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Abstract
In the era of personalized medicine and targeted therapies for the management of patients with cancer, ultrasensitive detection 
methods for tumor genotyping, such as next-generation sequencing or droplet digital polymerase chain reaction (ddPCR), 
play a significant role. In the search for less invasive strategies for diagnosis, prognosis and disease monitoring, the num-
ber of publications regarding liquid biopsy approaches using ddPCR has increased substantially in recent years. There is a 
long list of malignancies in which ddPCR provides a reliable and accurate tool for detection of nucleic acid-based markers 
derived from cell-free DNA, cell-free RNA, circulating tumor cells, extracellular vesicles or exosomes when isolated from 
whole blood, plasma and serum, helping to anticipate tumor relapse or unveil intratumor heterogeneity and clonal evolution 
in response to treatment. This updated review describes recent developments in ddPCR platforms and provides a general 
overview about the major applications of liquid biopsy in blood, including its utility for molecular response and minimal 
residual disease monitoring in hematological malignancies or the therapeutic management of patients with colorectal or 
lung cancer, particularly for the selection and monitoring of treatment with tyrosine kinase inhibitors. Although plasma is 
the main source of genetic material for tumor genomic profiling, liquid biopsy by ddPCR is being investigated in a wide 
variety of biologic fluids, such as cerebrospinal fluid, urine, stool, ocular fluids, sputum, saliva, bronchoalveolar lavage, 
pleural effusion, mucin, peritoneal fluid, fine needle aspirate, bile or pancreatic juice. The present review focuses on these 
“alternative” sources of genetic material and their analysis by ddPCR in different kinds of cancers.

Key Points 

Liquid biopsy in blood is the major application of drop-
let digital polymerase chain reaction (ddPCR) technol-
ogy in a wide variety of cancers for diagnostic, predic-
tive, prognostic and monitoring purposes.

The use of ddPCR for liquid biopsy has increased in 
recent years in other biologic fluids, including cerebro-
spinal fluid, urine, stool, ocular fluids, sputum, saliva, 
bronchoalveolar lavage, pleural effusion, mucin, perito-
neal fluid, fine needle aspirate, bile or pancreatic juice.

By far the most utilized ddPCR platform to date is the 
Bio-Rad QX100/200 system. However, new ddPCR 
platforms have been recently developed.
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1 Introduction

Droplet digital polymerase chain reaction (ddPCR) is a 
molecular biology technique based on sample partition-
ing into thousands of nanoliter-sized droplets where indi-
vidual PCR reactions take place, allowing for the detection 
of very low abundance molecular targets with extremely 
high sensitivity [1]. Although this technology is nearly 
10 years old [1, 2], its use has increased substantially in 
recent years, particularly in the field of precision oncology, 
with hundreds of publications demonstrating its clinical 
utility in many different kinds of malignancies. Liquid 
biopsy, defined as the analysis of molecular biomarkers in 
a wide variety of body fluids with diagnostic, predictive, 
prognostic or monitoring purposes, represents a noninva-
sive (or minimally invasive) approach with  significant  
relevance in the management of patients with cancer that 
requires the implementation of extraordinarily accurate 
detection methods [3]. In this clinical scenario, ddPCR has 
gained much attention as a powerful tool for the detection 
of genetic alterations, including single nucleotide vari-
ants, copy number variations, genomic rearrangements and 
methylation biomarkers, mainly in blood (particularly in 
plasma and serum) but also in many other biologic fluids, 
such as cerebrospinal fluid, urine or stool, among oth-
ers [4]. In this updated review, we describe some recent 
developments in ddPCR platforms and how they are being 
applied in oncology. Then, we focus our attention on the 
major applications of ddPCR in liquid biopsy, particularly 
in other “alternative” biofluids that are still less frequently 
used than blood but are gaining increasing interest in dif-
ferent types of cancers.

A literature research for this review was performed in 
PubMed using the following search strategy: ("Polymerase 
Chain Reaction"[Mesh:NoExp] OR "Multiplex Polymer-
ase Chain Reaction"[Mesh] OR "PCR"[tw] OR "Polymer-
ase Chain Reaction"[tw]) AND (("droplet based" AND 
"digital") OR "droplet based digital" OR "droplet digital" 
OR "bio-rad"[tw] OR "biorad"[tw] OR "raindance"[tw] 
OR "stilla"[tw] OR "digital droplet") AND (cancer[sb])
AND "2016/12/01"[Date - Publication] : "3000"[Date 
- Publication].

2  Recent Developments in Droplet Digital 
Polymerase Chain Reaction  Platforms

By far the most widely used ddPCR platform in the lit-
erature is the Bio-Rad platform (Bio-Rad; Hercules, 
CA, USA) (Fig.  1). This water-in-oil emulsion sys-
tem for droplet generation has evolved from a manual 

workflow—where the user had to pipette the PCR reaction 
mix and the oil into the cartridges—to a more automated 
system, with the so-called AutoDG droplet generator, 
along with a change from the QX100 to the QX200 sys-
tem. Other new ddPCR platforms have been developed in 
the last few years, such as the Naica Crystal ddPCR (Stilla 
Technologies; Villejuif, France) or the  SAGAsafe® tech-
nology (formerly known as  IBSAFE®; SAGA Diagnostics, 
Lund, Sweden). The main advantage of these newly devel-
oped systems is the increased multiplexing capabilities 
and improved sensitivity, with a lower limit of detection 
(LoD), respectively.

The Naica System is based on a principle initially pub-
lished in 2013 by Dangla et al. [5]. This digital PCR plat-
form relies on a hybrid approach (named crystal digital 
PCR [cdPCR]) that combines a two-dimensional array of 
microchambers for partitioning and the use of crystal drop-
lets that are thermocycled and transferred to a fluorescence 
microscope to detect amplification. All these steps take place 
in a specifically designed microfluidic chip (the Sapphire 
chip, containing the preloaded emulsion oil, which repre-
sents an advantage because it simplifies the process and 
prevents contamination [6]), and two different instruments 
are involved: the Naica Geode for sample partitioning and 
thermalcycling and a three-color detection system consisting 
of an automated fluorescence microscope, the Naica Prism3. 
Results are analyzed using the Crystal Miner software (Stilla 
Technologies). Madic et al. [7] reported a detailed and com-
prehensive description of the system and its workflow. This 
paper also discussed issues related to data analysis and the 
application of this system to the detection of L858R, L861Q 
and T790M epidermal growth factor receptor (EGFR) muta-
tions. Thus, the capability of three-color multiplexing of this 
platform was tested, showing that it did not result in a loss of 
sensitivity. When compared with massive parallel sequenc-
ing (MPS), the cdPCR showed better performance for the 
detection of known mutations in the plasma of patients 
with metastatic non-small-cell lung cancer (NSCLC) [8]. 
In this comparison, the authors found 11 positive plasma 
samples with cdPCR that could not be detected with MPS, 
with mutant allele fractions between 0.09 and 7.9%. In lon-
gitudinal plasma samples collected for monitoring EGFR 
along the disease trajectory, MPS also reported six negative 
samples that digital PCR found to be positive.

In 2018, a customized six-color assay was developed for 
detecting and quantifying 19 prevalent EGFR sensitizing and 
resistance mutations using the Naica cdPCR and an inverted 
Nikon eclipse TI microscope (Nikon Instruments Europe, 
France) with an appropriate selection of filter sets for read-
ing fluorescence in six different detection channels [9]. The 
LoD varied, depending on the mutation assayed, between 
0.125% (p.C797S c.2389 T > A and p.C797S c.2390 G > 
C) and 0.0975% (exon 19 ins/del), with 0.25% for EGFR 
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resistance mutation p.T790M and a range of 0.125–0.25% 
for activating mutations in the Cy5 detection channel. Sensi-
tivity was also tested in tumor and plasma samples from 82 
patients, comparing results with those from next-generation 
sequencing (NGS) and the three-color system. These com-
parisons showed good correlation, especially for the con-
centration of mutant copies per microliter and mutant allele 
frequency (MAF) in plasma samples measured by six- and 
three-color digital PCR. Longitudinal samples from four 
patients were also analyzed to monitor the course of disease, 
and fluctuations in mutant DNA levels were consistent with 
clinical evolution. This six-color assay for EGFR mutation 
detection was subsequently optimized on a prototype of a 
six-color reader instrument and a prototype of six-dimen-
sional Crystal Miner software that are integrated in the new 
six-color cdPCR prototype platform,  with  the  commercial 
version due for  launch in late 2021 [10].

