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Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. 
MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to 
prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge 
in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of 
fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA 
nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-
based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery 
system may facilitate the prevention and alleviation of fibrotic diseases in the future.
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Key Points 

MicroRNAs regulate the occurrence of fibrotic disease.

A nanocarrier can mediate delivery of microRNAs for 
fibrotic diseases.

1  Introduction

Fibrotic diseases are mediated by chronic pathophysiologi-
cal processes in which fibrous connective tissue accumu-
lates excessively during injury or inflammation, leading to 

scarring or organ failure [1]. Fibrosis is considered to result 
from abnormal repair after organ damage. A typical repair 
process involves regeneration, in which damaged tissue is 
replaced by cells of the same type without evidence of dam-
age. However, uncontrolled injury results in remodeling of 
the extracellular matrix and the establishment of an abnor-
mal fibrotic state (Fig. 1) [2]. Continued deterioration of the 
fibrotic state leads to organ failure and can even lead to death 
in severe cases. Worldwide, organ fibrosis is the leading 
cause of death and disability resulting from many diseases. 
Despite the continuous development of medical technology 
and the decreasing trend in fibrotic diseases, nearly half of 
the fatalities from diseases in developed countries can be 
attributed to tissue fiber hyperplasia [3, 4].

Antifibrotic drug treatment and elimination of the cause 
of injury, for example, by inhibiting inflammation, repair-
ing damage, promoting extracellular matrix degradation, and 
altering collagenase activity, can effectively alleviate the 
development of fibrotic diseases [5, 6]. However, the anti-
fibrotic effects of a single-agent treatment is limited owing 
to the low permeability, poor targeting, and inevitable side 
effects of the drug [7]. Increasing the drug dose to achieve 
a therapeutic effect may produce irreversible effects on the 
target organs, and the single-agent treatment approach does 
not guarantee specific delivery to the target cells  allowing 
the suppression of disease development [8]. Thus, searching 
for specific small-molecule drugs that regulate the key sign-
aling pathways of fibrosis may provide the optimal therapeu-
tic option for fibrotic diseases.

http://crossmark.crossref.org/dialog/?doi=10.1007/s40291-023-00681-y&domain=pdf
http://orcid.org/0000-0003-0095-4050
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2 � MicroRNAs

2.1 � Biogenesis of MicroRNAs

MicroRNAs (miRNAs) are single-stranded noncoding 
RNAs that contain approximately 18–25 nucleotides and 
are encoded by an endogenous gene [9, 10]. They contain a 
seed sequence complementary to the 3′ untranslated region 
(3′UTR), the 5′UTR, or the coding sequence of the target 
messenger RNA (mRNA) and regulate cell proliferation, 
apoptosis, differentiation, and metabolism by inhibiting the 
translation process or enhancing mRNA cleavage [11–14].

After DNA transcription, the primary transcript, called 
a primary miRNA can be processed to produce a precur-
sor miRNA, which is released into the cytoplasm for cleav-
age into a double-stranded miRNA by RNase III. Mature 
single-stranded miRNAs can interact with the RNA-induced 
silencing complex to regulate mRNA translation [15]. A sin-
gle miRNA can regulate multiple target genes, and multi-
ple miRNAs can regulate a single target gene. This precise 
regulatory network diversifies the complement of miRNA 
regulatory mechanisms [16]. As important components of 
epigenetics, miRNAs participate in various physiological 
and pathological processes and regulate the occurrence and 
progression of fibrosis [17].

2.2 � MicroRNAs in Fibrosis

MicroRNAs can mediate the development of fibrotic dis-
eases by regulating the expression of target genes [18, 19]. 
The transforming growth factor (TGF)-β/Smad signaling 
pathway can be triggered by miRNAs to mediate the devel-
opment of liver and lung fibrosis and scleroderma [20]. In 
addition, miRNAs can participate in the SIRT1/p38 signal-
ing pathway to regulate the process of renal fibrosis and 
can target the TGF-β/Smad and PI3K/Akt/mammalian tar-
get of rapamycin signaling pathways to alleviate myocardial 
fibrosis and keloids [21–23]. The regulatory mechanisms 
of miRNAs provide a theoretical basis for the treatment of 
fibrotic diseases [24, 25].

2.3 � MicroRNA‑Based Therapies

In fibrotic diseases, miRNAs can be upregulated as a 
fibrosis marker or downregulated as an antifibrotic factor 
[26–28]. When miRNAs are suppressed in fibrotic diseases, 
alternative therapies are suitable. Synthesized miRNA 
mimics instead of endogenous miRNA can interact with 
the RNA-induced silencing complex, which regulates the 
translation process and restore the expression of profibrotic 
miRNAs downregulated in fibrotic diseases. If a miRNA 

Fig. 1   Common fibrotic diseases involving liver fibrosis, renal fibrosis, pulmonary fibrosis, and myocardial fibrosis
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is overexpressed in fibrotic diseases, miRNA suppression 
therapy is used. Therapeutic approaches using miRNA-spe-
cific antagonists or synthetic anti-miRNA oligonucleotide 
chains to bind to the target miRNA can rescue the func-
tion of target genes and promote their antifibrotic function 
in vivo.

Using overexpressed miRNA mimics, anti-miRNA oligo-
nucleotides or miRNA antagonists that modulate the func-
tion of miRNAs, has been suggested as a possible effective 
therapeutic strategy for human fibrotic diseases [29, 30]. 
Therefore, it is possible that miRNA can be used as a drug 
and a target to suppress the fibrotic process.

