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Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet 
demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults 
and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy 
for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, 
we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients 
with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with 
novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination 
therapies to overcome the immune-hostile microenvironment.

Key Points 

Key challenges for chimeric antigen receptor T-cell 
therapy in glioblastoma include tumor heterogeneity, 
intrinsic and iatrogenic T-cell dysfunction, and severe 
immunosuppression mediated through both the local 
tumor microenvironment and systemically.

Novel strategies for optimizing chimeric antigen receptor 
T-cell therapy for glioblastoma include the identification 
and characterization of new target antigens, reversal of 
T-cell dysfunction with novel chimeric antigen receptor 
constructs, regulatable platforms, and gene knockout 
strategies, and the use of combination therapies to over-
come the immune-hostile microenvironment.

1 Introduction

Chimeric antigen receptor (CAR) T cells are patient-derived 
lymphocytes transfected with a gene encoding a chimeric 
transmembrane receptor that incorporates an extracellular 
antigen-recognition domain, a transmembrane and hinge 
domain to anchor the receptor on the cell surface and pro-
ject the antigen-targeting moiety out to the extracellular 
space, and an intracellular T-cell signaling domain [1, 2]. 
The extracellular domain enables recognition of target cell-
surface antigens with high specificity in a non-major histo-
compatibility complex restricted manner [3]. This is accom-
plished through the inclusion of a single-chain variable 
fragment of a tumor antigen-specific antibody that contains 
the  VH and  VL chains joined by a peptide linker of approxi-
mately 15 amino acids [4]. Upon antigen engagement, two 
discrete signaling events are mediated by the cell surface 
receptors [5]. The primary “activation” signal is produced by 
ligation of the T-cell receptor with a major histocompatibil-
ity complex-peptide complex. The second “co-stimulatory” 
signal is generated by ligation of a co-stimulatory molecule 
on the T-cell surface with its cognate ligand on the surface 
of an antigen-presenting cell. Several T-cell co-stimulatory 
molecules have been identified, including members of the 
immunoglobulin superfamily (CD28) and members of the 
tumor necrosis factor superfamily (e.g., CD40L, CD134 
[OX-40], and CD137 [4-1BB]) [6]. Once these two signal-
ing events have occurred, the CAR’s intracellular signaling 
domain is triggered, promoting numerous T-cell effector 
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functions. Overall, the unique construct of a CAR enables 
the combination of the cytotoxic functions of T lymphocytes 
with the ability to recognize predefined surface membrane 
tumor antigens in a manner that is both highly specific and 
independent of antigen processing or human leukocyte anti-
gen expression.

The clinical efficacy of CAR T cells (CAR-T) targeting 
CD19 and BCMA has been firmly established in B-cell and 
plasma cell malignancies, respectively. As of July 2023, 
six different CAR-T products have been approved by the 
US Food and Drug Administration for use in patients with 
numerous hematologic cancers based on reports demonstrat-
ing the potential for single doses of CAR-T to induce deep 
and durable responses in patients with otherwise treatment-
refractory disease [7–16]. Despite the impressive efficacy 
data and routine clinical implementation of CAR-T therapies 
for hematologic cancers over the past 5 years, progress for 
patients with solid tumors has been slower and more chal-
lenging [17]. No regulatory approvals have been obtained for 
CAR-T in any non-hematologic cancer. Barriers to effective 
CAR-T therapy for solid tumors have been reviewed exten-
sively elsewhere [17, 18], with key challenges including 
the identification of optimal target antigens, heterogeneity 
and tumor antigen escape, impaired T-cell trafficking solid 
tumors, the highly immunosuppressive tumor microenviron-
ment, and balancing the anti-tumor effects of CAR-T with 
their unique toxicities. Although these issues and others have 
thus far impeded progress in solid tumors relative to hema-
tologic malignancies, early signals of efficacy for CAR-T 
against solid tumors have recently been detected in several 
small studies, particularly in pediatric oncology. For exam-
ple, objective responses and associated clinical benefit have 
been reported for CAR-T targeting the disialoganglioside 
GD2 in children with both relapsed/refractory high-risk 
neuroblastoma [19] as well as recurrent H3K27M-mutated 
diffuse midline glioma [20]. In addition, B7-H3 targeted 
CAR-T have shown clinical activity in a child with diffuse 
intrinsic pontine glioma [21]. These studies have galvanized 
the cellular therapy field, providing proof of principle that 
CAR-T have the potential for treating some of the most chal-
lenging solid tumors.