Song et al. [11] also recently developed an integrated 
digital PCR assay using the three-color version of the Stilla 
platform. The assay is called dEGFR39 and is the first that 
allows the screening and monitoring in plasma of all the 
EGFR mutations known to be clinically relevant in NSCLC 
for treatment guidance and prognosis. It simultaneously 

detects 39 mutations of exons 18–21 of this gene, includ-
ing not only the most frequently identified  variants such 
as L858R, 19Del and T790M but also other less common 
mutations including  L861Q, S768I, G719X, C797S and 20 
insertions [11]. This study analyzed the formalin-fixed par-
affin-embedded (FFPE) tumor tissue and plasma of patients 
with NSCLC (N = 30 and N = 33, respectively) and dem-
onstrated that dEGFR39 could detect EGFR mutations with 
a sensitivity of 0.308 copies/μL and an accuracy of 88.87% 
(for dEGFR39 in plasma and amplification-refractory muta-
tion system [ARMS] in FFPE), showing a direct association 
between mutational load and response to treatment. It also 
anticipated disease progression by detecting T790M muta-
tions earlier than other methods such as SuperARMS PCR 
and computed tomography (CT) imaging.

It is evident that the main application of cdPCR to date 
has been detection of EGFR alterations in NSCLC, but  
research is also ongoing for detection of PIK3CA mutations 
in plasma in patients with advanced breast cancer, aimed 
at the selection of alpelisib treatment. As presented in the 
European Society for Medical Oncology Breast Cancer vir-
tual meeting in May 2020, the three-color detection system 
of Stilla was used with a multiplex assay for detection of 

Fig. 1  BioRad droplet digital polymerase chain reaction (ddPCR) 
platform. (1) Preparation of ddPCR reaction mix containing sample, 
probes and ddPCR master mix; (2) generation of droplets in the drop-
let generator by water-in-oil emulsion using vendor-specific oil; (3) 
droplets containing sample and ddPCR reaction mix; (4) transfer of 

droplets to a 96-well PCR plate; (5) the plate is run with PCR proto-
col in a ddPCR thermocycler; (6) droplet fluorescence is checked into 
the droplet reader; (7) analysis of results using QuantaSoft. Positive 
and negative droplets are plotted in a two-dimensional graph, setting 
thresholds for discrimination. Created with BioRender.com
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26 mutations located in exons 4, 7, 9 and 20 of the PIK3CA 
gene [12]. Quantification of BRAF V600E has also been 
performed using a novel DNA reference material that is 
intended to mimic circulating tumor DNA (ctDNA). Low 
levels of BRAF V600E ctDNA reference material were 
tested in eight different laboratories, seven of them with 
the QX200 ddPCR platform from Bio-Rad and one with 
the Stilla Naica Crystal ddPCR system [13]. Results from 
the interlaboratory study showed a significant difference in 
mutant and wild-type copy number concentration between 
the only laboratory using the Naica platform and the other 
seven laboratories. This inconsistency between the two plat-
forms was improved considerably by correcting the droplet 
volume (the droplet volume measured by the authors of this 
study was 0.476 ± 0.008 nL vs. the 0.44 nL estimated by the 
manufacturer; this difference of 8.3% was suspected to be 
the reason for the overestimation observed in both mutant 
and wild-type copies).

Finally, the use of this platform has also been reported 
for chimerism monitoring of post-allogeneic hematopoietic 
stem cell transplantation for the treatment of hematological 
malignancies, including acute myeloid leukemia (AML) and 
acute lymphoblastic leukemia [14]. In this study, cdPCR was 
compared with NGS, with both methods reaching a sensitiv-
ity of 0.1%. The results in terms of percentage of chimerism 
in cdPCR and NGS showed a high concordance with those 
obtained by the reference techniques (ddPCR, short tandem 
repeat and quantitative PCR [qPCR]).

The  SAGAsafe® platform is a droplet-based proprietary 
methodology with an improved LoD of ~ 0.001% MAF. 
It consists of a two-step process that takes place sequen-
tially within the droplets: linear amplification or copying 
of the target sequence followed by a limited exponential 
signal generation. This technology minimizes polymerase 
base-incorporation errors, enhancing true-positive signals 
while simultaneously reducing the number of false positives, 
thereby achieving greater sensitivity and specificity [15, 16].

It has already been used to detect TP53 mutations in 
liquid-based Pap samples from patients with ovarian cancer 
[17]. In this study, IBSAFE detected TP53 mutations using 
a custom-designed assay with very high sensitivity (MAF of 
0.0068%) in samples with low DNA input (as little as 0.17 
ng). The in-sample LoD was reported to be 1 in 50,000. Bio-
Rad ddPCR was used as a control, but the small number of 
samples tested did not allow a direct comparison between 
the platforms.

Another study reported that IBSAFE detected somatic 
mutations in plasma ctDNA from patients with breast can-
cer, showing a small average increase in ctDNA levels in 
both peripheral and central blood following mammographic 
breast compression, with no apparent clinical relevance 
[18]. Additionally, IBSAFE technology has been applied to 
the detection of EGFR, KRAS and BRAF mutations in the 

preoperative plasma of patients with lung adenocarcinoma 
[15]. Finally, the most recent work using this platform dem-
onstrated its applicability for the detection of minimal resid-
ual disease in AML [16]. Between five and nine mutation 
assays were developed for each patient using this technology. 
The method was more sensitive in identifying residual dis-
ease than  multicolor flow cytometry, detecting the targeted 
mutations in all relapsing patients and allowing the track-
ing of early recurrence in leukemic subclones, revealing the 
existence of three different mutational patterns of relapse.

SAGA Diagnostics launched its first in vitro diagnostic 
(IVD) European Conformity (CE)-marked  SAGAsafe® kit 
for EGFR T790M testing in 2020. The company also pre-
sented a combined strategy of NGS of tissue to detect chro-
mosomal rearrangements and a digital PCR fingerprint in 
plasma, called  SAGAsign® (formerly known as KROMA) 
[19]. Two recent references in the literature to another plat-
form should also be mentioned: the MicroDrop-100 ddPCR 
system (Forevergen, China) is based on water‐emulsion 
droplet technology and has been used to detect BRAF V600E 
mutations in thyroid nodules, with better performance 
than ARMS-PCR [20], and also  to measure the effect of 
CSNK2A3 expression on hepatitis B virus infection in hepa-
tocarcinoma cells in vitro [21].

Studies reporting clinical applications of these emerging 
ddPCR platforms in cancer are summarized in Table 1.