2.4 � Major Obstacles in MicroRNA Delivery

MicroRNAs are negatively charged and easily degraded by 
nucleases; thus, their tissue-specific delivery and passage 
through the cell membrane are difficult to achieve [31]. The 
dilemma of targeted delivery involves challenges such as 
maximizing cell uptake and tissue-specific delivery and min-
imizing off-target effects [32]. To improve the efficiency of 
miRNA delivery, viral and nonviral vectors have been devel-
oped to deliver genetic material to target cells to perform the 
corresponding functions [33]. However, because of the low 
loading capacity of viral vectors, their propensity to induce 
inflammatory reactions, and their toxicity and side effects 
that limit their delivery capabilities, the development of 
liposomes, polymer systems, nanoparticles, and other non-
viral vectors is trending [34]. Nanocarriers have the advan-
tages of improved resistance to enzymatic degradation and 
high affinity and are therefore very promising for application 
in treating fibrotic diseases.

2.5 � Nanocarriers for MicroRNA Delivery

Nanomedicine is expected to play a role in the targeted 
delivery of miRNAs for treating fibrosis. Nanodrug delivery 
carriers have high affinity and stability and can increase the 
solubility and reduce the toxicity and side effects of drugs 
[35]. Moreover, the addition of targeting groups such as pol-
ypeptides can endow nanodrug carriers with active targeting 
potential [36, 37].

Because the current outcome for patients with fibrotic dis-
eases is not optimistic, developing new treatment strategies 
with an understanding of the mechanism of fibrosis develop-
ment is urgently needed. Because of the unique properties 
of nanomaterials, increasing attention is being paid to the 
therapeutic application of nanomedicine in fibrotic diseases. 
Here, we review the miRNA delivery nano-systems useful 
for the treatment of fibrotic diseases (Table 1).

3 � MicroRNA Delivery Approaches

3.1 � Chemical Modifications and Oligonucleotide 
Conjugates

Chemical modifications of miRNA include locked nucleic 
acids (LNAs), peptide nucleic acids (PNAs), backbone 
modifications, and ribose 2′-OH group modifications, which 
can increase the stability and reduce the off-target effects of 
miRNAs [38–40].

3.1.1 � Locked Nucleic Acids

Locked nucleic acids are a class of oligonucleotide deriva-
tives that contain a methylene linkage between the 2′-oxygen 
and the 4′-carbon. Due to their unique structure, LNAs have 
high binding power. Locked nucleic acid-modified DNA-
zymes can target regulatory RNAs, and LNAs can also 
modify small-interfering RNAs (siRNAs) to disrupt gene 
expression [41]. In addition, LNAs have strong antisense 
activity and participate in reverse regulation of targeted 
miRNAs. The target site blockers seal specific binding sites 
of miRNA to the mRNA, and block the binding of normal 
miRNA to the target gene mRNA by occupying the binding 
site in vivo and in vitro [42–46].

MiR-29b1 can regulate liver fibrosis. The hedgehog 
inhibitor GDC-0449 and miR-29b1 cooperate to inhibit 
hepatic stellate cell activation and extracellular matrix pro-
duction in mice subjected to common bile duct ligation [47, 
48]. LNA-miR-29b1, phosphorothioate (PS-miR-29b1), 
2′-O-methyl-phosphorothioate (OMe-miR-29b1), and N,N′-
diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine (ZEN-
miR-29b1) can be used to chemically modify the antisense 
strand of miR-29b1. These chemical modifications can 
significantly improve the stability of miR-29b1 in medium 
containing 50% fetal bovine serum. However, among the 
modified miRNAs tested, LNA-miR-29b1 was less stable 
than OMe-PS-miR-29b1 [47]. Therefore, the delivery of 
LNA-miR-29b1 needs further optimization as a promising 
therapeutic strategy for liver fibrosis.

Several siRNAs corresponding to miRNAs modified by 
LNA have been shown to alleviate organ fibrosis in mouse 
models. LNA-anti-miR-132 was promising for the treatment 
of liver fibrosis [49]. The LNA-modified anti-miR-34a, miR-
21, and miR-320 can prevent heart enlargement and fibrosis 
[50–53]. LNA-anti-miR-150 reduces pro-inflammatory M1 
and M2 macrophages polarization via the SOCS 1/JAK 1/
STAT 1 pathway[54–56]. The target site blockers were used to 
block miR-9 binding to the 3′UTR of anoctamin 1 to increase 
its activity, thus compensating for the lack of transmembrane 
conductance modulators in cystic fibrosis (CF) [57].
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Table 1   Nanocarriers for miRNA delivery in fibrotic diseases

Delivery system Target miRNA Therapeutic mechanism Fibrosis type Ref.