One such cancer is glioblastoma (GBM), the most com-
mon primary brain cancer in adults and an incurable and 
aggressive malignancy carrying a median overall survival 
typically less than 2 years [22]. Current standard of care 
treatment for GBM includes maximal safe surgical resec-
tion followed by adjuvant radiotherapy and temozolomide 
chemotherapy, with or without tumor-treating fields [23]. 
Because of its diffusely infiltrative nature and a significant 
treatment-refractory tumor stem cell population, GBM 
invariably recurs following this regimen. Over the past two 
decades, bevacizumab has been the only systemic therapy 

approved by the Food and Drug Administration for recurrent 
GBM [24], and neither bevacizumab nor any other treat-
ment has ever been shown to improve overall survival versus 
best supportive care in this setting. Accordingly, there is no 
widely accepted standard of care for recurrent glioblastoma, 
and novel effective treatments are desperately needed.

In this review, we summarize the state of the field regard-
ing the development of novel strategies for optimizing 
CAR-T therapy for GBM, including the identification and 
characterization of new target antigens, reversal of T-cell 
dysfunction, and the use of combination therapies to address 
the immunosuppressive microenvironment (Fig. 1). We do 
not provide a comprehensive summary of previously con-
ducted CAR-T trials in GBM, as these have been reviewed 
recently by our group [17, 25] and others [26, 27].

2  New Target Antigens

2.1  Overview

Completed CAR-T trials have been conducted for five differ-
ent therapeutic targets (epidermal growth factor receptor var-
iant III [EGFRvIII], erythropoietin-producing hepatocellular 
carcinoma A2 [EphA2], GD2, human epidermal growth fac-
tor receptor 2 [HER2], and interleukin [IL]-13Rα2; Table 1) 
[28–36]. In addition, four additional targets are the subject 
of presently ongoing trials: B7-H3, CD147, chlorotoxin, and 
IL-7Rα (Table 2). Moreover, additional candidate targets 
have been assessed with some evidence of efficacy in the 
preclinical setting. Here, we briefly summarize the five tar-
gets that have been evaluated in previously reported clinical 
trials and, subsequently, dedicate individual sections to the 
four novel targets against which CAR-T are currently being 
evaluated in patients with GBM.

Among previously studied targets, EGFRvIII is a tumor-
specific EGFR splice variant found in 30% of newly diag-
nosed GBM cases and is the second most common EGFR 
alteration frequency behind wild-type EGFR amplification 
[37–39]. This variant results in a constitutively active recep-
tor resistant to EGFR inhibitors and is a negative prognostic 
marker [37–39]. It has attracted interest as an antigen target 
for immunotherapy owing to both its extracellular location 
and the presence of a novel glycine residue to abnormal 
splicing [37–39]. EGFRvIII has been the target for three 
clinical trials, including two in the setting of recurrent GBM 
and one for primary GBM [28–30].

The EphA2 receptor has been shown to mediate tumo-
rigenic functions including cellular motility, invasion, and 
angiogenesis, and has accordingly been associated with 
poorer outcomes for GBM [40–42]. It is overexpressed in 
GBM but frequently not expressed in normal brain tissue, 
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making it a viable target for immunotherapy [31]. EphA2 
has been the subject of one clinical trial involving peripheral 
CAR infusion in three patients [31].

The disialoganglioside GD2 is a plasma membrane com-
ponent that has been demonstrated to be overexpressed in 
GBM, while comprising just 1–2% of total gangliosides in 
the central nervous system [43–45]. It has been the subject 
of one trial involving peripheral infusion in five patients and 
a combined peripheral and post-resection intracavitary infu-
sion in three patients [32].

HER2 is a tumor-associated antigen expressed in up to 
80% of GBM cases, correlating with a degree of anaplasia 
in glial tumors, but not by normal brain tissue [33, 46–48]. 
HER2 signaling has been shown to mediate cell proliferation 
and inhibition of apoptosis [33, 49]. It has been targeted in 
one prior clinical trial, which utilized peripheral infusion in 
17 patients [33, 49].

Finally, IL-13Rα2 is an IL-13 signaling receptor found to 
be expressed in several different human tumors, including 
approximately 82% of GBM, but is not expressed in any nor-
mal tissue, except for the adult testes [50–52]. IL-13 signal-
ing through this receptor has been documented to mediate 
tumor migration and invasion [50–52]. IL-13Rα2 has been 
the target in three prior clinical trials involving a post-resec-
tion intracavitary or intratumoral infusion [34–36].