3  Applications of ddPCR in Liquid Biopsy

3.1  Liquid Biopsy in Blood

Hundreds of papers published in the last 4 years have sup-
ported the clinical utility of analyzing genetic biomark-
ers using ddPCR in blood in the field of oncology. It is 
being tested for application in the monitoring of molecu-
lar response and minimal residual disease in hematologic 
malignancies [22–28]. In many cases, both blood and bone 
marrow aspirates are used for liquid biopsy, and BCR-ABL 
is frequently the biomarker of choice  [26, 28–34],  and 
this  has also been suggested as a useful tool to predict 
and assess the outcomes after discontinuation of treatment 
with tyrosine kinase inhibitors (TKIs) [32, 35, 36]. The 
QXDx BCR-ABL %IS (Bio-Rad) ddPCR assay is the first 
commercially available ddPCR-based IVD product with 
US FDA clearance and the CE mark. This assay can detect 
the e13a2 and e14a2 fusion transcripts (but not e1a2, 
e19a2 or other rare transcripts) and has an acceptable ana-
lytical performance, with results comparable to those of 
the CE-IVD-marked ipsogen BCR-ABL1 Mbcr IS-MMR 
(Qiagen, Hilden, Germany) real-time qPCR (RT-qPCR) 
assay [37]. The main advantages of ddPCR versus the gold 
standard RT-qPCR method include a superior sensitivity 
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and accuracy for ddPCR (with a LoD of one copy of tran-
script), as well as the ability to perform an absolute quan-
tification without standard curves. Disadvantages include 
the lack of standardized methods and its limited availabil-
ity in laboratories [38]. Longer turnaround times (due to 
droplet generation and reading) and the possibility of false 
positives have also been suggested as potential limitations 
of this technique [37]. We found no consensus in the lit-
erature regarding cost and throughput concerns. Alu meth-
ylation status has also been quantified by ddPCR in bone 
marrow samples from patients with chronic lymphocytic 
leukemia, myelodysplastic syndromes and myelomono-
cytic leukemia before and after treatment with 5-azacy-
tidine. Decreased levels of this epigenetic marker have 
been observed after hypomethylating therapy, suggesting 

a potential utility of this approach for molecular monitor-
ing of response [39]. Other biomarkers include NPM1 [22] 
and IDH2 [40] mutations, WT1 levels [25] and immuno-
globulin heavy chain (IGH) gene [41] or immunoglobulin 
kappa-deleting-element (IGK‐Kde) [42] rearrangements. 
Table 2 summarizes some data on these studies.

As previously mentioned, this technology has also been 
utilized to quantify engraftment after hematopoietic stem 
cell transplantation [14, 43–46], to monitor the expansion 
and persistence of chimeric antigen receptor (CAR)-T cells 
in vivo, reflecting response rates and side effects [47–53], 
and to detect vector copy number in clinical CAR/T-cell 
receptor (TCR)-T-cell products [54, 55].

Genetic biomarkers have been analyzed from different 
sources, including circulating tumor cells (CTCs) [56–58], 

Table 1  Clinical applications of recently developed droplet digital polymerase chain reaction platforms in oncology

ALL acute lymphoblastic leukemia, AML acute myeloid leukemia, BM bone marrow, ddPCR droplet digital polymerase chain reaction, FNA fine-
needle aspiration, HCT hematopoietic stem cell transplantation, ID immunodeficiency, LoD limit of detection, MAF mutant allele frequency, MF 
myelofibrosis, MRD minimal residual disease, NS non-specified, NSCLC non-small-cell lung cancer, PB peripheral blood, PTC papillary thyroid 
cancer, Th thalassemia
a The LoD and/or the lowest MAF (or concentration of circulating tumor DNA) detected in clinical samples are shown. In some studies, the LoD 
was not reported
b From a total of 86 mutations (single nucleotide variants and small ins/del) detected by whole exome sequencing, ddPCR assays were developed 
for 5–9 mutations for each patient

ddPCR  
platform
(manufacturer)

Target Malignancy Biologic fluid Patients/
samples

Sensitivitya Sample amount Clinical usage References

Naica Crystal 
ddPCR

(Stilla Tech-
nologies)

EGFR L858R
EGFR L861Q
EGFR T790M

NSCLC Plasma 61 12.6 copies/ml; 
0.09%

3 ml Diagnosis, 
disease  
monitoring

[8]

19 EGFR 
sensitizing/
resistance 
mutations

NSCLC Plasma 82 0.0975–0.25% 500 µl–5 ml Disease  
monitoring

[9]

39 EGFR 
mutations

NSCLC Plasma 63 0.308 copies/μl 2 ml Diagnosis, 
disease  
monitoring

[11]

26 PIK3CA 
mutations

Breast cancer Plasma 116 0.01% 5 ml Treatment 
selection

[12]

21 chimerism 
markers (in 
triplex)

ID
Th
AML
ALL
MF

PB/BM 13 0.663 copies/
ml; 0.1%

NS Chimerism 
monitoring 
post-HCT

[14]

SAGAsafe®
(SAGA Diag-

nostics)

EGFR, KRAS 
and BRAF 
mutations

Lung cancer Plasma 58 0.001% 1–1.6 ml Prediction of 
recurrence

[15]

5–9  mutationsb AML BM 14 0.0017–0.003% NS MRD detection [16]
15 TP53 

mutations
Ovarian cancer Liquid-based 

Pap 
samples

15 1 in 50,000; 
0.0068%

120 ng (0.17–
206.14 ng)

Diagnosis [17]

MicroDrop-100 
ddPCR 
system

(Forevergen)

BRAF V600E PTC FNA 277 1–2 copies/20 
μl (0.05%)

NS Diagnosis [20]
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Table 2  Minimal residual disease detection by droplet digital polymerase chain reaction in liquid biopsy for hematologic malignancies

All droplet digital polymerase chain reaction platforms were Bio-Rad
ALL acute lymphoblastic leukemia, AML acute myeloid leukemia, ASCT autologous stem cell transplantation, B-ALL B-cell acute lymphoblas-
tic leukemia, BM bone marrow, B-NHL B-cell non-Hodgkin lymphoma, CLL chronic lymphocytic leukemia, CML chronic myeloid leukemia, 
CMML chronic myelomonocytic leukemia, FL follicular lymphoma, HCT hematopoietic stem cell transplantation, IS international scale, LoD 
limit of detection, MAF mutant allele frequency, MCL mantle cell lymphoma, MDS myelodysplastic syndrome, MM multiple myeloma, MR 
molecular response, MRD minimal residual disease, NS non-specified, PB peripheral blood, PTC papillary thyroid cancer, TFR treatment-free 
remission, TKI tyrosine kinase inhibitor, T-NHL T-cell non-Hodgkin lymphoma
a Sensitivity is reported depending on each study as LoD, the lowest MAF or concentration detected and/or MR level.
b STAG2 p.S633fs, JAK3 p.A573V, KRAS p.G12D, TP53 p.H179Q, NRAS p.Q61H, TP53 p.R158G, DNMT3A p.R882H, NPM1 p.L287fs, GATA2 
p.T387, GATA2 E391ins/delK, NRAS p.G13D, MYD88 p.L265P, B2M p.Q22X, SF3B1 p.K700E, U2AF1 p.S34F, NRAS p.G12D, GATA2 
p.A364T

Malignancy Biologic fluid Target Patients/
sample

Sensitivitya Clinical usage References

AML BM/PB NPM1, ABL1 51 0.02% MRD detection after 
HCT

[22]

AML, MM, B-NHL, 
MDS, B-ALL, 
T-NHL

Serum 17 somatic  mutationsb 17 0.04% MRD detection; 
 identification of 
patients at high risk of 
relapse

[23]

FL, MCL BM BCL2/IGH, IGHV  
rearrangements

208 NS MRD detection [24]

AML, MDS BM WT1 49 NS MRD detection after 
chemotherapy or HCT

[25]

CML PB BCR-ABL1/ABL1 p210 50 MR 5 MRD/MR monitoring [26]
MCL BM/PB BCL1-IGH, IGH VDJ 

rearrangements
116 NS MRD detection [27]

CML PB/BM Atypical BCR-ABL1  
transcripts (e13a3, 
e14a3, and e19a2)

11/65 0.001% MRD/MR monitoring [28]

ALL BM BCR-ABL1 p190 fusion 
transcript

26 0.001% MRD monitoring [29]

CML PB BCR-ABL1/ABL1 p210 76 0.26 copies/μl MRD/MR monitoring [30]
Pediatric CML PB/BM BCR-ABL1 fusion 

sequences
55/687 0.0032–0.00016%/MR 

4.5–5.7
MRD/MR monitoring [31]

CML PB BCR-ABL1/ABL1 175 0.0013% IS MRD/MR monitoring, 
prediction of TFR after 
TKI discontinuation

[32]

CML BM BCR-ABL1 fusion  
transcripts

15 1.2 copies/20 μl MRD/MR monitoring [33]