Chemical modifications and  
oligonucleotide conjugate

 Locked nucleic acid miR-29b1 PI3K/AKT and adhesion-related pathways Liver fibrosis [47]
 Locked nucleic acid miR-132 Fibrogenesis and inflammatory Liver fibrosis [49]
 Locked nucleic acid miR-34a/21/320 Inflammatory response and fibrosis Myocardial fibrosis [50–53]
 Locked nucleic acid miR-150 Reduces proinflammatory M1 and M2 

macrophage polarization via the SOCS 1/
JAK1/STAT1 pathway

Renal fibrosis [54, 55]

 Locked nucleic acid miR-9 Block miRNA binding to the 3′UTR of 
anoctamin 1 to increase its activity

Cystic fibrosis [57]

 Locked nucleic acid miR-509-3p Post-transcriptional regulation of the CFTR 
gene

Cystic fibrosis [65]

 Peptide nucleic acid miR-145-5p/101-3p Synergistic enhancement of the expression 
of the CFTR gene

Cystic fibrosis [60, 67]

 Peptide nucleic acid miR-33 Enhances macrophages autophagy and 
improves mitochondrial homeostasis

Pulmonary fibrosis [68]

 Peptide nucleic acid miR-33 Increasing the expression of factors 
involved in FAO and reducing the devel-
opment of fibrosis

Renal fibrosis [69]

 Oligonucleotide miR-29b mimic, remlarsen (also 
called MRG-201)

TGF-α1 and cell adhesion pathway Cutaneous fibrosis [71, 72]

 Oligonucleotide miR-21 inhibitors (RCS-21) Reverses the pathological activation of 
macrophages and prevents lung dysfunc-
tion and fibrosis

Pulmonary fibrosis [73]

Inorganic delivery system
 Gold nanoparticle miR-133b Inhibits the transformation of myofibro-

blasts
Scar [78]

 Gold nanoparticle miR-155 Decreasing inflammation Myocardial fibrosis [80]
 Mesoporous silica nanoparticle miR combo (miR-1, 133, 208,  

and 499)
Reprogram cardiac fibroblasts for cardiac 

regeneration
Myocardial fibrosis [82]

Polymer-based delivery system
 Polyethylenimine miR-146a Smad4/TGF-α1 & TRAF6/NF-κB path-

ways
Renal fibrosis [86]

 Polyethylenimine miR-126 Resulted in significant knockdown of 
TOM1

Cystic fibrosis [87]

 Polyethylenimine muscle-specific miRNAs  
(miR-1 and miR-133a)

Reprogram the adult human cardiac fibro-
blasts into cardiomyocyte-like cells

Myocardial fibrosis [88]

 Poly(lactic-co-glycolic acid) miR-17 Decreasing inflammation Cystic fibrosis [93]
 Poly(lactic-co-glycolic acid) miR-19b-3p Decreasinginflammation Cystic fibrosis [94]
 Poly(lactic-co-glycolic acid) miR-21 TGF-α1/Smad3 and kinases/MAPK 

pathway
Renal fibrosis [95]

 Poly(lactic-co-glycolic acid) miR-519c Decreases inflammation Pulmonary fibrosis [96, 97]
 Chitosan miR-29b TGF-β1/Smad3 pathway Achilles tendon injury [100]
 Chitosan miR-126 Resulted in significant knockdown of 

TOM1
Cystic fibrosis [87]

 Chitosan miR-21 Promotes gingival fibroblast adhesion, 
proliferation, and increased expression of 
genes related to extracellular matrix

Gingival fiber hyperplasia [101]

 Hyaluronic acid miR-21 Decreases inflammation, Cardiac fibrosis [104]
 Hyaluronic acid miR-24-3p reduces fibrosis and macrophage activation Corneal stromal fibrosis [105]
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3.1.2 � Peptide Nucleic Acids

Peptide nucleic acids are negatively charged nucleic acid 
analogs whose sugar-phosphate backbone is replaced by a 
polypeptide backbone. Peptide nucleic acids are very stable 
structural analogs of delivered miRNAs [58–60].

Cystic fibrosis is caused by mutations in the CF trans-
membrane conductance regulator (CFTR) gene that result 
in reduced or altered CFTR functions [61]. Several miR-
NAs downregulate the expression of CFTR, thereby caus-
ing or aggravating the symptoms of CF [62]. Modifica-
tion of miRNAs with PNAs facilitates the protection of 
specific sequences in the 3′UTR of the CFTR mRNA [63, 
64]. PNAs synthesized by the addition of two tetrapeptides 

(Gly-SerP-SerP-Gly) at the two C-termini can specifically 
bind to miR-509-3p as a target miRNA-binding agent, block-
ing the effect of this miRNA on CFTR mRNA activity [65]. 
In A549 cells co-transfected with the pLuc-CFTR-3′UTR 
vector and different combinations of PNAs, longer PNA 
constructs restored up to 70% of the luciferase activity, sug-
gesting that the appropriate use of PNAs can counteract the 
decrease in CFTR expression and is expected to alleviate the 
symptoms of CF [5].

MiR-145 is another miRNA that targets and inhibits 
CFTR expression [66]. Conjugation of the octoglycine (R8) 
carrier peptide at the N-terminus of the PNA chain can 
block the regulatory effect of miR-145-5p and miR-101-3p, 
enhance the expression of the CFTR gene, and suppress the 

Table 1    (Continued)

Delivery system Target miRNA Therapeutic mechanism Fibrosis type Ref.

Lipid-based delivery system
 Cationic lipid miR-122 Regulates autophagy, Liver fibrosis [109]

 Cationic lipid miR-21 inhibits myofibroblast differentiation, 
reduces extracellular matrix synthesis, 
and inhibits fibrotic progression

Cardiac fibrosis [110]

Exosome-based delivery system
 Menstrual blood-derived stem-cell 

exosome
let-7 LOX1/NLRP3/caspase 3 pathway Pulmonary fibrosis [116]

 Placenta-derived mesenchymal stem-
cell exosome

miR-29c TGF-b/SMAD3 pathway Myocardium and dia-
phragm fibrosis

[117]

 Adipose stem-cell-derived exosome miR-126 VEGF pathway and MAPK and PI3K 
pathway

Cardiac fibrosis [119–122]