2.2  B7‑H3

B7-H3 is a transmembrane protein with putative co-stimula-
tory and co-inhibitory functions on different T-cell subsets, 
which has also served as an antitumor target in several solid 
tumor preclinical models [53]. B7-H3 expression, found on 
immunohistochemistry in 50–64% of GBM samples with-
out expression in adjacent normal cerebral tissue, has been 

Fig. 1  Potential methods for optimization of chimeric antigen recep-
tor (CAR) T cells for glioblastoma. (1) Novel targeting monova-
lent CAR; (2) bispecific T-cell engager (BiTE); (3) tandem bivalent 
CARs; (4) parallel bivalent CARs; (5) oncovirus-delivered gene 

therapy (OV); (6) immune checkpoint inhibition (ICI); (7) CRISPR; 
and (8) combination with radiotherapy. IFNy interferon-γ, PD1 pro-
grammed cell death protein-1
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documented to be associated with a higher tumor grade and 
poorer survival among patients with GBM, and survival 
was extended following treatment with anti-B7-H3 CAR-T 
across several orthotopic mouse models [54]. Expression 
of B7-H3 has additionally been documented in pediatric 
central nervous system malignancies, including medullo-
blastoma and diffuse intrinsic pontine glioma [55]. In vivo 
studies in murine models determined that an anti-B7-H3 
CAR construct induced complete regression of GBM for an 
average of 2 months, with recurrence posited by the authors 
to be due to target antigen heterogeneity [54]. Accordingly, 
B7-H3 is presently the target for five ongoing clinical trials 
for recurrent GBM, all utilizing intratumoral, postresection 
intracavitary, and/or intraventricular delivery. Two trials are 
additionally assessing the safety of administering B7-H3-di-
rected CAR-T between temozolomide cycles (Table 2).

2.3  CD147

CD147, also known as basigin or extracellular matrix metal-
loproteinase inducer (EMMPRIN), is a glycoprotein in the 
immunoglobulin superfamily, found to be expressed on the 
surface of tumor cells or released through microvesicles. 
In one analysis of 206 GBM cases, strong positive staining 
for CD147 was observed in 23.8%. It is implicated in tumor 
invasion and metastasis by promotion of astrocyte-mediated 
matrix metalloproteinase activity [56, 57], with CD147 
knockout shown to decrease the secretion of active matrix 
metalloproteinase 9 and tumor invasion [58, 59]. Expres-
sion of CD147 has been shown to prognosticate reduced 
overall survival for patients with GBM [60]. While CD147 
is expressed at low levels of normal epithelial tissue, earlier 
in vivo studies in the setting of hepatocellular carcinoma 
have suggested that off-target toxicity on normal tissue is 
minimal [61]. One clinical trial is presently evaluating the 
safety and tolerability of anti-CD147 CAR-T, with up to 
three infusions administered intracranially (Table 2).

2.4  Chlorotoxin

Chlorotoxin is a 36-amino acid peptide with extensive 
GBM-binding properties but minimal cross-reactivity with 
non-malignant cells in the central nervous system or body, 
which was studied initially in conjugation with the  I132 
radioisotope [62, 63]. While chlorotoxin does not have any 
intrinsic cytotoxic properties, including to normal tissue, 
studies have suggested that chlorotoxin binding may impair 
GBM migration [64]. Chlorotoxin has been studied across 
a range of clinical applications, including intraoperative 
visualization of GBM and as a medium to traffic delivery of 
chemoradiotherapy and other cytotoxic agents [65–67]. This 
target has additionally gained interest because of potentially 

addressing limitations in therapeutic efficacy due to tumor 
heterogeneity, as chlorotoxin-targeting CAR-T can mediate 
antitumor activity even in GBM cell populations lacking 
other characteristics of tumor antigens, such as EGFRvIII, 
IL-13Rα2, or HER2 [68]. For example, in one analysis of 
15 patients, 80% of freshly dissociated GBM cells exhibited 
chlorotoxin binding [68]. A CAR construct utilizing chloro-
toxin as the tumor-targeting domain has been demonstrated 
to induce tumor regression in orthotopic mouse models 
without off-target effector activity, although binding activity 
required the surface expression of metalloproteinase 2 [68]. 
Two trials are presently studying the use of chlorotoxin-
bearing CAR-T, infused via a post-resection intracavitary 
and/or intraventricular approach (Table 2).