CML PB BCR-ABL1/ABL1 230 1.96 copies in 100,000 of 
ABL, MR 4.7

MRD/MR monitoring [34]

CML PB BCR-ABL1/ABL1 50 0.011 copies/μl MRD/MR monitoring, 
prediction of TFR after 
TKI discontinuation

[35]

CML PB BCR-ABL1/ABL1 p210 143 NS MRD/MR monitoring, 
assessment of outcomes 
after TKI  
discontinuation

[36]

CLL, MDS, CMML PB/BM Alu methylation 30 NS Molecular monitoring of 
response to  
hypomethylating 
therapy

[39]

AML BM/PB IDH2 R140Q, IDH2 
R172K

96 NS MRD detection [40]

MM Autograft IGH rearrangements 43 10−6 dilution MRD detection after 
ASCT

[41]

MCL BM IGK‐Kde rearrangements 37 NS MRD quantification [42]
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cell-free DNA (cfDNA) [59–61] and cell-free RNA or extra-
cellular RNA [62], nucleic acids derived from exosomes 
[63–68] and extracellular vesicles (EVs) [69–71], includ-
ing long noncoding RNAs [72–75], microRNAs (miRNA) 
[76–80] and messenger RNA (mRNA) [57, 81–83], isolated 
from whole blood, plasma or serum (Fig. 2). Many stud-
ies have analyzed a combination of several of these genetic 
materials [84–86].

ddPCR has been applied in a long list of cancer types, 
headed by colorectal [60, 87–98] and lung cancer, particu-
larly NSCLC, with EGFR and KRAS mutations being the 
most analyzed markers because of their relevance for thera-
peutic management of patients, particularly for the selec-
tion and monitoring of treatment with TKIs [61, 99–110] 
(Table 3). These are without a doubt the most widespread 
clinical applications of ddPCR in the field of oncology. Pan-
creatic cancer [56, 59, 65, 76, 78, 111–117], breast cancer 
[82, 118–124], melanoma [58, 125–134], prostate cancer 
[57, 81, 135–143] and ovarian cancer [144–148] are also 
among the most studied neoplasms using ddPCR for clinical 
purposes. Other less frequent malignancies such as gastroin-
testinal stromal tumors [149, 150] or peritoneal metastasis 
from colorectal origin [151, 152] have also benefited from 
ctDNA profiling in plasma by ddPCR. It is not the aim of 
this review to cover all the different applications of ddPCR 
in every cancer type. Notably, in most of these studies, fluc-
tuations in ctDNA levels detected by ddPCR mirrored dis-
ease response and predicted recurrence before clinical evi-
dence. Circulating tumor markers detected by ddPCR have 
also shown a clinical value for early detection of disease and 
had prognostic implications in many of these studies.

In many studies, ddPCR was applied in combination 
with NGS assays, which provide a broader perspective of 
the tumor mutational landscape, whereas ddPCR focuses on 
single molecular targets that allow confirmation of the pres-
ence of these variants and detection of changes in ctDNA 
levels over the disease course to track tumor burden [23, 
106, 151, 153–157]. This strategy gives the clinician the 

opportunity to monitor the response to treatment and guide 
therapeutic decisions, anticipating relapse even months 
ahead of the emergence of clinical symptoms or evidence in 
imaging techniques. A remarkable number of studies have 
demonstrated the utility of ddPCR to unveil intratumoral 
heterogeneity [158] and clonal evolution in response to treat-
ment [61, 150]. Of note, ddPCR has also proven useful for 
the detection of nonmalignant mutations present in hemat-
opoietic cells (a phenomenon called clonal hematopoiesis) 
that can give rise to a confounding false-positive plasma 
result when non-hematopoietic cancers, such as NSCLC, are 
monitored using liquid biopsy [159]. In recent years, a trend 
towards multianalyte or multifactorial models has increased, 
where several biologic markers are simultaneously analyzed, 
with ddPCR playing a significant role as an accurate and 
reliable tool for quantitative nucleic acid-based biomarkers 
[160–162].

ddPCR is usually employed as a validation technique 
when alternative or newly developed methodologies are 
tested or to solve discordant cases [163–167].

It should also be noted that there are still some challenges 
and/or limitations to a more widespread use of ddPCR in 
routine clinical practice. The number of genetic variants 
that can be analyzed is limited by the amount of sample 
available. Multiplexing strategies have been developed to 
overcome this problem, including additional detection chan-
nels in the newer ddPCR platforms, as mentioned earlier. 
Besides, more than one target can also be detected in a single 
fluorescent channel by varying the concentration of different 
probes labeled with the same fluorophore or using amplicons 
of different sizes marked with DNA binding dyes [168].

Another relevant hurdle is the occurrence of false-positive 
signals, mainly caused by PCR errors in cfDNA samples, 
where a rare variant is intended to be detected in a high 
background of a wild-type allele, limiting the fractional 
abundance that can be detected [168].

First, standardized protocols for sample collection, stor-
age, processing, nucleic acid extraction and modification are 

Fig. 2  Different sources of genetic biomarkers isolated from whole 
blood, plasma or serum that can be analyzed by droplet digital pol-
ymerase chain reaction (ddPCR): circulating tumor cells (CTCs), 

extracellular RNA (exRNA), cell-free DNA (cfDNA), cell-free RNA 
(cfRNA), long non-coding RNA (lncRNA) and messenger RNA 
(mRNA). Created with BioRender.com
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lacking. A range of tubes are used for blood collection, along 
with a range of anticoagulants and/or conservative com-
pounds (EDTA, Streck, CellSave). The time from collection 
to processing and the temperature and storage conditions 

also deserve consideration. A huge diversity of protocols is 
found in the literature, from one-step to two-step centrifu-
gation, with variable speeds, times and temperatures. The 
starting volume of plasma or serum for extraction varied 

Table 3  Main clinical applications of droplet digital polymerase chain reaction for liquid biopsy in colorectal cancer and non-small-cell lung 
cancer

cfDNA cell-free DNA, CRC  colorectal cancer, EGFR epidermal growth factor receptor, mCRC  metastatic CRC, NSCLC non-small-cell lung can-
cer, TKI tyrosine kinase inhibitor

Malignancy Biologic fluid Target Patients/sample Clinical usage References

CRC Plasma KRAS, BRAF, TP53, APC, PARK2, ERBB2 
and MET mutations

24 Prediction of progressive disease and poorer 
survival. Early detection of treatment 
failure

[60]

Plasma PTK2B and SESN3 methylation 115 Differentiating patients with and without 
metastases to other organs

[87]

Plasma KRAS mutations 27 Predicting duration of antiangiogenic 
response to regorafenib

[88]

153 Prognosis. Selection of patients eligible for 
liver metastasis resection

[91]

255 Prognostic and early response predictor in 
patients receiving first-line combination 
chemotherapy

[93]

71 Prognosis in patients undergoing liver 
metastasectomy

[94]

Serum 146 Monitoring recurrence [98]
Plasma BM2 as an estimate of total cfDNA  

concentration
97 Prognostic biomarker [89]

Plasma KRAS, NRAS and BRAF mutations 138 Prognosis. First-line treatment monitoring 
in mCRC 

[90]

Plasma PPIA and BM2 547 Prognostic biomarker in mCRC before first-
line oxaliplatin-based chemotherapy

[92]

Plasma and serum BAT-26, ACVR2A and DEFB105A/B  
microsatellite markers

72 Diagnosis and posttreatment monitoring [95]

Plasma NPY methylation 123 Early identification of treatment benefit [96]
Plasma KRAS and BRAF mutations 100 Diagnosis. Detection of primary resistance 

to anti-EGFR therapies
[97]

NSCLC Plasma EGFR mutations 100 Prediction of EGFR-TKI efficacy [61]
1 Elucidating a novel resistance mechanism to 

osimertinib
[99]

168 Early prediction of drug resistance.  
Prognosis

[100]

51 Diagnosis; prediction of response to EGFR-
TKIs

[101]

113 Correlation with tumor burden [102]
119 Selection of patients for treatment with 

osimertinib
[103]

34 Marker to monitor osimertinib response [104]
103 Prediction of treatment response and disease 

progression; prognosis
[105]

20 Response monitoring in patients receiving 
osimertinib

[106]

104 Identification of patients with disease  
progression eligible for targeted therapy

[107]

343 Triage of patients for treatment with  
osimertinib; monitoring resistance

[110]

EGFR, BRAF, KIT, KRAS, NRAS mutations 352 Disease monitoring, identification of  
resistance mutations, and treatment 
selection

[108]

KRAS mutations 106 Diagnosis; detection of KRAS co-mutations 
in EGFR-mutated patients at progression

[109]
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from < 1 to ≥ 5 mL. Commercial kits specifically developed 
for circulating nucleic acid isolation are the most frequent 
choice, with protocols described by the manufacturers, but 
elution volume or the method of nucleic acid quantifica-
tion, for example, usually differ between studies. It is not 
the aim of this review to delve into isolation methods, but 
heterogeneity is high and, remarkably, many of these pre-
analytical steps are of the utmost importance and can lead to 
measurement errors. ddPCR results are severely affected by 
factors such as DNA purity or concentration, hence all these 
procedures still require further optimization.