 Bone marrow mesenchymal stem 
cell-derived exosome

miR-21a Attenuates glycolysis by targeting ATP-
dependent 6-phosphofructokinase fibrosis

Renal fibrosis [125]

 Bone marrow mesenchymal stem 
cell-derived exosome

miR-214 Inhibiting the IL-33/ST2 axis Skin fibrosis [126]

 Embryonic stem cells miR-17 Targeting thrombospondin-2 Pulmonary fibrosis [127]
 Hepatocyte-derived exosome miR-146a Suppresses the EMT process in hepatic 

stellate cells
Liver fibrosis [128]

 Hepatocyte-derived exosome miR-99a Targeting BMPR 2 promotes hepatocyte 
apoptosis

Liver fibrosis [129]

 Satellite cell-derived exosome miR-23a/27a/26a Ameliorates renal tubulointerstitial fibrosis Renal fibrosis [130]
 M2-polarized macrophage-derived 

exosome
miR-381 Attenuates the activation of urethral 

fibroblasts through YAP/gls 1-regulated 
glutaminolysis

Renal fibrosis [131]

 Urinary exosome miR-615-3p/3147 Associated with Inflammation and fibrosis 
in diabetic nephropathy

Renal fibrosis [132]

Plasma exosome miR-125a Regulates T-lymphocyte subsets, promot-
ing silica-induced pulmonary fibrosis by 
targeting TRAF6

Pulmonary fibrosis [133]

 Exosomes loaded in a soluble 
microneedle array

miR-141-3p Relief of hypertrophic scar in the ear of 
rabbits

Hypertrophic scar [137]

 Microneedle patches loaded with 
exosomes

miR-29b Prevented cardiac fibrosis in a mouse 
myocardial infarction model

Cardiac fibrosis [138]

BMPR 2 bone morphogenetic protein receptor type II, CFTR cystic fibrosis transmembrane conductance regulator, combo combination, EMT 
epithelial–mesenchymal transition, FAO fatty acid oxidation, IL-33 interleukin-33, MAPK mitogen-activate protein kinase, miRNA microRNA, 
ND no data, Ref. reference, TGF transforming growth factor, UTR​ untranslated region, VEGF vascular endothelial growth factor
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development of CF [60, 67]. Another study suggested that 
inhibition of miR-33 in macrophages by administration of 
anti-miR-33 PNA attenuates fibrosis in mouse pulmonary 
fibrosis models in vivo and ex vivo [68]. Because PNAs 
have high affinity for nucleic acid targets, they regulate gene 
expression with outstanding efficacy and are an effective 
means of inducing pharmacologically mediated changes in 
gene expression in vivo and in vitro.

Abnormal fatty acid oxidation may have an important 
effect on the progression of kidney disease. The lack of 
miR-33 as an important regulator of lipid metabolism can 
partially prevent fatty acid oxidation in fibrotic kidneys and 
reduce lipid accumulation. Using low pH insertion peptides 
as a carrier can allow the delivery of PNA miR-33 inhibitors 
to the kidney and other acidic microenvironments, which 
can effectively promote the expression of fatty acid oxida-
tion mediators and reduce the development of fibrosis [69]. 
These findings suggest that delivery of PNA miR-33 inhibi-
tors may be an attractive therapeutic approach for chronic 
kidney disease.

3.1.3 � Oligonucleotide Conjugate Modifications

MiR-29 is downregulated in multiple fibrotic organs, 
including the skin and lungs, and negatively regulates 
fibrosis [70]. A miR-29b oligonucleotide was synthesized 
via standard phosphoramidite solid-phase synthesis, and 
the sense strand of the miR-29b oligonucleotide mimic 
was conjugated to cholesterol at the 3′ end. Intravenous 
injection of this synthetic oligonucleotide increased miR-
29 levels in vivo. In bleomycin-induced pulmonary fibrosis 
in mice, treatment with a miR-29b oligonucleotide mimic 
restored the function of endogenous miR-29, thereby 
reducing collagen expression and in turn blocking and 
reversing pulmonary fibrosis [71]. Another trial was con-
ducted to evaluate the pharmacodynamic activity of a sec-
ond development-stage miR-29b mimic, remlarsen (also 
called MRG-201) [72]. Remlarsen was shown to regulate 
the expression of miR-29b in skin wounds of mice, rats, 
and rabbits, as well as in cultured human skin fibroblasts. 
In this intrasubject controlled clinical trial (ClinicalTrials.
gov ID NCT02603224), remlarsen inhibited the expression 
of collagen and the development of fibrosis in incised skin 
wounds. Currently, a carbohydrate-conjugated miRNA 
oligonucleotide drug, RCS-21, which is a miR-21 inhibi-
tor, is being developed to deliver inhaled oligonucleotides 
efficiently and selectively to lung macrophages. RCS-21 
reverses the pathological activation of macrophages and 
prevents lung dysfunction and fibrosis after acute lung 
injury in mice. RCS-21 effectively prevents exaggerated 
inflammatory responses in human lung tissue infected 
with SARS-CoV-2 in vitro [73]. These results suggest that 

miR-29b oligonucleotide mimics may effectively prevent 
fibrotic pulmonary and skin conditions such as hyper-
trophic scars, keloids, and scleroderma.

3.2 � Inorganic Delivery Systems

Compared with conventional drugs, chemotherapy, and radi-
otherapy, inorganic nanomaterials used as drug carriers can 
enhance the targeted transport, controlled release, and sus-
tained release of drugs [74]. Common inorganic nanomateri-
als include gold nanoparticles (AuNPs), mesoporous silica 
nanoparticles, carbon nanomaterials, and magnetic nanopar-
ticles, but the use of these nanomaterials in miRNA delivery 
to treat fibrotic diseases needs to be further explored [75].