2.5  Targets Under Preclinical Study

Integrin receptors have emerged as an area of preclinical 
study owing to their mediation of cell migration, tissue 
invasion, and angiogenesis [69]. Integrin  alphav  beta3 is 
expressed on GBM tumor cells and associated vasculature 
in a manner correlated with tumor grade [70]. Following 
treatment with a second-generation construct against  alphav 
 beta3, an orthotopic mouse model exhibited GBM regres-
sion as well as increased progression-free survival and 
overall survival [71]. Another receptor implicated in tumor 
proliferation and angiogenesis is fibroblast growth factor-
inducible 14, which is similarly associated with a higher 
tumor grade and poorer prognosis [72]. A second-genera-
tion anti-fibroblast growth factor-inducible 14 construct was 
demonstrated to induce GBM regression in an orthotopic 
mouse model, with recurrence reduced further by concomi-
tant use of bispecific T-cell engagers (BiTEs) or IL-15 to 
promote adoptive transfer of central memory T cells [73]. 
Finally, CAR-T therapy directed against P32, a receptor most 
commonly localized to the mitochondrial matrix but also 
documented to be expressed on the surface of GBM cells, 
has been shown to extend survival and exert anti-angiogenic 
activity in orthotopic mouse models [74].

Markers for cancer stem cells in GBM such as CD70 
and CD133, which have been documented to correlate with 
poorer clinical outcomes, constitute another group of thera-
peutic targets of interest [75]. CD70, a member of the tumor 
necrosis factor superfamily, may be constitutively expressed in 
GBM and has been shown to mediate tumor progression and 
immune escape, including recruitment of immunosuppressive 
T regulatory (Treg) cells and induction of T-cell exhaustion 
[76, 77]. In an orthotopic mouse model of recurrent GBM, 
anti-CD70 CAR-T was demonstrated to extend survival [78]. 
CD133 has been demonstrated to be a marker of cancer stem 
cell resistance to chemotherapy and radiotherapy as well as 
a prognosticator of earlier GBM recurrence [79, 80]. In an 
orthotopic mouse model with post-natal engraftment of the 
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human hematopoietic system via an injection of human fetal 
CD34+ cord blood, anti-CD133 CAR-T prolonged survival 
without off-target effects on normal CD133+ hematopoietic 
stem cells [81]. An additional target of study is natural killer 
group 2 member D ligand, which is overexpressed across sev-
eral solid tumors, including glioma cancer stem cells [82]. 
Treatment with anti-natural killer group 2 member D ligand 
CAR-T in a subcutaneous xenograft mouse model resulted in 
tumor regression, with no evidence of cytotoxicity [83].

Finally, other preclinical studies have attempted to target 
markers enriched in the GBM tumor microenvironment. For 
example, carbonic anhydrase IX has been documented to play 
an important homeostatic role for GBM cells in maintaining 
intracellular pH, given increased tumor glycolytic activity and 
the hypoxic tumor microenvironment [84]. A third-genera-
tion CAR-T directed against carbonic anhydrase IX has been 
shown to prolong survival in an orthotopic mouse model, with 
additional benefit conferred by pharmacologic induction of 
hypoxia via anti-angiogenic agents, such as bevacizumab [85].

In summary, prior clinical trials of CAR-T therapy for adults 
with GBM have primarily targeted EGFRvIII, IL-13Rα2, and 
HER2. Taken together, the data from these trials have sug-
gested that CAR-T targeting these antigens can successfully 
traffic to the tumor and reduce target antigen expression, and 
both tumor regression [34] and prolonged survival [86] have 
been reported in rare individual cases. However, these thera-
pies have not demonstrated clinical efficacy in the vast major-
ity of cases. While the choice of target antigen(s) may be part 
of the problem, there are also opportunities to improve T-cell 
function and address the immunosuppressive GBM microen-
vironment, both of which we cover in the following sections.

3  Modulating Native T‑Cell and CAR‑T 
Function

3.1  Novel CAR‑T Constructs

Chimeric antigen receptor targeting of multiple antigens 
has been evaluated as a potential method to overcome anti-
gen loss and heterogeneity as barriers to CAR-T efficacy. 
Whereas tandem (or bivalent) CAR constructs incorporate 
two separate antigen-binding sites on the same extracel-
lular domain, bicistronic CAR products utilize two distinct 
antigen-binding sites on two separate extracellular motifs. 
In two murine GBM studies assessing tandem CAR-T, 
one evaluating dual HER2 and IL-13Rα2 targeting and 
the other studying dual IL-13Rα2 and EphA2 targeting, 
tandem therapy achieved greater glioma regression, rela-
tive to single antigen targeting [87, 88]. For bicistronic 
CAR-T therapy, an ongoing trial is evaluating the efficacy 
of a single peripheral infusion of a bicistronic anti-EGFR 

and anti-IL-13Rα2 CAR-T construct for recurrent GBM 
(NCT05168423).

