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Abstract The optimization of an interstellar probe trajectory using solar sailing is
investigated. With a single solar photonic assistance, solar sails can enable the sailcraft
to gain high energy to escape the solar system with a cruise speed of greater than
10 AU/year. Based on a reasonable assumption of a jettison point at 5 AU, a new
objective function with a variable scale parameter is adopted to solve the time optimal
control problem using an indirect method. A technique of scaling of the adjoint
variables is presented to make the optimization much easier than before. A comparison
between the current results and previous studies has been conducted to show the
advantages of the new objective function. In terms of the mission time, the influence
of the departure point of the sailcraft from the Earth orbit is discussed without
consideration of the Geo-centric escape phase. Another interesting discovery is that
the angular momentum reversal trajectory is achieved as a local-optimal solution in a
demonstration mission of 250 AU. Under the same initial condition, the difference
between the direct and reversal flybys is discussed in detail through numerical simu-
lations along with their advantages.

Keywords Solar sailing . Interstellar mission . Trajectory optimization

J of Astronaut Sci (2012) 59:502–516
DOI 10.1007/s40295-014-0008-y

Presented as Paper AAS 2012–234 at the AAS/AIAA 22th Space Flight Mechanics Meeting, Charleston, SC,
Jan 29-Feb 02, 2012

X. Zeng (*) : J. Li
School of Aerospace, Tsinghua University, Beijing 100084, China
e-mail: zxy0985@gmail.com

J. Li
e-mail: lijunf@tsinghua.edu.cn

K. T. Alfriend : S. R. Vadali
Department of Aerospace Engineering, Texas A&M University, College Station, TX, USA

K. T. Alfriend
e-mail: alfriend@aero.tamu.edu

S. R. Vadali
e-mail: svadali@tamu.edu



Introduction

The interstellar probe mission is to place a spacecraft on a heliocentric escape trajectory
that will reach 100 to 1,000 Astronomical Units (AU) in a reasonable mission time [1].
Investigation of the heliopause and outer solar system will benefit the understanding of
the nature of the interstellar medium, and its implication for the origin and evolution of
matter in the Galaxy. With the long-term mission flying of Voyager spacecraft and the
launch of New Horizons in 2006, the concept and mission design of the interstellar
probe mission are being reconsidered by the science community. With the first suc-
cessful flying of sailcraft IKAROS [2] launched by Japan and the recent Nano-Sail D
launched by NASA, solar sailing is now seen as one of the most potential propulsion
systems for the deep space exploration missions. Compared to the velocity of 3 AU per
year (AU/Y) for the Voyager spacecraft, a cruise speed of more than 10 AU/Y for
relatively mid performance solar sails is attractive for most scientists [3]. Using a short
inner-loop about the Sun solar sails can dramatically accelerate the sailcraft to cruise
speeds. The state of art of the sail technologies still cannot make such an innovative
mission realistic. Looking further ahead, it is important and significant that feasibility of
the potential future mission should be estimated and discussed along with the critical
technologies.

Since solar sails consume no fuel the optimization performance index is usually
minimization of mission time or maximization of the required sail acceleration.
Generally, in many cases, these two conditions are equivalent [4, 5]. For estimating
future solar sail technology requirements, many scientists investigated the feasibility of
interstellar probe missions using a time-optimal control model. With a reasonable
assumption of a jettison point at 5 AU, a parametric study to 100, 250 and 1,000 AU
was conducted by Sauer [1] using a single solar flyby with respect to highly different
characteristic accelerations. Shortly after, Dachwald [6] restudied the problem by using
relatively low performance solar sails (generally, solar sails with an acceleration greater
than 3 mm/s2 are referred to as high performance sails [7]). The temperature limit and
different sail models were taken into account in his paper to give a more accurate
estimation of such missions. However, to the authors’ knowledge, the objective
functions presented in all previous analyses only involved the final time at the
jettison point to estimate the minimum time of the whole mission. Therefore, the
results are not global-time-optimal solutions and could be improved. Meanwhile,
although examining each flyby trajectory for a number of values of escape energy
would be prohibitive [1], the influence of the departure point from the Earth orbit with
zero hyperbolic excess velocity (C3=0 km

2/s2) for such a long duration mission should
also be taken into consideration.