Other associated challenges refer to data analysis, mainly 
thresholding setting, and particularly when “rain” occurs 
(the presence of partitions located between positive and 
negative populations). Several software tools (both platform 
specific and independent) have been developed in recent 
years in response to this problem. The Minimum Informa-
tion for Publication of Digital PCR Experiments (dMIQE) 
guidelines were published in 2013 [169] and an update 
presented in 2020 (dMIQE2020) [168]. These guidelines 
highlight the key experimental information that should be 
provided by researchers and helps in understanding every 
step of the experimental process, from assay design to vali-
dation and performance, why they require standardization, 
and how this could be achieved.

3.2  Other Biological Fluids

The vast majority of studies using ddPCR involve the detec-
tion of genetic alterations in plasma. However, as previously 
reviewed [4], other body fluids can also be used for non-
invasive or less invasive molecular examination, including 
cerebrospinal fluid (CSF), urine or stool. Recent studies have 
investigated the use of additional body fluids for diagnostic 
purposes, including saliva and ocular fluids, such as vitre-
ous fluid (VF) and aqueous humor (AH). Of note, the use of 
these biofluids is not yet widespread in the clinic, and many 
of these approaches are still under development in research 
studies. Also, the different targets analyzed in these alter-
native sources of nucleic acids requires the adjustment of  
isolation procedures. Limiting factors include the amount of 
sample collected (e.g., saliva or sputum) or the concentration 
and/or purity obtained (e.g., in stool).

3.2.1  Cerebrospinal Fluid

IDH1 mutations were among the first genetic alterations 
detected in CSF with ddPCR, and further research has 
been undertaken, particularly in lower grade gliomas [170]. 
However, MYD88 L265P (a myeloid differentiation pri-
mary response gene 88 single-base substitution at c.794T 
> C resulting in a leucine to proline amino acid change) 
is another hotspot mutation that has recently gained much 

more attention, with a number of publications accumulating 
evidence about its clinical value. The major application of 
MYD88 L265P detection by ddPCR in CSF is for minimally 
invasive confirmation of a diagnosis of primary central nerv-
ous system (CNS) lymphoma (PCNSL) [171–173] (a case of 
secondary CNS lymphoma has also been reported [174]) and 
of Bing–Neel syndrome [171, 175]. Interestingly, in some 
cases, this mutation has been detected in cfDNA from CSF 
at a higher frequency than in cellular DNA [172], and this 
might provide more sensitivity than cytomorphology and 
NGS in samples with low cellularity and very low DNA 
content [171]. In a very recent study, CSF testing by ddPCR 
for MYD88 L265P proved useful for the detection of early 
relapse in a patient with Bing–Neel syndrome treated with 
ibrutinib, showing an increase in mutation levels 2 weeks 
before the appearance of clinical symptoms and without evi-
dence of recurrence on magnetic resonance imaging (MRI), 
CSF cytology, flow cytometry analysis and immunofixa-
tion electrophoresis [175]. In line with these observations, 
Bobillo et al. [176] recently combined NGS and ddPCR 
(covering many tumor mutations apart from the aforemen-
tioned MYD88 L265P) and reported better detection of CNS 
lesions by measuring ctDNA in CSF than flow cytometry, 
cytology and plasma measurements. This work showed the 
great potential of CSF-based liquid biopsy using ddPCR to 
monitor CNS involvement of B-cell lymphomas, predicting 
CNS relapse and detecting residual disease [176].

However, a previous study including three patients with 
spinal ependymoma suggested that anatomic sequestra-
tion or a low grade of intramedullary spinal cord tumors 
might hamper the utility of CSF-based liquid biopsy in these 
malignancies [177].

In recent years, liquid biopsy by ddPCR has gained 
increasing interest as a powerful tool to detect genetic bio-
markers in pediatric brain tumors, particularly in pediatric 
diffuse midline glioma (DMG), as previously reviewed by 
Lu et al. [178] and Azad et al. [179]. A recurrent actionable 
mutation in histone 3, affecting either the H3.1 or the H3.3 
protein at lysine position 27 (HIST1H3B K27M and H3F3A 
K27M, respectively, also known as H3K27M mutation), has 
been detected using ddPCR assays in the CSF of patients 
with diffuse intrinsic pontine glioma (DIPG) or high-grade 
glioma [180–183]. In a study by Panditharatna et al. [181], 
H3K27M and other obligate partner mutations in ACVR1, 
PIK3R1 and BRAF genes were detected by ddPCR in the 
CSF of patients with DMG. Their results also suggested that 
fluctuations in ctDNA levels in serial plasma samples might 
have clinical utility to monitor treatment response in patients 
with DIPG, comparable with MRI evaluation [181]. A recent 
study also showed the potential of ddPCR determinations in 
CSF for disease monitoring in pediatric patients with medul-
loblastoma. Again, a combined strategy of NGS and ddPCR 
allowed the detection of a wide variety of tumor mutations 
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in CSF, highlighting that it both represents a better source 
of ctDNA than plasma and has superior sensitivity com-
pared with cytology [184]. Thus, mutations identified by 
NGS and validated by ddPCR efficiently detected minimal 
residual disease and shed light on genomic tumor evolution, 
revealing intratumor and interlesion heterogeneity since this 
approach was able to unveil the existence of two completely 
different tumors at diagnosis and relapse.

Apart from tumors directly affecting the CNS as a pri-
mary target, the analysis of genetic alterations in CSF has 
also been applied for detection of metastatic disease in the 
CNS from other tumor origins, such as leptomeningeal 
or brain metastasis derived from lung adenocarcinoma 
[185–187], breast cancer [188] or melanoma [189].

3.2.2  Urine

Several publications have reported the application of ddPCR 
to the assessment of molecular biomarkers in urine for  pros-
tate and bladder cancer. The detection of methylation bio-
markers (GSTP1, APC, RASSF1A, PITX2 and C1orf114) 
in the cell fraction isolated from urine using a filtration 
device [190] or the development of a two-gene panel (PCA3, 
PCGEM1) in urinary exosomal mRNA [191] are some of the 
strategies that have been explored to improve the noninva-
sive identification of high-grade prostate cancer. The urinary 
transcriptome was proposed as a valuable source of biomark-
ers and later validated by ddPCR in a recent study showing 
that five protein-coding genes (FTH1, BRPF1, OSBP, PHC3 
and UACA ) distinguished patients with prostate cancer from 
cases of benign hyperplasia and healthy subjects, both in the 
centrifuged and non-centrifuged fraction of small-volume 
urine samples (1 mL) [192]. Similarly, another novel uri-
nary mRNA signature (including three upregulated genes 
[PDLIM5, GDF-15 and THBS4] and three downregulated 
genes [UPK1A, SSTR3 and NPFFR2]) was developed using 
ddPCR to discriminate prostate cancer from benign prostatic 
hyperplasia within the “prostate-specific antigen [PSA] gray 
zone” (3–10 ng/mL total PSA) [193]. The expression of the 
androgen-receptor splice variant 7 (AR-V7) has also been 
reliably quantified in urine-derived EVs, with higher levels 
in patients with castration-resistant prostate cancer than in 
those with hormone-sensitive tumors [194].