Moreover, BiTEs have emerged as a strategy for over-
coming antigen loss and heterogeneity as well as off-tumor 
activity. A BiTE comprises two tandem single-chain vari-
able fragments, with one capable of binding to the T-cell 
complex, such as the CD3 subunit, in order to increase 
linkage and engagement between T cells and targeted 
tumor cells [89]. For GBM, BiTE-secreting bivalent 
CAR-T targeting EGFRvIII and IL-13Rα2 was found to 
have a superior tumor response to counterparts without 
BiTE secretion [90]. Additionally, in another study assess-
ing a BiTE directed against EGFR, anti-EGFRvIII CAR-T 
with BiTE secretion notably induced recruitment of nor-
mal bystander T cells against EGFR-bearing GBM cells 
[91]. An ongoing trial is evaluating intracranial adminis-
tration EGFRvIII-directed CAR-T in tandem with a BiTE 
targeting wild-type EGFR (NCT05660369).

Another CAR-T strategy used to address the barriers 
of off-tumor cytotoxic activity due to poor specificity of 
antigen targeting as well as antigen heterogeneity is the 
synNotch receptor system, which requires recognition of 
both a “priming” antigen that is tumor or organ specific 
and a “killing” antigen that represents the actual thera-
peutic target. In one analysis of a tandem CAR construct 
targeting EphA2 and IL-13Rα2, two antigens expressed 
on a wide range of normal tissue, a synNotch construct 
priming with either EGFRvIII (a tumor-specific antigen) 
or myelin oligodendrocyte glycoprotein (a tissue-specific 
antigen) improved antitumor efficacy without evidence of 
off-tumor activity [92]. This system has additionally been 
shown to confer the advantage of avoiding T-cell exhaus-
tion resultant from tonic signaling and activity [92].

Finally, other CAR-T constructs have focused on induc-
ing transgenic expression to enhance immune function. 
For example, constructs co-expressing proinflammatory 
cytokines IL-12, interferon (IFN)-α2, or IL-15 have been 
demonstrated to achieve improved anti-glioma activity 
relative to the analogous constructs alone [73, 93, 94]. A 
similar rationale was applied towards another study gen-
erating CAR-T with secretion of Clostridium perfringens 
neuraminidase, a compound with known cytotoxic and mito-
genic effects. To modulate T-cell chemotaxis, another study 
assessing tandem co-expression of an IL-8 receptor (CXCR1 
or CXCR2) with anti-CD70 CAR determined that modifi-
cation conferred improved intratumoral CAR-T migration 
and persistence [95]. Finally, CAR modifications have also 
been evaluated to ameliorate mechanisms of immunosup-
pression, such as an anti-EGFRvIII construct incorporat-
ing a TGF-beta type II receptor (TGFRII) ectodomain as 
a TGF-β “trap” to increase TGF-β resistance, which was 
shown to extend survival in murine GBM models [96]. Other 
dominant-negative CAR constructs have focused on directly 
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targeting mediators of T-cell dysfunction or exhaustion, 
such as programmed cell death protein-1 (PD-1) or TGF-β, 
although such constructs have yet to be assessed in the set-
ting of GBM [97, 98].

3.2  Modulating Extrinsic Causes of T‑Cell 
Dysfunction

Identifying and reducing drivers of T-cell dysfunction in 
patients with GBM is important given the autologous nature 
of currently available CAR-T therapies. Accordingly, ear-
lier studies for CAR-T therapy in the setting of hematologic 
malignancies have hypothesized that differences in therapeu-
tic success may be attributed to baseline interpatient varia-
tion in immune system deficiencies and intrinsic T-cell char-
acteristics, such as the elevated frequency of specific T-cell 
populations that may be associated with a higher likelihood 
of response [99, 100]. In GBM, lymphopenia has been docu-
mented even in treatment-naïve patients, in large part due to 
bone marrow sequestration [101]. Moreover, through both 
local and systemic mechanisms, GBM has been found to 
elicit distinct modes of T-cell dysfunction, including senes-
cence, tolerance, anergy, and exhaustion [102, 103].