For the investigation of interstellar missions a new objective function that minimizes
the mission time for a given characteristic sail acceleration is proposed. An important
contribution is identifying the advantages of the new objective function that leads to an
improved time-optimal solution within the current assumptions. The optimal control
model in the Heliocentric Inertial Frame is presented in non-dimensional units. An
indirect method is adopted to calculate the optimal control laws that minimize the
mission time. As it is difficult to obtain the appropriate initial values of the adjoint
variables that yield the optimal control law, a technique of scaling the adjoint variables
is introduced in the optimal control model. After derivation of the optimal control
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framework, a detailed comparison between the current work of this paper and Sauer’s
result is given in the discussion of numerical simulations. Regardless of the geocentric
escape trajectory, the departure point of the sailcraft from the Earth orbit is considered
for the 100 AU demonstration mission. Unlike rendezvous missions the jettison
direction of the interstellar probe is not specified and is determined from the optimi-
zation routine. The above discussions are for a relatively mid performance solar sail to
reach 100 AU in a reasonable mission time. The last involved case illustrates a 250 AU
interstellar mission with a sail of lightness number 0.75. There is an interesting
discovery that the angular momentum reversal trajectory [8, 9] is a local optimal
solution for such missions. Hence, it is unnecessary to reverse the angular momentum
for the spacecraft to gain high energy in the optimized sail orientation. This result is
consistent with Sauer’s and gives a clear vision about the two types of solar escape
trajectories in the optimal control model. The angular momentum reversal mode
addressed in Ref. [8] is an alternative for escaping the solar system with the advantage
of fixed sail orientation in the whole heliocentric escape trajectory. It was rarely
proposed as stated in Ref. [9] due to the use of high performance sails. The discussion
and framework presented in this paper will provide a good estimate for the future
mission design and a new understanding of the single solar flyby.

Optimal Control Model for an Ideal Solar Sail

In this analysis the solar sail is modeled as a perfectly reflecting plane surface. The effect
of solar wind and the wrinkle of the sail are not considered. The sail lightness number β
is used to describe the solar radiation pressure acceleration, and it is expressed as

f s¼β
μ
r2

cos2αn ð1Þ

In the above equation β=1 corresponds to a sail acceleration 5.93 mm/s2 at 1 AU
away from the Sun. The parameter μ is the solar gravitational constant and n is the sail
normal vector aligned with the direction of the sail force. The variable r is the sail
distance away from the Sun, α is the angle between the sail force vector and the
sunlight direction and is called the “cone angle”. In the two-body frame all perturbation
forces are neglected and only the solar gravity and solar radiation pressure force exert
on the sail. For convenience, the dynamic equations of motion with non-dimensional
units are introduced in the ecliptic inertial frame. The distance unit is taken as the mean
Earth-Sun distance (1 AU), while the time unit is selected to fulfill the condition that
the solar gravitational constant is unitary. With such a choice, the equations of motion
then become

Ṙ ¼ V

V̇ ¼ −
1

R3 R þ β
1

R4 R⋅nð Þ2n

8<: ð2Þ

where R and Vare the position and velocity vectors of the sailcraft, respectively. Before
the journey of an interplanetary orbit the sailcraft must escape the Earth’s gravity. In
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principle the Earth escape trajectory can be attained using several modes of propulsion
before sail deployment or the sail can be used to escape the Earth. The interplanetary
transfer orbit does not include the geocentric orbit and all trajectories calculated in this
paper assume direct insertion of the sail from Earth orbit at zero hyperbolic excess
speed (C3=0 km2/s2). Considering the possible influence of the departure time for the
interstellar mission, the departure time will now be investigated. The initial conditions
specified with respect to the ecliptic inertial frame are

Ψ0 t0;R t0ð Þ;V t0ð Þ½ � ¼ R0 −Re t0ð Þ
V0 −Ve t0ð Þ
� �

¼ 0 ð3Þ

where R0 and V0 are the position and velocity vectors of the sailcraft at the initial time,
respectively; Re(t0) and Ve(t0) are the Earth’s position and velocity vectors.