On the other hand, the analysis of hotspot mutations in 
TERT promoter and FGFR3 by ddPCR in urine has been 
proven useful for the early detection of urothelial cancer, 
including upper tract urothelial cell carcinoma and bladder 
cancer [195–200]. Tumor-specific mutations in FGFR3 and 
PIK3CA hotspot mutations, among many others, have been 
measured in the plasma and urine of patients with bladder 
cancer for disease and treatment monitoring, showing a 
remarkable potential to detect early signs of metastasis [201, 
202]. The combination of ddPCR and urine cytology yields 

a higher sensitivity than cytology alone (UroVysion) for 
detection and prognosis in urothelial bladder cancer [198]. 
Specific ddPCR assays for TERT promoter mutations have 
shown results comparable to those with the UroMuTERT 
NGS-based assay for detection of MAFs > 2%, both in the 
urine supernatant cfDNA and the urine pellet cellular DNA, 
although some discrepancies have been found below this 
allelic fraction [200]. Previous studies suggested that ddPCR 
may have a limited sensitivity to detect low-grade tumors 
harboring very low MAFs [195].

PIK3CA p.H1047R mutation has been detected by ddPCR 
in the urine of a patient with CLOVES (congenital lipo-
matous overgrowth with vascular epidermal and skeletal 
anomalies) syndrome, a subgroup of the PIK3CA-related 
overgrowth spectrum (PROS), who had a Wilms tumor. 
The mutation was present not only in the affected tissue 
but also in urine and in the Wilms tumor, which had been 
resected upon diagnosis 26 months prior to the urine sample 
collection. These results suggest that urine may be useful 
for noninvasive mutation screening by ddPCR in patients 
with CLOVES syndrome, some of whom are candidates 
to develop Wilms tumor [203]. This suggestion was sup-
ported by another study involving patients with PROS 
that analyzed several kinds of biologic specimens, includ-
ing plasma, whole blood, saliva, buccal swabs and urine 
(at its cellular and cfDNA fraction) [204]. Three different 
PIK3CA variants [c.3140A > G; p.(His1047Arg), c.3140A 
> T; p.(His1047Leu) or c.1624G > A; p.(Glu542Lys)] were 
detected in this wide variety of tissues, with the exception 
of leukocytes (only one case was detected in saliva and the 
corresponding buccal swab from a clinically affected cheek). 
Interestingly, patients who had a positive variant of PIK3CA 
in DNA extracted from the cellular fraction of urine also 
presented this variant in urine cfDNA, and these levels were 
much higher in patients with a history of nephroblastomato-
sis or Wilms tumor than in individuals without known renal 
involvement. Thus, urine testing by ddPCR could provide 
information about the renal involvement in PROS, and mul-
tiple tissue analysis may help identify patients at high risk 
for Wilms tumor.

The usefulness of urine as a suitable source of genetic 
material for molecular analysis in cancers not related to the 
genitourinary tract was also further explored in pancreatic 
ductal adenocarcinoma (PDAC) [205], metastatic colorectal 
cancer (CRC) [206] and lung cancer, particularly NSCLC 
[207]. KRAS mutations have been examined in the plasma 
and urine of patients with PDAC, showing a similar detec-
tion rate and sensitivity in both fluids, although they are 
influenced by renal function degeneration [205]. ddPCR has 
also found KRAS and BRAF mutations in matched plasma 
and urine samples from patients with metastatic CRC [206]. 
EGFR mutations have been measured in the urine of patients 
with NSCLC by ddPCR at different time points after curative 
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intent surgery for disease monitoring, with the aim of detect-
ing relapse and minimal residual disease [207]. Thus, in this 
study, the presence of detectable mutant DNA in the urine 
samples post-treatment was associated with disease recur-
rence, whereas patients with undetectable levels had better 
disease-free survival. In another study, matched plasma and 
urine samples from patients with NSCLC were collected 
and analyzed for EGFR mutation detection by ddPCR after 
TKI therapy [208], demonstrating that both body fluids may 
provide complementary information. Baseline plasma values 
showed better positive predictive value, whereas urine sam-
ples seemed to be more useful for serial monitoring since 
changes in secondary EGFR T790M mutation levels were 
detectable earlier. It was concluded from both types of sam-
ples that patients with higher post-treatment values than at 
baseline had poorer outcomes (the majority were T790M 
positive), but urinary cfDNA performed better at identifying 
patients with potentially worse outcomes.

3.2.3  Stool

In 2017, Herring et al. [209] published the detection of 
ITGA6 and ITGA6A transcripts (integrin α6 subunit and 
its α6A variant) by ddPCR in stool samples obtained from 
patients with CRC. Patients with colorectal lesions showed 
statistically significantly elevated levels of ITGA6 tran-
script in stools with respect to the non-pathological controls 
(approximately eight times higher for adenomas and 6–11 
times higher for CRC, being particularly higher in more 
advanced stages). Meanwhile, a greater than 40-fold eleva-
tion of ITGA6A was found in stools of patients with stage 
II and III CRC with respect to controls. This study directly 
compared ddPCR and conventional qPCR, with results being 
similar in terms of sensitivity and specificity.

Stool-derived DNA has also been analyzed by ddPCR 
for the presence of KRAS G12D mutation in patients with 
CRC who presented this hotspot mutation in their tumor tis-
sues, being detectable in 80% of stool samples [210]. More 
recently, hypermethylation in GRIA4- and VIPR2-associated 
CpG islands was detected by ddPCR in stool samples from 
patients with CRC, highlighting their potential as early non-
invasive biomarkers for diagnosis of this neoplasia [211]. 
In this study, ddPCR was compared with Methylight qPCR 
using the same primers and probes in both assays for detec-
tion of the two stool-based methylation biomarkers, demon-
strating that the sensitivity of ddPCR was superior.

Apart from alterations in cancer-related genes, another 
possibility explored using ddPCR in stool samples was the 
detection of DNA from different strains of bacteria that have 
been associated with malignancy, such as Fusobacterium 
nucleatum in CRC [212] and Helicobacter pylori in gas-
tric cancer [213, 214]. In a study performed in a Japanese 
population, F. nucleatum was significantly elevated in the 

non-advanced adenoma group, the advanced adenoma/car-
cinoma in situ group and the CRC group compared with 
the control group of healthy subjects, suggesting that this 
ddPCR-based assay could be useful for detecting individuals 
with CRC [212]. Similarly, H. pylori DNA was detected by 
ddPCR in patients with gastric cancer in a Chinese popula-
tion by measuring the copy number of the H. pylori 16S 
ribosomal RNA (rRNA) gene. These authors found levels 
six times higher in stool from patients with  gastric cancer 
than in those from healthy controls, in contrast to gastric 
loads, which were comparable between both groups. Addi-
tional cagA detection and cagA EPIYA typing ddPCR assays 
developed by the same research group [213] were also tested 
in the stool samples. In this population with a high preva-
lence of the cagA virulence gene, the East Asian allele was 
suggested as a risk marker for gastric cancer [214]. Inter-
estingly, stool-based detection of H. pylori clarithromycin 
resistance-associated genotypes through an assay targeting 
23S rRNA mutant alleles (A2143G, A2142G and A2142C) 
also proved feasible in patients with and without gastric 
cancer, particularly in cases of heteroresistance, where it 
seemed to be more sensitive than commonly used methods 
for testing in routine clinical practice [215].