Gold nanoparticles are precious metal colloids with a par-
ticle diameter that ranges from 1 to 100 nm. These colloids 
exhibit secondary electron emission, and an ion resonance 
effect can be produced through the interaction of incident 
light with free electrons in AuNPs to achieve drug deliv-
ery (Fig. 2) [76]. They are excellent carriers for delivering 
small molecule drugs and biomolecules. MicroRNAs deliv-
ered into cells via AuNPs can specifically bind to mRNA 
sequences to exert inhibitory effects on their target genes 
[77]. For example, miR-133b can inhibit the transformation 
of myofibroblasts [78]. A nanocomposite made of AuNPs 
and miR-133b was loaded onto the surface of a corneal col-
lagen membrane and on the inside of the collagen mem-
brane [79]. The properties of the collagen membrane did 
not change, although the cornea was rapidly epithelialized 
and the corneal transparency remained constant. In addi-
tion, only a low level of fibrosis was observed in the corneal 
stroma. These results suggest that the AuNP/miR-133b com-
plex can achieve rapid corneal repair and inhibit scarring.

Diabetic cardiomyopathy is a common disease in post-
menopausal women, in whom the lack of estrogen aggra-
vates its pathology. Compared with diabetic mice, ovariecto-
mized diabetic mice exhibited increased ROS accumulation, 
apoptosis, myocardial hypertrophy, and fibrosis. miR-155 
is a potentially effective promoter of type 1 proinflamma-
tory (M1) macrophage polarization, and its expression can 
be further enhanced in macrophages and heart tissue by 
ovariectomy [80, 81]. miR-155 AuNPs were injected into 
the tail vein, the thiol-modified antagomiR-155 was cova-
lently bound to AuNPs, and the nucleic acid was preferen-
tially delivered to macrophages via phagocytosis [80]. By 
increasing the proportion of anti-inflammatory type 2 (M2) 
macrophages and decreasing inflammation, in vivo admin-
istration of antagomiR-155 reduced apoptosis and restored 
cardiac function. The recovery effect of miR-155-AuNP 
was far superior to that of general depletion of macrophage 
clones. Obviously, an imbalance in the M1/M2 ratio led to 
aggravation of cardiomyopathy in ovariectomized diabetic 
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mice. Thus, AuNP-mediated inhibition of miR-155 in mac-
rophages is a promising strategy for improving cardiac 
function.

Another non-viral biomimetic system was constructed by 
coating the FH peptide-modified neutrophil membrane on 
mesoporous silicon nanoparticles loaded with miR Combo 
(miR-1, 133, 208, and 499). In a mouse model of myocardial 
ischemia/reperfusion injury, intravenous injection of nano-
particles successfully delivered miRCombo into fibroblasts, 
which was used to reprogram cardiac fibroblasts for cardiac 
regeneration after myocardial injury, thereby reducing fibro-
sis and improving cardiac function[82].

3.3 � Polymer‑Based Delivery Systems

Polymers have good biosimulation characteristics, biocom-
patibility, and a wide range of structural changes therefore 
they are widely used in drug-delivery systems [81]. Polymer 
nanodrugs are nanopreparations that connect polymers and 
drugs through chemical bonds. Upon entry into the body, the 
conjugate responds to exogenous or endogenous changes to 
break the chemical bond and release the drug at the target 
site. Polymers are classified as synthetic or natural. Syn-
thetic polymers are composed of mainly polyethyleneimines 
(PEIs) and poly (lactic-glycolic acid), while natural poly-
mers include peptides, proteins, and polysaccharides [83].

3.3.1 � Synthetic Polymers

3.3.1.1  Polyethyleneimines  Polyethyleneimines are a class 
of cationic synthetic polymers that contain multiple amino 
groups within their linear or branched structure [84]. The 
positively charged amino groups in PEIs and the negatively 
charged phosphate groups in nucleic acids undergo polycon-

densation through electrostatic interactions to form nanopar-
ticles, not only preventing the degradation of nucleic acids 
during delivery but also improving the cell uptake efficiency 
because of their high transfection efficiency [85]. Polyethyl-
eneimines are considered the gold standard for nonviral vec-
tors. Currently, studies based on PEIs as delivery vehicles 
are increasing; moreover, PEI-based delivery of miRNA is 
being explored for the treatment of fibrotic diseases.

Polyethyleneimine nanoparticles were shown to effec-
tively deliver miR-146a and significantly enhance its expres-
sion in obstructive kidney disease while reducing the area of 
renal fibrosis, the expression of alpha-smooth muscle actin 
and the infiltration of F4/80-positive macrophages into the 
obstructed area [86]. These effects may occur because miR-
146a polyethyleneimine nanoparticles can inhibit the TGF-β/
Smad and tumor necrosis factor receptor-associated factor 
6/nuclear factor kappa B signaling pathways. These results 
indicate that miR-146a delivery alleviates renal fibrosis by 
inhibiting profibrotic and inflammatory signaling pathways.

Polyethyleneimine-based nanoparticles also signifi-
cantly promote miR-126 entry into human F508del CF 
transmembrane conductance regulator bronchial epithelial 
(CFBE41o) cells [87]. The low nitrogen/phosphate ratio 
of PEI-premiR-126 nanoparticles resulted in significant 
knockdown of target of Myb1 (TOM1), a known target of 
miR-126. The reduction in TOM1 expression was most pro-
nounced (66% reduction) in CFBE41o cells with an nitro-
gen/phosphate ratio of 1:1.