Within a single solar photonic assist the sail trajectory consists of three main phases.
First, the sailcraft should lower its orbit perihelion by varying the sail attitude.
Generally, the perihelion of the trajectory always has some constraints due to the
thermal limits [10] of the sail film. Second, it goes back approaching the Sun before
arriving at its perihelion. Third, as perihelion is reached, the sail is turned to a Sun-
facing attitude and is rapidly accelerated to its cruise speed [3]. According to the
dynamic characteristic of the trajectory there will be an inner constraint, which is
handled as

Ψ1 t1;R t1ð Þ;V t1ð Þ½ � ¼ R1k k− rp
VT

1R1

� �
¼ 0 ð4Þ

where t1 is the time of perihelion passage; rp is the value of the limited
perihelion; R1 andV1 are the position and velocity vectors of the sailcraft at perihelion,
respectively.

After perihelion the sailcraft rapidly accelerates to a high speed within a short
duration. Note that at a distance of about 5 to 10 AU away from the Sun the net
acceleration on the sail is very small, the orbit speed decreases very slowly as the
sailcraft maneuvers farther from the Sun. The final branch of the interstellar trajectory
can be approximated by a straight line. Strictly speaking, there is no cruise speed to a
far distant target. A pseudo-cruise speed can be reasonably adopted to reduce the
simulation effort. Throughout this paper the interstellar trajectories are all assumed
jettisoned at the lesser distance of 5 AU, an assumption that was adopted in previous
studies [1, 11] to guarantee the acquisition of science data without possible interference
from the sail. The final constraints of the sail can be written as

Ψ f t f ;R t f
� �

;V t f
� �� � ¼ R f

�� ��− r f ¼ 0 ð5Þ

where Rf is the sail position vector at the jettison point, and rf is the value of the
distance between the sail jettison point and the Sun.

Generally, the performance index in the trajectory optimization is to minimize flight
time for a given quality sail. Particularly, the flight time of an interstellar mission is one
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of the most important issues. Therefore, the real objective function of the minimum
time interplanetary transfer problem is given by

J ¼ −λ0

Z T

0
dt ð6Þ

where T is the flight time to reach the required interstellar distance Sr, such as the
heliopause. The global calculation from the starting point to Sr is usually difficult and
somewhat unnecessary. As was stated before in Eq. 5, under the reasonable assumption
of a jettison point at rf, the function (6) can be transformed to an approximation form

J≈−λ0

Z t f

0
dt þ Sr − r f

V f

�� ��
 !

¼ −λ0

Z t f

0
dt −λ0

Sr−r f
V f

�� �� ð7Þ

where ||Vf || is the magnitude of the sail final speed at the jettison point; λ0 is a positive
constant. Obviously, the value of the jettison speed will influence the flight time related
to Sr. An objective function adopted by previous studies [1] is to use only the first term
on the right side of Eq. 7

J 1 ¼ −λ0

Z t f

0
dt ð8Þ

From Eq. 7, another objective function obtained by approximation of the second
right term is equivalently written as

J 2≈λ0 V f

�� �� ð9Þ

Actually, Eq. 8 yields the minimum time transfer to the jettison point after sail
deployment, while Eq. 9 corresponds to the maximum of jettison velocity at the jettison
point. As both of these objective functions are an approximation of Eq. 7, the solutions
obtained under such functions cannot be the global time-optimal solutions. Therefore, a
new objective function is introduced in this paper as following

J 3 ¼ λ0 1− εð Þ V f

�� ��−λ0ε
Z t f

0
dt ð10Þ

where the scale parameter ε is in the interval [0, 1]. It is interesting that the objective
function J3 can be separated into another two functions with a different value of ε, e.g.
J1 with ε=1 and J2 with ε=0. The flight time among different objective functions will
be described in detail through numerical simulations. The objective function J3 will be
adopted in the following derivation of equations.

The Hamiltonian of the system is defined as

H ¼ − ελ0 þ λR tð Þ ⋅Vþ λV tð Þ ⋅ −
1

R3 R þ β
1

R4 R ⋅nð Þ2n
� �

ð11Þ
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where λR(t) and λV(t) are the adjoint variables for position and velocity. The velocity
adjoint is also referred to as the “primer vector” and defines the optimal direction for
the solar radiation force vector. The time derivative of the adjoint variables from the
Euler-Lagrange equations is