Along this line, altered microbiota was detected by 16S 
rRNA analysis using ddPCR in postoperative fecal samples 
from patients subjected to pancreaticoduodenectomy (with 
a cancer diagnosis confirmed by surgical pathology in 45 
of 50 cases) [216]. A depletion of strict anaerobes and an 
expansion of some Proteobacteria, with an enrichment in 
Bacteroides and Klebsiella, was observed in fecal, pan-
creatic fluid, bile and jejunal samples, deviating from the 
microbial patterns considered normal in healthy individu-
als. These results suggest that postoperative fecal microbiota 
may have a potential predictive value to identify patients at 
high risk for pancreatic cancer, but this possibility needs to 
be further explored.

3.2.4  Ocular Fluids

Hiemcke-Jiwa et al. [217] proved that detection of MYD88 
L265P mutation in these fluids by ddPCR is feasible and 
represents a reliable tool for the diagnosis of vitreoretinal 
lymphoma (VRL) and for treatment monitoring. This hot-
spot mutation was present in 74% of patients in this study 
and is a distinguishing mark of VRL. Patients with uveitis 
were included as a negative control group. The analysis of 
paired samples from patients with VRL revealed that sen-
sitivity was 75% in VF versus 67% in AH, with positive 
predictive values and specificities of 100% in both cases. 
Indeed, ddPCR allowed the detection of MYD88 L265P on 
cfDNA even in > 100-fold diluted VF samples. Interest-
ingly, the mutation became undetectable in any ocular fluid 
after intravitreal and systemic treatment [217]. In another 
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recent study, MYD88 L265P mutation (which was present 
in 75% of patients with VRL, an incidence similar to that in 
the aforementioned work by Hiemcke-Jiwa et al. [217]) was 
detected by ddPCR in the VF of patients with diffuse large 
B-cell lymphomas and in one patient with lymphoplasma-
cytoid lymphoma [218].

AH can be obtained by paracentesis and is considered a 
safer and less invasive method of gathering DNA from tumor 
origin than collecting VF specimens. In particular, taking 
retinal biopsies by fine needle aspiration (FNA) incurs a 
high risk of complications, including infection, hemorrhage 
or retinal detachment [217]. However, the volumes of AH 
obtained are small and have low DNA content. Thus, a very 
sensitive technique for analysis is required. VRL diagnosis 
is extremely complicated and requires the combination of 
several laboratory tests, including flow cytometry (for detec-
tion of clonal B-cell populations), cytomorphology, immu-
nohistochemistry and molecular analysis (determination of 
cytokine levels, immunoglobulin gene rearrangements and 
mutational analysis), because no single diagnostic test has 
sufficient sensitivity and specificity of detection. The use of 
ddPCR alone is not enough for an accurate diagnosis, but it 
provides an additional tool that could be integrated into the 
clinical routine. The analysis of MYD88 L265P mutation in 
both VF and AH in combination could also contribute to 
a better diagnosis [173, 217, 218]. Double-side vitrectomy 
and multisite sampling including CSF have also been dem-
onstrated to improve ddPCR detection efficiency in PCNSL 
and other primary extranodal lymphomas [173].

3.2.5  Saliva

Recent studies have explored the utility of saliva as a source 
of DNA for study in different types of cancer. The levels of 
human papillomavirus (HPV) DNA were previously stud-
ied in the plasma of patients with advanced HPV-associated 
oropharyngeal cancer (OPC) using a ddPCR multiplex assay 
to detect the most common high-risk HPV subtypes: 16, 18, 
31, 33 and 45 [219]. The same authors later hypothesized 
that viral DNA could also be shed by tumor cells in the 
oropharynx into the saliva, paving the way for the use of 
salivary secretions for diagnostic, prognostic and predictive 
purposes in disease monitoring [220]. To test their hypoth-
esis, they designed an observational study to analyze paired 
plasma–saliva samples from patients with HPV-OPC. This 
study confirmed that HPV DNA is detectable in the saliva 
and correlates with tumor burden and local disease subsite. 
Interestingly, salivary HPV DNA viral load showed a strong 
correlation with tumor burden in patients with locoregional 
disease but not in those with distant disease only, in contrast 
to plasma, the levels of which were associated with tumor 
burden among the whole cohort, irrespective of disease 
site. Furthermore, HPV DNA baseline levels in saliva were 

almost 20 times higher in patients with clinical and imaging 
evidence of locoregional disease than in those with distant 
disease outside the head and neck only, showing a clinically 
valuable predictive potential. These levels were particularly 
elevated in those with base-of-tongue tumors compared 
with tonsil cases. Salivary HPV DNA  levels fluctuated in 
close relationship with disease progression and response, 
and changes were observed prior to clinical detection in 
most cases. High HPV DNA levels in plasma, in turn, were 
associated with worse outcomes, indicating that saliva and 
plasma provide different and complementary information. 
The use of both bodily fluids simultaneously in a combined 
strategy increased the sensitivity of detection up to 100% 
in this study.

Salivary exosomes have been suggested as an alternative 
and enriched source of DNA and RNA in patients with HPV-
OPC. An acoustofluidic biocompatible platform previously 
developed for plasma samples [221] was later optimized to 
isolate salivary exosomes at a high yield, irrespective of the 
variable viscosity and collection method of saliva samples 
[222]. This platform consists of a fusion of acoustics and 
microfluidics that uses standing surface acoustic waves, and 
ddPCR was used to evaluate the exosome yield obtained 
by this platform compared with other isolation methods. 
Thus, the concentration of the two small RNAs (miR-148-a 
and piR014923) measured by ddPCR was 15 times higher 
in the exosome fraction isolated by the optimized platform 
than in that isolated with the differential ultracentrifugation 
method. These authors also designed a ddPCR assay that 
could detect HPV16 DNA in 80% of patients with HPV-
OPC in a small cohort. Interestingly, the concentration of 
the target DNA was 12 times higher in the exosome fraction 
than in microvesicles.

Saliva has also been interrogated for the presence of 
EGFR mutations in patients with NSCLC using ddPCR 
technology. Paired plasma and saliva samples showed a 
concordance of 83.78% and was correlated with clini-
cal response. However, saliva cfDNA concentrations 
could not distinguish patients with NSCLC from con-
trols (including healthy subjects and patients with pul-
monary benign disease). This suggests it is a qualitative 
rather than a quantitative indicator and thus could not be 
applied for diagnostic purposes in this malignancy, but it 
could complement plasma and tissue biopsies [223]. A 
recent study also compared ddPCR and a novel technol-
ogy called electric field-induced release and measurement 
(EFIRM) for the detection of EGFR mutations in paired 
plasma and saliva from patients with NSCLC. The sen-
sitivity of EFIRM was 100% in both types of samples, 
whereas ddPCR showed sensitivities of 84.6% in plasma 
and 15.4% in saliva. This work by Li et al. [224] revealed 
that ctDNA was more fragmented in saliva than in plasma, 
and EGFR L858R was present mainly as ultrashort DNA 
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fragments between 40 and 60 bp in size (known as ultra-
short ctDNA) that the ddPCR assay was mostly unable to 
amplify. Of note, the EFIRM test results indicated that 
the concentration of mutant ctDNA in saliva was higher 
than in plasma, in stark contrast with the results of the 
previous study by Ding et al. [223, 224]. Interestingly, the 
majority of these EGFR mutant sequences were encapsu-
lated within exosomes [224].

Finally, as previously mentioned, a PIK3CA variant 
was also detected in the saliva of a patients with PROS 
[204].

3.2.6  Sputum

In 2018, Su et al. [225] applied droplet digital methyla-
tion-specific PCR (ddMSP) to the detection of epigenetic 
biomarkers in sputum to develop a classifier for the early 
detection of lung cancer. A comparison of ddMSP and the 
conventional quantitative MSP (qMSP) showed that the 
former was more sensitive and provided more precise and 
reproducible results for methylation quantification. The 
authors built an epigenetic classifier using ddMSP that 
included four sputum methylation biomarkers (HOXA9, 
RASSF1A, SOX17 and TAC1) and demonstrated a sensitiv-
ity of 86.6% and a specificity of 90.6% for the detection of 
lung cancer. This method was superior to the clinical gold 
standard—sputum cytology—in accuracy and sensitivity, 
although both had a similar specificity. Additionally, the 
authors intentionally added inhibitors (sodium dodecyl 
sulfate and heparin) to the PCR reactions and observed 
that ddMSP better tolerated the presence of these inhibi-
tory substances than did qMSP [225].

