (46)
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For this example a 25 % atmosphere has been selected which corresponds to z =
−0.6745, and can be derived by inverting the Gaussian cumulative distribution � (z)

given by

�(z) = 1

2

[
1 + erf

(
z√
2

)]
. (47)

The Mars Odyssey orbit is ‘frozen’ with a small libration in the mean (e, ω) phase
space and is nominally several kilometers above the 25:2 tesseral resonance. Because
it is near this resonance, the stroboscopic nodal formulation described previously is
needed to capture the correct long-term mean element propagation. In this example
all of the perturbations discussed are active, including Mars’ spherical harmonics,
the Sun, solar pressure, and atmospheric drag using the density model and param-
eters given in Eqs. 45 and 46. The specific initial conditions and other associated
parameters are delineated in Table 8. Results for the propagated semimajor axis and
eccentricity are shown in Fig. 5.

Examination of the figure shows that for the first 8000 days both the osculat-
ing and mean semimajor axes decay as expected from drag; however, the libration
of the eccentricity and associated argument of periapsis (not shown) is increasing
in amplitude. After 8000 days, the decay with the semi-major axis is arrested and a
long-period oscillation indicative of a deep resonance sets in. The eccentricity and
argument of periapsis no longer librate; in fact, the mean argument of periapsis begins
to circulate. The orbit has effectively been captured into a 25:2 deep tesseral res-
onance with Mars at the expense of ‘losing’ its frozen characteristic. This persists
for much of the remaining 70 years, but at ∼ 24000 days the orbit exits the 25:2
resonance with the semi-major axis beginning to decay again. The mean element
propagation continues, but at a sufficient distance away from the 25:2 resonance
the equations of motion should be reformulated to be non-resonant because of the
assumption of a quasi-static stroboscopic node. To do this would require monitoring
the semi-major axis distance from the deep resonance value while propagating and
reconfiguring the equations of motion based on knowledge of the location and size

Table 8 Initial conditions and parameters for Mars Odyssey long-term propagation example

Initial Osculating {a, e, i,�, ω,M} {3786.594 km, 0.0113, 93.0◦, 137.08◦, 265.55◦, 179.48◦ }
Initial Mean {a, e, i,�, ω,M} {3795.046 km, 0.0083, 93.0◦, 137.08◦, 267.31◦, 177.86◦}
Epoch January 25, 2010 1:52:57 ET

Duration 70 years

{C2 · · · C32, S2 · · · S32} MGS95j gravity field [37]

μ 42828.377043 km3/sec2

Frames IAU 2000 Mars Pole and Mars Fixed

Drag CoefficientCd 2.2

Mass m 382.7 kg

Solar normal area 9.95 m2

Drag normal area 10.18 m2
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Fig. 5 Comparison of numerically single/double averaged EOMs 5-yr propagation to osculating EOMs

of this and nearby resonances; a topic of future investigation. For the period of prop-
agation shown in these results, the stroboscopic node formulation around the 25:2
resonance is valid and the associated mean element propagation successfully captures
the key characteristics of the orbit’s long term evolution. It does so in a fraction of
the time of the osculating propagation as indicated in the performance results shown
in Table 9.
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Table 9 Comparison of numerically averaged EOMs 70-yr propagation to osculating EOMs for the Mars
Odyssey orbiter

Mean Osculating

Gauss

Fixed Order 100

Mean Step Size 8.7 0.003

(# orbital periods)

# of Function Calls 28,751,200 837,427,344

CPU Time (secs) 1,493 17,225

Speed-Improvement Factor 11.5

(osculating/mean CPU time)

Conclusions

This study presented algorithms, methods, and results for numerically averaging two-
body perturbed equations of motion to perturbations resulting from non-spherical
gravity harmonics, other bodies, solar radiation pressure, and drag. The results have
shown that the numerically averaged propagations are more efficient than their oscu-
lating counterparts in capturing secular and long period motions. The numerical
averaging technique correctly models these secular and long period motions, which
has been ascertained via comparisons to the associated osculating solutions. Future
work will focus on developing higher order corrections using numerical methods as
well as an algorithmic method for reconfiguring the EOMs for resonances as an orbit
decays.
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Institute of Technology, under contract with the National Aeronautics and Space Administration.

Appendix: Direct Equinoctal Elements And Partials

The direct equinoctial elements as functions of the classical elements
{a, e, i,�, ω,M} can be defined as

a ≡ a,

h ≡ e sin (ω + �) ,

k ≡ e cos (ω + �) ,

p ≡ tan
(

i
2

)
sin�,

q ≡ tan
(

i
2

)
cos�,

λ ≡ M + ω + �.

(48)

Some intermediate quantities are now defined. The equinoctial reference frame is
composed of three orthogonal unit vectors {f, g,w} where
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1. f and g are in the satellite orbit plane,
2. w is along the orbit normal,
3. The angle between f and the ascending node is equal to the longitude of the

ascending node �.

Using these properties the unit vectors {f, g,w}are obtained using

f = 1
1+p2+q2

⎡
⎣ 1 − p2 + q2

2pq

−2p

⎤
⎦ ,

g = 1
1+p2+q2

⎡
⎣ 2pq

1 + p2 − q2

2q

⎤
⎦ ,

w = 1
1+p2+q2

⎡
⎣ 2p

−2q
1 − p2 − q2

⎤
⎦ .

(49)

From the position r and velocity ṙ vectors the following components
{
X, Y, Ẋ, Ẏ

}
can

be computed
r ≡ Xf + Yg
ṙ ≡ Ẋf + Ẏg

→ X = r · f, Y = r · g
Ẋ = r · f, Ẏ = r · g . (50)

Finally the partials identified in Gauss’ (7) are

∂a

∂ ṙ
= 2a2ṙ

μ
,

∂h

∂ ṙ
=
(
2XẎ − ẊY

)
f − XẊg

μ
+ k (qY − pX)w

AB
,

∂k

∂ ṙ
=
(
2XẎ − ẊY

)
f − Y Ẏg

μ
− h (qY − pX)w

AB
,

∂p

∂ ṙ
= CYw

2AB
,

∂q

∂ ṙ
= CXw

2AB
,

∂λ

∂ ṙ
= −2r

A
+ k ∂h

∂ ṙ − h∂k
∂ ṙ

1 + B
+ (qY − pX)w

A
, (51)

Where the following definitions apply

A = na2 = √
μa,

B =
√
1 − h2 − k2,

C = 1 + p2 + q2. (52)
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