λ̇R
¼ −

∂H
∂R

¼ 1

R3 λV −
3

R5 R⋅λVð ÞR −2β
1

R4 R ⋅nð Þ n ⋅λVð Þ n−
2 R ⋅nð ÞR

R2

� �
λ̇V ¼ −

∂H
∂V

¼ −λR

8><>: ð12Þ

The optimal values of the control variables are obtained by invoking the Pontryagin
maximum principle [12] by maximizing H at any time. Under the necessary condition,
the orientation of the sail force vector will be defined as

n tð Þ ¼ argmaxH t; n;λð Þ ð13Þ

In order to maximize the Hamiltonian the solar radiation pressure force vector must
lie in the plane defined by the position vector and primer vector such that

n ¼
sin eα−α
	 

sin eα R

Rk k þ sinα

sin eα λV

λVk k if eα∈ 0;πð Þ

R
Rk k if eα ¼ 0

8>>>><>>>>: ð14Þ

In the above function α is the cone angle of the primer vector. A special case should
be pointed out that α=π indicates α=π/2, corresponding to no sail acceleration. In
fact, the optimal control of the sail is a kind of locally optimal problem [13],
which is different from the continuous low-thrust propulsion system. The reason
why λV is referred to as the primer vector is that one should align the direction
of the low-thrust along the primer vector to maximize the Hamiltonian [14].
However, such an optimal control law is not suitable for the solar sail. Maximizing
the Hamiltonian means adjusting the sail attitude to maximize the projection of the
normal vector along the primer vector. The relationship between the sail normal vector
and the primer vector is illustrated in Fig. 1, where e is a unit vector perpendicular to the
radial direction.

The transversality conditions indicate that when the initial boundary state is fixed,
the corresponding adjoints are free. When the former is free the latter is zero [12].
According to the baselines the corresponding final adjoints satisfy

λR t f
� � ¼ γ3 ⋅

∂Ψ f

∂R t f
� � ¼ γ3

R f

R f

�� ��
λV t f
� � ¼ λ0 ⋅

∂ϕ
∂V t f
� � ¼ λ0 1−εð Þ V f

V f

�� �� ð15Þ
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Remember that there is an inner constraint at the perihelion during the interplanetary
transfer. The adjoints at t1 are

λR tþ1
� � ¼ λR t−1ð Þ−γ1

R1

R1k k−γ2V1

λV tþ1
� � ¼ λV t−1ð Þ−γ2R1

ð16Þ

The superscript ‘–’ and ‘+’ are the moments just before and after a point, that is the
perihelion point here. The stationary condition relevant to the perihelion date is

H t−1
� �

−H tþ1
� � ¼ 0 ð17Þ

The final stationary condition is given by

H t f
� � ¼ −λ0

∂ϕ
∂t f

−γ f
∂Ψ f

∂t f
¼ 0 ð18Þ

where γ=[γ1, γ2, γ3] and γf are Lagrange multipliers related to the perihelion and final
time constraints. The sailcraft departs from the Earth orbit with zero hyperbolic excess
speed. The solar planets are assumed to evolve in Keplerian orbits and their orbital
elements are listed in Table 1.

Table 1 Mean orbital elements of Earth and Mars at perihelion

Planet a (AU) e i (deg) Ω (deg) ω (deg) f (deg)

Earth 0.9999880495 0.01671681 0.8854353e-03 175.406477 287.6157755 0

Mars 1.523674749 0.09343648 1.84929449 49.5383036 286.5624319 0

Sun

α
n

V

V

λ
λ

Sail

Orbit
α% R

R

R

θ

e

Sun

α
n

V

V

λ
λ

Sail

Orbit
α% R

R

R

θ

e

Fig. 1 Description of the sail optimal control law
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In this paper theminimum time control history is obtained by using an indirect method.
Since the equations of the adjoint variables are homogeneous, a solution to the equations
multiplied by a factor will also be a feasible solution. Take the Hamiltonian to be scaled to
match the transversality conditions, which can be achieved through adjusting the positive
constant λ0. After normalization the adjoint variables and λ0 can be fixed in a unit sphere
and obtained by a combination of trigonometric functions with nine angles [15].