Polyethyleneimine forms a stable PEI-miRNA complex 
via electrostatic interactions. These complexes are immobi-
lized on an electrospun smooth porous scaffold to achieve 
continuous delivery of two muscle-specific miRNAs (miR-1 
and miR-133a). These dual miRNA scaffold systems proved 
to be a good formulation, and the delivered dual miRNAs 

Fig. 2   Schematic of the structure of gold nanoparticles, poly(lactic-glycolic acid) [PLGA] graft chitosan, and exosome delivery microRNA. 
PLNPs PLGA nanoparticles
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contributed to the precise control of the cardiac fibroblast 
fate to alleviate myocardial fibrosis [88].

However, the main limitations of PEIs as nanocarriers are 
their low biodegradability inside cells and their propensity 
to form aggregates with negatively charged proteins in cells, 
resulting in dose-dependent cytotoxicity. To reduce their 
cytotoxicity and improve their transfection and targeting 
efficiency, chemical structural modifications of PEIs have 
been widely studied, yielding constructs such as polyure-
thane-grafted PEI, poly-L-lysine-modified PEI co-polymers, 
poly(1,8-octanediol-citric acid)-grafted PEI, and poly(lactic 
acid)-grafted PEI copolymers [89]. These PEIs with modi-
fied chemical structures and loaded with miRNAs constitute 
a future therapeutic option for fibrotic diseases.

3.3.1.2  Poly (Lactic‑Co‑Glycolic Acid)  Poly(lactic-co-gly-
colic acid) [PLGA] is a safe, biocompatible, and biodegrad-
able polymer. Poly(lactic-co-glycolic acid) can be hydro-
lyzed into non-toxic lactic acid and glycolic acid monomers, 
which are metabolized by the body without any side effects 
[90]. Nanoparticles prepared from PLGA polymers can cap-
ture biologically active molecules and escape from the lyso-
some into the cytoplasm, inducing sustained release of the 
transported substance in the cell and achieving the goal of 
slow release. The PLGA delivery system can be subjected to 
a variety of surface modifications and is currently used for 
miRNA delivery to treat fibrotic diseases (Fig. 3) [91, 92].

miR-17 mimics were encapsulated in poly(lactic acid) 
graft-based particles, which were phagocytosed by bron-
chial epithelial cells, and possibly improved CF [93]. The 
PLGA microparticle system encapsulating premiR-19b-3p 
can deliver mature miR-19b-3p to macrophages in vitro with 
high efficiency. Indeed, the level of secretion leucoprotease 
inhibitor, the target gene of miR-19b-3p, was still observed 
to be significantly reduced 72 hours after delivery [94]. As 
macrophages are key inflammatory cells, they are essential 
mediators of chronic inflammatory lung diseases such as CF. 
MiRNA-coated PLGA particles may be delivered to CF tis-
sues by inhalation, thus providing a new treatment paradigm 
for delivery to macrophages.

However, the ability of anionic PLGA nanoparticles 
to transfect genetic materials into cells is poor, and their 
encapsulation efficiency is low, which limits their appli-
cation. To overcome these limitations, positively charged 
low-molecular-weight chitosan can be added to the PLGA 
system. Low-molecular-weight chitosan may facilitate the 
encapsulation of negatively charged substances such as 
nucleic acids, thereby improving the packaging efficiency of 
PLGA. By coupling miRi (a miR-21 inhibitor) with PLGA 
and low-molecular-weight chitosan, Geng et al. prepared 
small cationic miRi-low-molecular-weight chitosan-modi-
fied PLGA nanoparticles [95]. The easily degradable miRi 
was encapsulated in these PCNPs, thereby preventing its 

degradation by nucleases. In vitro and in vivo assays showed 
that PCNPs have good biocompatibility, a high cell uptake 
efficiency, and selective kidney-targeting ability. Moreo-
ver, the therapeutic effect of miRi-PCNPs on renal fibrosis 
was much higher than that of miRi alone. The tubule injury 
index and tubulointerstitial fibrosis area in the miRi-PCNP 
group were 2.5 times lower than those in the saline and miRi 
groups. miRi-PCNPs mainly suppress the TGF-β1/Smad3 
and extracellular signal-regulated kinase/mitogen-activated 
protein kinase signaling pathways by inhibiting the expres-
sion of miR-21 [95]. Therefore, miRi-PCNPs with specific 
renal targeting and strong antifibrotic therapeutic effects may 
constitute a promising basis for the design and development 
of treatments for renal fibrosis.

Porous polymer particles made from PLGA satisfy unique 
characteristics required for drug delivery to the lungs, such 
as aerodynamic density, an adaptive aerodynamic diameter, 
a porous surface, sustainable release, and enhanced lung 
deposition effects, which can promote access by or weaken 
the phagocytosis of lung macrophages. Their good atomi-
zation characteristics in the lungs have been exploited to 
deliver miRNAs to the lungs [96, 97]. Doxorubicin and miR-
519c were encapsulated in porous PLGA particles via the 
water-oil-water emulsion solvent evaporation method and 
were used for pulmonary administration [98]. These two-
component porous PLGA particles had a stronger inhibi-
tory effect on cell proliferation than porous PLGA particles 
containing a single component (doxorubicin or miR-519c). 
Therefore, porous PLGA particles can enhance antifibrotic 
effects and reduce side effects and can be used as sustained-
release carriers for the treatment of idiopathic pulmonary 
fibrosis.