The glioma tumor microenvironment (TME) promotes 
the recruitment of immunosuppressive Treg cells through 
upregulation of cytokines promoting Treg cell persistence, 
including indoleamine 2,3-dioxygenase, and TGF-β [104]. 
Accordingly, higher proportions of circulating Treg cells 
have been documented in patients with glioma relative to 
healthy controls [105]. In addition, local infiltration of Treg 
cells is present within the tumor mass, with depletion being 
associated with improved survival in murine models of 
GBM [105, 106]. Accordingly, prior research has focused 
on modulating Treg cell activity to improve the efficacy 
of immunotherapy for GBM, such as co-administration of 
CAR-T with intratumoral IL-12, which has been found to 
decrease Treg cell numbers and improve CAR-T cytotoxicity 
[107, 108]. Another immune cell subpopulation implicated 
in GBM-mediated T-cell immunosuppression is myeloid-
derived suppressor cells, a heterogenous subset of imma-
ture myeloid cells upregulated across several malignancies 
[109, 110]. Reduced IFNγ production by T cells obtained 
from patients with GBM and restoration of production with 
removal of the myeloid-derived suppressor cell population 
have been previously documented [110]. In-human inhibi-
tion of myeloid-derived suppressor cells for GBM with the 
antimetabolite capecitabine has been trialed and shown to 
increase cytotoxic infiltration into the TME, although this 
strategy has yet to be tested in tandem with CAR-T therapy 
[111].

Moreover, the glioma TME is also characterized by an 
unfavorable metabolic landscape that impairs T-cell func-
tion, including hypoxia [112–114], low glucose availability 

[25, 115], and low levels of amino acids needed for effector 
T-cell functions [116, 117], which promotes T-cell exhaus-
tion and apoptosis. Accordingly, prior research in the pre-
clinical setting has demonstrated evidence of improved 
immune activity through modulation of these factors, such as 
inhibition of hypoxia-inducible factor-1α [118]. Indoleam-
ine 2,3-dioxygenase, an enzyme that increases amino acid 
unavailability by catalyzing tryptophan metabolism, was 
found to be upregulated in the GBM TME following anti-
EGFRvIII CAR-T therapy, suggesting another possible target 
to improve CAR-T function and efficacy [29, 117].

3.3  Modulating Intrinsic Causes of Dysfunction

Recent research has focused on elucidating genetic and epige-
netic dependencies of CAR-T effector function. In the setting 
of hematologic malignancies, epigenetic disruption of known 
drivers of CAR-T dysfunction, such as TET2 or DNMT3A, 
have been documented to improve therapeutic efficacy [119, 
120]. For GBM, potential targets have been identified via 
approaches such as genome-wide CRISPR knockout screen. 
In one study querying regulators of CAR-T cytotoxic activ-
ity, Transducin Like Enhancer of Split 4 and Ikaros Family 
Zinc Finger Protein 2 were identified as targets of interest, 
with CRISPR-mediated knockout conferring increased expan-
sion, killing potency, and resistance to exhaustion in vitro 
[121]. Knockout of Ikaros Zinc Finger Transcription Factor 
3, another known modulator of cytokine signaling, via a single 
guide RNA pair targeting the IZFT3 gene locus in CD133-
directed CAR-T was also associated with potentiated cyto-
toxicity and cytokine release in vitro [122]. In the setting of 
EGFR-directed CAR-T, inhibition of the epigenetic regulator 
BRD4 inhibition improved survival in a murine GBM model 
following CAR-T [123]. Another strategy for genetic knock-
out in CAR-T is the use of zinc finger nucleases, which were 
used to disrupt expression of the glucocorticoid receptor in 
one series of six patients with unresectable GBM requiring 
maintenance on systemic dexamethasone, which conferred 
steroid-resistant CAR-T activity [36].

Reciprocal screening has also been conducted on GBM 
cells, including GSCs, to identify dependencies for tumor 
susceptibility to CAR activity. Prior research has elucidated 
that one potential explanation for the relatively limited efficacy 
of CAR-T for solid tumors, relative to hematologic malignan-
cies, is a dependency on IFNγ receptor signaling activity for 
CAR-T-mediated killing, with knockout in GBM cells result-
ing in downregulation of CAR-T adhesion [124]. Conversely, 
CRISPR screening of GSCs has additionally identified targets 
whose deletion was associated with increased susceptibility to 
CAR activity, such as V-Rel Reticuloendotheliosis Viral Onco-
gene Homolog A and Nuclear Protein Localization Protein 4 
Homolog [121].
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Finally, other studies have attempted to reduce CAR-T 
dysfunction by targeting mediators of checkpoint inhibi-
tion, such as PD-1. In two studies using CRISPR-mediated 
approaches to disrupt PD-1 expression, with one adopting 
a triple an approach that also inhibited endogenous T-cell 
receptor (TRAC) and beta-2 microglobulin expression, PD-1 
inhibition was associated with improved antitumor activity 
in vitro [125, 126]. Nevertheless, a prior analysis of data for 
the first in-human trial data of anti-EGFRvIII CAR-T for recur-
rent GBM has determined that higher PD-1 expression in the 
CAR infusion product was associated with increased periph-
eral engraftment and progression-free survival [127]. Given 
an expanding body of research documenting evidence that 
PD-1 may mediate physiological functions beyond exhaus-
tion, such as memory and specific stages of T-cell activation, 
further research on the impact of PD-1 inhibition on CAR-T 
therapy for GBM, especially with in-human use, is warranted 
[128–131]. Another strategy for subverting checkpoint inhi-
bition has been the utilization of chimeric switch receptors, 
which involve constructs pairing an extracellular domain that 
recognizes a normally inhibitory stimulus, such as PD-1 or 
cytotoxic T-lymphocyte-associated protein 4, with an intracel-
lular co-stimulation domain to convert inhibitory signals into 
stimulatory activity [132, 133]. In the setting of GBM, one 
in-human trial utilizing a chimeric switch receptor responsive 
to PD-1 was documented to increase levels of proinflammatory 
cytokines and T-cell levels in the cerebrospinal fluid [134].