λR t0ð Þ ¼ cosα0cosα1cosα2 cosα3cosα4; cosα3sinα4; sinα3½ �T
λV t0ð Þ ¼ cosα0cosα1sinα2 cosα5cosα6; cosα5sinα6; sinα5½ �T
γ ¼ cosα0sinα1 cosα7cosα8; cosα7sinα8; sinα7½ �T
λ0 ¼ sinα0;α0;1;2∈ 0;

π
2

	 

; α3;5;7∈ −

π
2
;
π
2

	 

; α4;6;8∈ 0; 2πð Þ

8>>><>>>: ð19Þ

With such a technique the concerned optimal control problem is transformed to the
solution of a set of algebraic equations. Importantly, the related variables in the
normalization should satisfy the following equationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2
0 þ λT

R t0ð ÞλR t0ð Þ þ λT
V t0ð ÞλV t0ð Þ þ γ21 þ γ22 þ γ23

q
¼ 1 ð20Þ

There are 12 free variables, that include the perihelion time t1, the jettison time tf,
initial values of the adjoint variables λR(t0) and λV(t0), and λ0 and γ. The number of
equations with variables constraints, transversality conditions and stationary conditions
are also 12, listed as Eqs. 4, 5, 15, 17, 18 and Eq. 20. There are 12 free parameters with
12 equations which yield a multi-point boundary value problem.

For the indirect method, the initial values of the adjoint variables need to be guessed
by some method to obtain the optimal control law. Due to difficulties with the guess
work many papers [16–18] try to give effective methods for obtaining the initial values.
Since the equations of the adjoint variables are homogeneous, the scaling of the adjoint
variables makes the optimization easier than before. With the above transformation it
will be easy to obtain the required solutions of the optimization.

In our current simulation, a conversion of a Fortran program available in the
MinPack-1 suite to the C++ language is used to solve the problem [15]. The dynamical
equations are integrated in double precision using a seventh (eighth) order Runge–
Kutta-Fehlberg method (RKF7(8)) with an adaptive step size in the absolute and
relative errors of 10−8. The angles to generate the initial adjoints in Eq. 19 and the
required flight times are obtained by random guesses between −1 to 1 multiplied by
their boundary values. On rare occasions involving “bad” guesses for the initial
adjoints, the pathological condition λ0=0 is encountered with a solution that is
feasible, but not necessarily optimal. Nevertheless, such cases can easily by
eliminated by a slight modification of the initial guesses.

Numerical Results and Discussions

After derivation of the time optimal control model with the new objective function, the
results of mission analyses are presented in this section by varying the scale parameter ε.
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The first scenario is a mission to 100 AU with a relatively mid performance solar sail of
2.4 mm/s2, the same as Sauer’s [1]. A comparison between Sauer’s result and this
current work ismade via numerical simulations. The following concerned problem is the
deployment point of the sail from the Earth orbit. Although the launch window is not an
issue for a sailcraft, the departure point may possibly influence the flight time of the
interstellar mission. Finally, an investigation for a more distant 250 AU mission is also
conducted by using a relatively high performance solar sail. There is an interesting
discovery that the angular momentum reversal trajectory (referred as “reversal flyby”) is
a local-optimal solution, this has not been addressed previously. The differences be-
tween two typical flybys are shown to give a better understanding of such trajectories.

Interstellar Probe Mission of 100 AU

The scenario of an interstellar mission to 100 AU is studied first and compared with
existing research work accomplished by Sauer [1] ten years ago. The demonstrated
mission of Ref. [3] allows the solar sail to pass no closer than 0.3 AU to the Sun with an
acceleration of 2.4 mm/s2 (lightness number of 0.4047) to reach 100 AU in 10 years.
His result based on the optimal control model shows that the jettison speed at 5 AU is
10.9 AU per year (AU/Y) and the flight time to 100 AU is 10 years. In this paper, seven
sample trajectories with the new objective function J3 for the 100 AU mission are
shown in Fig. 2 with the same perihelion distance of 0.3 AU. All these trajectories
depart from the perihelion of the Earth orbit assuming no constraints on the jettison
direction. The optimal trajectories are all in the ecliptic plane in a 3D dynamic model.
The corresponding trajectory parameters with different ε are listed in Table 2. Actually,
the case of ε=1 corresponds to the time optimal transfer to 5 AU and the case of ε=0
corresponds to the optimal trajectory with maximum jettison velocity due to no fuel
consumption of a sailcraft. However, both of them are definitely not time optimal
solutions to 100 AU. The jettison points at 5 AU cover a wide range about 54° from the
time optimal solution to the maximum velocity solution with the same departure point.