3.3.2 � Natural polymers

3.3.2.1  Chitosan  Chitosans (CS) are a family of biodegrad-
able, nontoxic, linear cationic polysaccharides consisting 
of repeating D-glucosamine and N-acetyl-D-glucosamine 
units connected by 1,4-glycosidic bonds. They are produced 
by partial deacetylation of chitin isolated from crustacean 
shells [99]. Chitosans alone can prevent tendon adhesion 
during tendon healing. In addition, Chen et  al. found that 
CS can increase the sliding distance of repaired tendons and 
reduce the content of collagen fibers [100]. This effect of 
CS may occur through the promotion of miR-29b and P21 
expression in fibroblasts with a concurrent reduction in the 
levels of TGF-β1 and Smad3.

MiR-21 promotes fibroblast proliferation and colla-
gen formation in tissue fibrosis, and CS/TPP/hyaluronic 
acid (HA) nanoparticles are coated with a smooth Ti 
surface, which promotes gingival fibroblast adhesion, 
proliferation, and increased expression of genes related 
to the extracellular matrix [101]. Chitosans were  used 
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to prepare CS-tripolyphosphate-miR-126 (CS-TPP-
miRNA) nanocomposites, and the nanoparticles showed 
relative non-toxicity. However, compared with that of 
the PEI-miRNA nanodelivery system, the ability of the 

CS-TPP-miRNA system to deliver miR-126 was poor 
(Fig. 3) [87]. Therefore, the CS-loaded miRNA system 
needs further optimization.

Fig. 3   Chemical structures of synthetic and natural polymers and their constructed microRNA delivery systems. CS chitosans, HA hyaluronic 
acid, PEG polyethylene glycol, PEI polyethyleneimines, PLGA poly(lactic-glycolic acid)
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3.3.2.2  Hyaluronic Acid  Hyaluronic acid sulfate is an ani-
onic nanocarrier that can deliver the reversible complex of 
miRNA or siRNA with calcium ions in solution to produce 
an anionic complex [102]. Compared with unmodified HA, 
sulfated HA is not easily degraded, has enhanced stability 
during transport, and contains multiple functional groups 
that can be used for targeted ligand binding and other func-
tions [103]. Hyaluronic acid sulfate can deliver miRNA to 
inhibit the development of fibrosis. Nanoparticles assem-
bled from miR-21 mimics, calcium bridge channels, and 
HA sulfate can be delivered to cardiac macrophages after 
a myocardial infarction (Fig.  3) [104]. MiR-24-3p-rich 
exosomes functionalized di(ethylene glycol) monomethyl 
ether methacrylate-modified HA hydrogels reduces cor-
neal stromal fibrosis and activation of macrophages activa-
tion, suggesting its potential utility in cell-free therapy for 
corneal epithelial regeneration [105]. These nanoparticles 
can induce a switch from a proinflammatory to a reparative 
phenotype, regulate angiogenesis, and reduce fibrosis in the 
distal myocardium.

3.4 � Lipid‑Based Delivery Systems

Lipids, including cationic lipids, ionizable lipids, and 
auxiliary lipids, are one of the most widely used vehicles 
for nucleic acid delivery [106]. Cationic lipids have been 
developed for use in lipid-based nanoparticles to deliver 
siRNA and miRNA [107]. However, less attention has been 
devoted to “helper lipids”. The addition of the unsaturated 
fatty acid oleic acid to LNP formulations significantly 
improved the mRNA delivery efficiency [108]. MiR-122 is 
a biospecific miRNA associated with many liver diseases, 
including liver fibrosis [109]. Lipid-based nanoparticles 
containing oleic acid delivered miR-122 more effectively 
than the commercial transfection agent Lipofectamine 
2000. The expression of mature miR-122 increased 1.8-
fold, and the target of miR-122, Bcl-w, was significantly 
downregulated. Compared with Invivofectamine®, another 
commercial transfection agent designed specifically for 
liver delivery, lipid-based nanoparticles containing oleic 
acid showed considerable liver accumulation and delivery 
efficiency in vivo. Yan et al. designed a lung-targeted cati-
onic liposome preparation to encapsulate anti-miR-21, and 
cationic liposome-miR-21 was delivered to inhibit myofi-
broblast differentiation, which reduced extracellular matrix 
synthesis, and inhibited fibrotic progression [110]. These 
findings demonstrate the importance of the “helper lipid” 
component in LNP preparations for enhancing the miRNA 
uptake and transfection efficiency [111]. Lipid-based nan-
oparticles containing OA are promising nanocarriers for 
miRNA-based therapy in liver fibrosis.

3.5 � Exosome‑Based Delivery Systems

Exosomes are nanosized (40–100 nm) vesicular particles 
secreted by cells and exist in various body fluids, such as 
plasma, saliva, and urine [112]. The membrane is composed 
of lipid raft domains containing proteins and lipids, which 
protects the cell-specific proteins, lipids, and nucleic acids 
(mRNAs, miRNAs, and lncRNAs) carried within from 
RNase-mediated degradation [113]. Exosomes can par-
ticipate in immune regulation, cell migration and differen-
tiation, angiogenesis, and proteolysis. Cells can selectively 
transport noncoding RNA-containing exosomes to adjacent 
or distant cells, and exosomes have an active sorting mecha-
nism, which plays an important role in cellular information 
exchange [114]. Interestingly, stem cell-derived exosomes 
have been found to alleviate fibrosis by delivering miRNAs 
(Fig. 2) [115].