4  Combination Therapies

4.1  Overview

Significant interest exists in combining CAR-T therapies 
with other approaches, both approved and experimental, 
in order to both maximize CAR-T activity and provide dis-
ease control. Several of these combinations have reached 
clinical trials, with varying efficacy, while many more are 
at the investigational stage.

4.2  Clinical Stage

Three clinical trials, one completed and two currently 
enrolling, have employed combination therapy incorpo-
rating CAR-T designed to synergize directly with CAR-T 
functionality. The first combination was an EGFRvIII-
targeting CAR combined with pembrolizumab, block-
ing PD-1 signaling (NCT03726515). This approach 
was based on preclinical demonstration of CAR-T com-
bined with immune checkpoint-targeting antibodies 
against PD-1, cytotoxic T-lymphocyte-associated protein 
4, or TIM3 [52]. This finding led to the first in-human 

solid tumor concurrent combination trial of a CAR and 
immune checkpoint blockade. Preliminary results from 
the trial did not demonstrate the same synergistic or 
additive effect in patients that was seen in the laboratory 
[30]. The second clinical trial (NCT04003649), opened 
in 2019, combines an IL-13Rα2-targeting zetakine CAR 
with either nivolumab or both nivolumab and ipilimumab. 
This combination approach blocks binding of both PD-1 
(nivolumab) and cytotoxic T-lymphocyte-associated pro-
tein 4 (ipilimumab). The last trial, opened in 2023, uses 
a combination of EGFRvIII-targeting CAR-T with T-cell 
engagers, designed to help recruit naïve T cells in the 
vicinity of the tumor [135]. The T-cell engager, termed a 
TEAM, is based on cetuximab, an EGFR-targeting anti-
body with cross-reactivity to multiple EGFR mutations 
[136].

Ongoing clinical trials have additionally varied other 
characteristics related to the method of CAR-T administra-
tion, such as the route of administration and the number or 
frequency of injections. While intratumoral trafficking in 
the brain in one trial of anti-EGFRvIII CAR-T was found 
to correlate with the timeframe for peak engraftment in 
the peripheral blood [29], the peripheral blood does not 
represent the site of therapeutic action for solid tumors. 
Accordingly, of 16 ongoing CAR-T clinical trials for 
GBM (Table 2), 15 are utilizing intracranial methods of 
CAR-T administration, such as intratumoral, postresection 
intracavitary, or intraventricular. An additional considera-
tion related to CAR-T delivery is the use of lymphode-
pleting preconditioning, which has been documented to 
improve CAR-T efficacy for hematologic malignancies 
owing to factors including augmenting space for CAR-T 
peripheral expansion, depleting Treg cells, and enhancing 
innate immune system activity [25, 137, 138]. While the 
impact of lymphodepleting chemotherapy on the efficacy 
of CAR-T for GBM remains uncertain, it is likely less 
important for studies utilizing direct/local central nervous 
system delivery of the cells via the cerebrospinal fluid 
(i.e., Ommaya reservoir) than in studies administering 
cells through the peripheral blood.