Fig. 2 Interstellar Probe trajectories with different ε
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The 5 AU circular orbit plotted with dash points every π/50 demonstrates clearly the
situation. It can be seen from Fig. 2 that the trajectory most similar to Sauer’s result is
the ε=0.024 trajectory in which the sailcraft goes beyond the Mars orbit before
approaching the Sun. However, one would expect similar trajectories are produced
from the same objective function (ε=1). Such a difference may result from the
constraint of its perihelion distance, that is, the fixed 0.3 AU distance is adopted in
the current simulations while in Sauer’s work it was set for the sailcraft to pass no
closer than 0.3 AU. The jettison speed with ε=0.024 is about 11.755 AU/Y, which is
approximately 1 AU/Y more than Sauer’s 10.9 AU/Y. The 10.9 AU/Y jettison speed
corresponds to the case ε=0.1 in this simulation while its flight time is about 9.7 years
to 100 AU. Therefore, there should be a choice of the value of ε for different missions
to pursue the minimum time solutions. The best time optimal solution of 100 AU
mission here is 9.546 years with a jettison speed about 11.33 AU/Y. It should be noted
that some other value of ε could result in a better solution in terms of flight time and
jettison velocity. Since it is difficult to obtain the best value of ε by enumeration, a
better solution may be found by optimizing ε with an outer-loop solver, while an inner-
loop optimizer would compute the optimal sail angles. Such an approach may be
performed in future research.

For such a 10 year mission, the mission time was reduced 5 %. With a higher quality
sail and a greater mission distance there may be a noticeable difference in mission time.
Even for this mission there will be a five year mission gap between the cases ε=1.0 and
ε=0.01 to 500 AU. According to the simulations, in the 5 AU time optimal solution
given in Table 2, the sailcraft maneuvers to its aphelion of 1.02 AU and then
approaches the perihelion at 0.3 AU to escape the solar system with a jettison speed
of 10.6 AU/Y in about 0.957 year. For the near-energy optimal solution the sailcraft
takes about 4.67 years to achieve the jettison point with flying far beyond the Mars
orbit with an aphelion of 4.84 AU. It should be noted that the case with the strict value
of ε=0 is not given in Table 2. Comparison between the case ε=0.004 and ε=0.001
indicates that a growth of only 0.2 AU/Y of jettison speed needs more than a 1.4 year
mission time before jettison. Therefore, the truly optimal solution of maximum jettison
velocity may not be practical in the mission design. The variation of the trajectories is
slight within the interval ε ∈ [0.1, 1.0] & [0.0, 0.001] while major in (0.001, 0.1). A
higher jettison speed can reduce the flight time of the pseudo-cruise phase, but with a
cost of a longer flight time before its perihelion (because the trajectories of different

Table 2 Trajectory parameter variations with respect to ε

ε ra [AU] Vf [AU/Y] tf [Year] t100AU [Year] t250AU [Year] t500AU [Year]

1.000 1.020 10.615 0.957 9.906 24.037 47.588

0.100 1.077 10.900 0.990 9.713 23.487 46.443

0.044 1.311 11.330 1.161 9.546 22.785 44.850

0.024 1.718 11.755 1.482 9.564 22.324 43.591

0.012 2.394 12.145 2.065 9.887 22.237 42.822

0.004 3.607 12.487 3.264 10.872 22.884 42.905

0.001 4.840 12.663 4.670 12.172 24.017 43.760
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cases between the perihelion and the jettison point for the sailcraft are nearly the same).
Consequently, the value of ε should be determined by the mission distance and the sail
lightness number.

The optimal sail orientations for the above trajectories are given in Fig. 3. Due to the
numerous trajectories with different ε, only two scenarios with ε=1.0 and ε=0.044 are
given with their optimal control angles as demonstrated missions. Figure 3 shows that
the whole variation trend for these two cases is similar to each other with a jumping of
sail clock angle from π to 0 occurring at the point where the sail cone angle arrives at its
maximum value of π/2. When the jettison point is approached the sail is slewed to a
Sun-facing attitude and is rapidly accelerated to its cruise speed, which is consistent
with the anticipated solution.