Cy3-labeled let-7 mimics and antagomiR-let-7 were 
shown to be delivered to alveolar epithelial cells and 
lung tissue through menstrual blood-derived, stem-cell 
secreted exosomes. Let-7 in exosomes can reduce reactive 
oxygen species levels, alleviate mitochondrial DNA dam-
age, and activate NLRP3 to relieve pulmonary fibrosis 
[116]. Exosomes secreted from placenta-derived mesen-
chymal stem cells can express high levels of miR-29c, and 
were shown to deliver miR-29c from exosomes to myofi-
broblasts in a co-culture system [117]. Placental-derived 
mesenchymal stem cells were found to reduce the degree 
of fibrosis in the myocardium and diaphragm [118]. Adi-
pose stem cell-derived exosomes contain high levels of 
miRNA, and exosomal miRNA can reduce the expression 
of fibrosis-related proteins and relieve myocardial fibrosis 
after an acute myocardial infarction [119–122]. Exosomes 
derived from adipose-derived mesenchymal stem cells 
inhibit the proliferation of keloid fibroblasts and pro-
mote angiogenesis through miR-181a and miR-7846-3p 
[123, 124]. Bone marrow mesenchymal stem cell-derived 
exosomal miR-21a-5p attenuates glycolysis by targeting 
ATP-dependent 6-phosphofructokinase, thereby alleviat-
ing renal fibrosis [125]. Inhibiting the interleukin-33/ST2 
axis by delivering miR-214 thereby relieves skin fibrosis 
in systemic sclerosis [126]. Exosomal miR-17 derived 
from human embryonic stem cells prevents pulmonary 
fibrosis by targeting thrombospondin-2 [127].

In addition to stem cells, exosomes secreted by differen-
tiated cells also mediate the progression of fibrosis. Hepat-
ocyte-derived exosomal miR-146a-5p suppresses the epi-
thelial–mesenchymal transition process in hepatic stellate 
cells [128]. The exosome-associated miR-99a-5p target-
ing BMPR 2 promotes hepatocyte apoptosis during liver 
fibrosis [129]. Satellite cell-derived exosome-mediated 
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delivery of the miR-23a/27a/26a cluster ameliorates renal 
tubulointerstitial fibrosis in diabetic nephropathy in mice 
[130]. Exosomal miR-381 derived from M2-polarized 
macrophages attenuates the activation of urethral fibro-
blasts through YAP/gls 1-regulated glutaminolysis [131]. 
Urinary exosomal miR-615-3p and miR-3147 are highly 
expressed and associated with inflammation and fibrosis 
in diabetic nephropathy [132]. Plasma exosomal miR-
125a-5p regulates T-lymphocyte subsets, promoting silica-
induced pulmonary fibrosis by targeting tumor necrosis 
factor receptor-associated factor 6 [133].

Obviously, stem cell-derived exosomes are very prom-
ising for the development of new materials for miRNA 
nanodelivery systems; more importantly, the develop-
ment of artificial exosomes for miRNA delivery has been 
attempted [134–136]. The miR-141-3p-functionalized 
exosomes were loaded in a soluble microneedle array for 
the treatment of hypertrophic scars on rabbit ears [137]. 
Microneedle patches loaded with exosomes containing 
miR-29b prevented cardiac fibrosis in a mouse myocar-
dial infarction model [138]. The delivery of miRNA via 
exosomes may prevent and alleviate fibrotic diseases.

4 � Prospects and Conclusion

RNA interference-based drugs have been used in therapy, 
and oligonucleotide mimics constructed using miRNAs 
have been clinically tested in fibrotic diseases [72]. Various 
nanomaterials as new vehicles for miRNA delivery, offer 
a potentially effective therapeutic strategy for fibrotic dis-
eases and combination drug therapy. Various miRNA deliv-
ery pathways have been explored and are showing promise. 
The preparation method of liposomes is simple, safe, and 
non-toxic. Unfortunately, the synthesis of liposome mole-
cules is complex and expensive. Polymer nanodelivery sys-
tems have significant advantages, such as high therapeutic 
efficiency and good biocompatibility; however, designing 
multifunctional nanodelivery systems still faces many chal-
lenges. Inorganic nanoparticles can protect miRNA from 
nuclease degradation and regulate the expression of cellular 
target genes, which is promising, but their biodegradable 
properties need to be further improved. Stem cell-derived 
exosomes provide new strategies and methods for tissue 
repair and antifibrosis of miRNA; however, the methods to 
isolate and purify exosomes needs improvement [139–141].

However, the delivery of miRNAs to specifically regulate 
target genes is still the greatest challenge to be overcome 
[142] and to achieve this, two details need to be clarified. 
First, miRNAs undoubtedly have high specificity and low 
immunogenicity, but their biological function and the mech-
anism by which they regulate fibrosis still need to be fur-
ther understood. Second, the liposome molecular synthesis 

process is still relatively complex; moreover, although the 
inorganic nanoparticle preparation method is simple and 
these nanoparticles have good biocompatibility and stability, 
their biodegradability remains an issue, and their metabolic 
kinetics still need to be clarified in vivo [143, 144].

With the developments in nanomaterials and biomedi-
cine, as well as the clarification of the mechanism underly-
ing miRNA-mediated fibrosis, the development of nanocar-
riers with different structures and functions is expected to 
solve the problems of effective miRNA delivery. The safety, 
efficiency, and stability of miRNA nanodelivery for fibrosis 
treatment is expected to be improved.
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