4.3  Preclinical Stage

Preclinical experimentation on combinations with CAR-T 
fall into two categories: combinations that intend to create 
synergistic effects and combinations that serve to enhance 
the CAR-T activity. Synergistic effects have often focused 
on antibody-mediated approaches to block immune check-
point markers or mechanisms of immunosuppression. 
CAR-T enhancement strategies often involve cytokine and 
chemokine secretion, either from the CAR-T themselves or 
through oncolytic virus-mediated infection of tumor cells.
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Combinations of CAR-T with immune checkpoint block-
ade, such as anti-PD-1, anti- cytotoxic T-lymphocyte-associ-
ated protein 4, and anti-TIM3 antibodies, have seen signifi-
cant work in the preclinical arena [52, 139, 140]. While CAR 
and immune checkpoint blockade pairing was not found to 
be synergistic, the EGFRvIII-targeting CAR 2173 showed 
increased activity in murine models specifically when fol-
lowed by sequential administration of PD-1 and TIM3 block-
ade [52]. Similar results were observed when EGFRvIII-tar-
geting CAR-T and anti-PD-1 antibodies were administered 
concurrently, with mice surviving significantly longer when 
treated with the combination versus CAR-T alone [140]. In 
a separate study, in vitro co-culture of GBM cells with anti-
PD-1 antibodies and HER2-targeting CAR-T led to enhanced 
killing when compared with CAR-T alone [139]. Despite 
the extensive preclinical work performed thus far to explore 
CAR-T and immune checkpoint blockade combinations, the 
optimal sequencing and timing of these therapies together 
remain uncertain. Another strategy for addressing immuno-
suppression is modulating tumor-associated myeloid cells, 
such as macrophages. For example, toosendanin, a small-
molecule compound shown to reduce the immunosuppres-
sive activity of tumor-related macrophages, has been dem-
onstrated to sensitize GBM murine models to anti-EGFRvIII 
CAR-T [141].

Beyond the immune checkpoint blockade, other combi-
natorial approaches aimed at enhancing CAR-T function 
have utilized a wide variety of strategies, taking advantage 
of numerous T-cell-inherent pathways. Blocking inhibitors 
of apoptosis proteins led to sensitization of target cells to 
T-cell-induced apoptosis through tumor necrosis factor-α 
signaling [142]. This effect was demonstrated to impact 
tumor target-negative cells, providing a potential strategy 
to address target heterogeneity and tumor escape. Combina-
tion of the bacterial enzyme C. perfringens neuroaminidase 
with galactose oxidase in CAR-T showed reduced T-cell dif-
ferentiation and led to enhanced tumor control in GBM as 
well as other solid and liquid tumor models [143]. Pharma-
cologic blockade of protein phosphatase-2A led to increased 
intracellular cytokine production and tumor killing, shown 
to occur via mTORC1 activation in the CAR-T [144]. This 
effect was demonstrated in vivo, using local administration 
of anti-carbonic anhydrase IX CAR-T combined with sys-
temic administration of LB-100, a protein phosphatase-2A 
antagonist.

The use of bevacizumab in tandem with CAR-T has also 
been studied in the preclinical setting. Prior studies demon-
strating vascular normalization following inhibition of vas-
cular endothelial growth factor signaling have suggested that 
this process improves T-cell delivery and intratumoral traf-
ficking [145]. One analysis of GBM murine models demon-
strated that bevacizumab co-administration with anti-EGFR 

CAR-T increased CAR-T distribution in the GBM tumor 
microenvironment and survival [146].

Last, oncolytic viruses (OVs) have also been used in sev-
eral preclinical combination studies, given both their poten-
tial to infect and kill tumor cells and to stimulate an immune 
response through cytokine production in the infected cells. 
Combination of OVs with CD70-targeting CAR-T led to 
enhanced antitumor activity, driven by IFNγ secreted from 
the tumor cells and acting on the CAR-T [147]. In another 
study, use of a tumor-specific podoplanin-targeting CAR 
construct combined with an OV in xenograft models dem-
onstrated significantly enhanced survival when compared 
with CAR or OV alone [148]. Finally, co-administration of 
a CXCL11-armed OV and B7H3 CAR-T led to enhanced 
tumor killing and increased CAR-T infiltration in an immu-
nocompetent syngeneic model [149].

5  Summary
Development of effective CAR-T therapy for GBM will 
require employment of novel strategies that account for 
the unique features of this disease, including its extensive 
molecular heterogeneity, highly immunosuppressive and 
T-cell hostile microenvironment, systemic immune bar-
riers including T-cell dysfunction, and its location in the 
central nervous system with resultant challenges related to 
blood–brain barrier penetration and management of neuro-
toxicity. Despite these tremendous obstacles, recent signals 
of efficacy in pediatric brain tumors and exponential growth 
of translational research in the field of solid tumor cell ther-
apy point to a bright future for CAR-T in GBM. In addition 
to addressing the key challenges described above, the path 
to success will also need to include a better understanding 
of the optimal management of CAR neurotoxicity, improved 
ability to monitor tumor response and progression beyond 
standard magnetic resonance imaging, and broad collabo-
ration and sharing of data across centers currently using 
CAR-T to treat GBM.
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