In order to illustrate the effectiveness of the strategy with objective function J3, a
comparison is given in Table 3. The time optimal results are interpolated from Sauer’s
published paper [1]. There may be some marginal error greater or less than the real
result obtained by Sauer. The interpolated result used by Scheeres [19] is also listed in
Table 3 as a proof. It should be noted that the initial orbit of Scheeres’ mission
trajectory is 1 AU circular orbit while Sauer’s is the real Earth orbit. Through
comparison it can be found that the mission time in J3 will be 0.2 to more than 1.0 year
less than Sauer’s. As the sail lightness number increases the difference of mission time
between the J3 result and Sauer’s becomes less and less. Such a trend indicates that with
a higher quality sail there is no need to go beyond the 1 AU orbit to gain high energy;
the results in J3 and in J1 become close to each other. The corresponding value of ε to
the J3 result is also listed in Table 3 to provide a reference to the designers. With the
same perihelion the value of ε will grow as the sail lightness number increases. For a
given sail lightness number the value of ε will decrease as the minimum solar distance
away from the Sun (referred as “perihelion” in Table 3) increases. Such regularities
revealed in this paper will benefit the designers in applying J3 to the real mission
design.

Fig. 3 Optimal sail orientations for the trajectories with different ε
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Departure Point from Earth Orbit

Without requirements on the jettison direction, the departure point of the sailcraft can
be from any position in the Earth orbit regardless of the geocentric escape phase. Many
works on the topic of optimal control problem for solar sails have been published with
respect to the rendezvous problem [20], transferring to predetermined mission orbits
[21], and the escape trajectories [22]. Generally the departure time, also named “launch
window,” influences the mission time greatly for the two former cases. Therefore, the
departure time is usually free and obtained by finding the minimum transfer time. In
contrast to the other two typical missions the influence of the departure time for the
interstellar mission is discussed in this part. As an illustration a sail of 2.4 mm/s2 will
still be used to reach 100 AU with a perihelion of 0.3 AU. Taking the objective function
into account two particular points of the Earth orbit will be given full consideration, the
perihelion and aphelion, respectively. The reason for this option is that the orbital
energy of all other points in the Earth orbit is between the two points. In order for the
result to be comprehensive, four groups of simulation results are given in Table 4. With
the same value of the parameter ε the parameters of the mission orbit are listed,
including the aphelion of the mission orbit, the total mission time to 100 AU,
the jettison speed and the transfer time before jettison, etc. Table 4 shows that
the jettison speed of starting from the Earth perihelion is only slightly more
than from the aphelion, which is the same as the situation of the total mission time
to 100 AU. The above discussion indicates that there is no need to optimize the departure
time. Starting from the Earth perihelion will always be a preferable option for the
interstellar missions.

Table 3 Mission time to 100 AU (comparison with Sauer)

Lightness
number

Perihelion
[AU]

Time to reach 100 AU [Year]

Scheeres interpolation Scheeres result Sauer J3 result (ε)

0.3 0.2 11.0 16.79 10.0 9.293 (0.038)

0.3 0.3 13.0 15.02 12.2 11.257 (0.026)

0.3 0.4 16.0 17.53 14.5 13.023 (0.020)

0.4 0.2 9.0 8.64 8.2 7.769 (0.049)

0.4 0.3 11.0 10.66 10.2 9.588 (0.034)

0.4 0.4 13.0 12.8 12.0 11.179 (0.025)

0.5 0.2 7.5 7.21 7.2 6.858 (0.059)

0.5 0.3 9.5 9.02 9.0 8.498 (0.041)

0.5 0.4 11.5 10.77 10.5 9.942 (0.031)

0.59 0.2 7.0 6.50 6.5 6.280 (0.070)

0.59 0.3 8.5 8.11 8.1 7.783 (0.049)

0.59 0.4 10.5 9.65 9.5 9.118 (0.036)

0.79 0.1 4.0 4.00 3.9 3.858 (0.181)

0.79 0.15 5.0 4.83 4.8 4.687 (0.130)

0.79 0.2 6.0 5.57 5.5 5.411 (0.100)
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Locally Optimal Solution of the Interstellar Mission

A relatively mid performance solar sail can enable the sailcraft to reach 100 AU in
10 years. Using such a sail the interstellar mission to 250 AU will take more than
22 years as shown in Table 2. Therefore, for future engineering there will be a higher
requirement on the sail quality to reach 250 AU in a reasonable mission time. A sail of
4.4475 mm/s2 (lightness number of 0.75) will be adopted to give a clear vision about
the influence of the sail quality. In terms of the minimum distance away from the Sun,
single solar photonic assisted trajectories with different perihelion will also be
discussed for such a sail. The simulation results with objective function J3 of ε=1
with different perihelion are shown in Fig. 4. Interestingly, there are two extreme points
for each perihelion with such a relatively high performance solar sail. Detailed data
about the trajectories are listed in Table 5. It can be seen clearly that one of the results is
the direct flyby trajectory leading to the globally optimal result, which is the same as
Sauer’s optimized result. The other locally optimal result is the trajectory in
angular momentum reversal. Note that the current control history of the sail
orientations is totally different from that obtained by Vulpetti [8]. The appearance
of the unanticipated reversal flyby is due to the different guesses of the jettison time in

Table 4 Comparison between different departure points

Departure Perihelion of the Earth Aphelion of the Earth

Terms ra[AU] Vf [AU/Y] tf [Year] t100AU[Year] ra[AU] Vf [AU/Y] tf [Year] t100AU[Year]

ε=1.000 1.020 10.615 0.957 9.906 1.036 10.552 0.956 9.959

ε=0.100 1.077 10.900 0.990 9.713 1.086 10.884 0.988 9.717

ε=0.050 1.248 11.237 1.113 9.568 1.240 11.214 1.107 9.578

ε=0.010 2.546 12.205 2.204 9.988 2.536 12.200 2.217 10.004

Fig. 4 Interstellar probe trajectories with lightness number 0.75 in J1
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the form of (tf=ta+tb*xt). The parameters ta and tb are constants based on the problem
while xt is an initial guess between zero and one.When the maximum boundary value of
the jettison time tf exceeds the flight time of the reversal trajectory, it is possible to obtain
the reversal trajectory, but it is not guaranteed. From Table 5, the optimal trajectory in
direct flyby is superior to the reversal trajectory in the aspects of mission time to 250 AU
and jettison speed at 5 AU. This result coincides with Sauer’s finding that there is no
need to reverse the angular momentum vector with optimized sail orientation for a solar
system escape. It indicates that the advantage of the reversal trajectory is not in the
optimized trajectory. As is known, the attitude control of the solar sail is very difficult
[23], especially a large sail. The best way to obtain a high speed with a fixed cone angle
to escape the solar system with a high performance solar sail is to adopt the reversal
trajectory. It is easy to understand that with the increasing perihelion distance the flight
time of the interstellar mission will be longer. The direct flyby trajectories do not need to
go beyond 1 AU before passing inside the Earth orbit. Within such a framework, the
interstellar mission in other sail accelerations can also be solved.

Conclusions

Time optimal interstellar probe trajectories have been investigated by using an ideally
reflecting solar sail. An indirect method has been applied to calculate the optimal control
model in the two-body dynamic system. Under the reasonable assumption of jettison at
5AU, a new objective function is presented to search for the time optimal solutions. As the
values of the initial adjoint variables are very sensitive, normalization of these variables so
that they are restricted to a unit hyper sphere makes the optimization much easier than
before. An interstellar mission to 100AUwith a sail of 2.4mm/s2 is studied by varying the
scale parameter of the new objective function. A comparison of the current simulation and
Sauer’s result under the same condition shows that the method in this paper will result in
an improved time optimal solution. In contrast to the rendezvous problem, departure from
the Earth perihelion is always a preferable option assuming no constraints on the jettison
direction. Another contribution of this paper is an interesting discovery that the angular
momentum reversal trajectory is a local optimal solution to such an interstellar mission.
The simulation results show that the direct flyby is superior to the reversal flyby if only to
escape the solar system in terms of the mission time. A reversal flyby takes more time than
a corresponding direct flyby. It is confirmed that there is no need to reverse the angular
momentum in the optimized sail orientations. A precursor mission to 250 AU is also
discussed by using a relatively high performance solar sail.

Table 5 Optimal results in J3 of ε=1with sail lightness number 0.75

rp[AU] Direct flyby Reversal flyby

ra[AU] Vf [AU/Y] tf [Year] t250AU[Year] ra[AU] Vf [AU/Y] tf [Year] t250AU[Year]

0.2 1.011 19.334 0.685 13.357 1.408 16.679 1.193 15.882

0.3 1.011 15.361 0.747 16.697 1.640 13.393 1.496 19.790

0.4 1.010 12.935 0.803 19.743 1.847 11.459 1.778 23.158
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