More recently, EGFR mutations were detected in the 
sputum of patients with NSCLC using ddPCR [226, 227]. 
Isaka et al. [226] reported that the detectability of EGFR 
mutations in sputum samples by ddPCR was highly sensi-
tive in cases with positive sputum cytology and very low 
(3.1%) in patients with negative cytology. Based on these 
and previous observations, these authors suggested that 
sputum samples should be collected for EGFR mutation 
analysis in cases where CT tumor size is ≥ 29 mm, which 
is considered a potential predictive factor for positive spu-
tum cytology [226].

On the other hand, Hackner et al. [227] analyzed paired 
plasma and sputum samples for the screening of activating 
and resistance EGFR mutations in patients with NSCLC, 
showing that the combination of both fluids for detection 
of T790M mutation increased diagnostic efficiency in 
patients with progressive disease compared with the sin-
gle analysis of plasma. Again, conventional cytology was 
unable to detect tumor cells in any of the sputum speci-
mens, although ctDNA was detectable [227].

3.2.7  Bronchoalveolar Lavage

Another body fluid that has been examined using ddPCR 
in the oncologic field is bronchoalveolar lavage (BAL) and, 
more precisely, the cell pellets obtained from this liquid 
biopsy. In 2017, ddPCR was used to validate an miRNA-
based prediction model (including two miRNAs: miR-
205-5p and 944) to distinguish squamous cell carcinoma 
from adenocarcinoma in BAL samples from patients with 
NSCLC, showing higher diagnostic accuracy than cytology 
[228]. Similarly, the determination of BRAF V600E muta-
tion in BAL samples by ddPCR was proposed as a comple-
mentary tool for the diagnosis of pulmonary Langerhans cell 
histiocytosis [229].

More recently, a ddPCR method was developed to quan-
tify the CpG methylation levels of TMPRSS4 and SHOX2 
promoters in plasma and BAL samples from patients with 
NSCLC, showing that TMPRSS4 methylation status allows 
distinction between patients with early-stage NSCLC and 
healthy individuals. TMPRSS4 was hypomethylated in BAL 
and plasma of patients with early-stage disease compared 
with controls, and an inverse correlation was observed 
between TMPRSS4 and SHOX2 in patients with early-stage 
NSCLC versus healthy controls in both body fluids, although 
this correlation was only observed in BAL in all stages. 
These results support the potential of TMPRSS4 as nonin-
vasive epigenetic biomarker as an indicator of malignancy 
in early-stage NSCLC [230]. In line with this, Roncarati 
et al. [231] recently described a four-gene methylation panel 
(RASSF1A, CDH1, DLC1 and PRPH) in bronchial washings 
using ddMSP that showed a remarkable diagnostic value in 
lung cancer, with a sensitivity of 97% and a specificity of 
74%. ddPCR has also been used for the detection of EGFR-
TKI-sensitizing mutations in bronchial washing fluid and 
plasma of patients with NSCLC, showing that the former has 
greater diagnostic efficacy than the latter [232].

3.2.8  Pleural Effusions/Pleural Fluid

Several publications have reported the detection of EGFR 
mutations in pleural effusions or pleural fluid samples of 
patients with NSCLC [233–236]. These mutations were 
analyzed in the cfDNA obtained from the supernatant of 
pleural fluid [233], in the cell pellet [236] or both [234, 
235]. Hummelink et al. [235] demonstrated that KRAS and 
EGFR mutations were detectable in paired supernatant and 
cell pellet samples, from not only NSCLC but also colon 
carcinoma, appendiceal carcinoma and adenocarcinoma of 
unknown primary. This study suggested that the cell-free 
fraction of pleural effusions is an excellent source of genetic 
material for detection of both driver and resistance mutations 
and that the combined analysis of both fractions reached 
optimal sensitivity [235].
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3.2.9  Mucin

ddPCR was recently applied to the detection of KRAS muta-
tions in cfDNA from mucin obtained from patients with 
pseudomyxoma peritonei, a rare malignant disorder char-
acterized by the accumulation of huge amounts of this vis-
cous fluid in the abdominal cavity [237]. To date, the gold 
standard for routine diagnosis is the screening of mucin in 
search of tumor cells. However, this pilot study proved that 
acellular mucin contained cfDNA from tumor origin despite 
the absence of detectable tumor cells. Paired plasma samples 
from the same patients were also analyzed but were negative 
in all cases. These results are concordant with the localized 
nature of this malignancy and pave the way for the use of 
ddPCR in further studies aimed at elucidating the complex 
molecular mechanisms leading to recurrence in this acellular 
neoplasm [237].

3.2.10  Peritoneal Fluid/Ascites

As mentioned, in many cases, ddPCR represents a valu-
able tool for validation of NGS results from different kinds 
of biologic samples. The cellular fraction of second-look 
peritoneal washings from patients with high-grade serous 
ovarian, fallopian tube, or primary peritoneal cancer was 
analyzed using ddPCR to validate the results previously 
obtained by NGS [238]. Tumor-specific mutations (includ-
ing the most frequent mutated gene TP53 but also PTEN 
and HNF1A, among others) were detectable in second-look 
washings, for both primary and recurrent tumors, providing 
valuable information about tumor heterogeneity and residual 
disease [238]. In line with this, a recent study employed 
ddPCR as a validation technique for quantification of miR-
593-3p as a prognostic biomarker in pancreatic cancer 
undergoing staging laparoscopy [239]. Its expression was 
upregulated in the supernatant of peritoneal lavage fluids 
with positive cytology and correlated with worse overall 
survival and disease-free survival, even in cases with local-
ized disease and negative cytology. These results suggest 
that elevated levels of miR-593-3p could be an indicator of 
the presence of subclinical intra-abdominal micrometastasis 
[239]. In agreement with these observations, another recent 
publication also reported that high levels of peritoneal lav-
age tumor DNA were associated with poorer outcomes in 
terms of disease-free survival and overall survival [240]. In 
this work by Suenaga et al. [240], ddPCR was employed to 
analyze peritoneal lavage from patients with PDAC in search 
of KRAS mutations. Interestingly, tumor-derived DNA was 
detectable not only in patients with positive cytology but 
also in 40% of the patients with a negative cytology result, 
showing a remarkably superior sensitivity for prediction of 
peritoneal recurrence than cytology, despite having lower 
specificity [240].

The analysis of KRAS mutations in peritoneal cfDNA 
by ddPCR was very recently proposed as a biomarker for 
peritoneal surface malignancies [241]. MAF was found to 
correlate with the surgical peritoneal carcinomatosis index, 
showing that MAF < 1% were associated with complete 
cytoreduction in contrast to MAF > 1%. These results sug-
gest that peritoneal ctDNA testing would be useful as a sur-
rogate for disease burden and as an indicator of resectability 
in peritoneal carcinomatosis. However, in this study, MAF 
could not be related to survival. Interestingly, mutant KRAS 
ctDNA was detected in peritoneal fluid in 20% of patients 
with KRAS wild-type tumors (as determined by tissue anal-
ysis using Sanger sequencing and NGS). Some of these 
patients had received anti-EGFR therapy prior to sample 
collection. Thus, this discordance may be related to intratu-
moral heterogeneity and/or clonal selection in response to 
treatment [241].

Another recent study evaluated the use of plasma and 
peritoneal fluid in a combined liquid biopsy approach as a 
prognostic factor in patients with advanced colorectal and 
appendicular tumors undergoing complete cytoreductive sur-
gery and hyperthermic intraperitoneal chemotherapy (CC-
HIPEC) [152]. In this study, KRAS mutations were analyzed 
in plasma and peritoneal fluid by ddPCR before and after 
CC-HIPEC. Patients with detectable ctDNA in plasma or 
peritoneal fluid after treatment had shorter disease-free and 
overall survival (including the 3-year survival rate). Patients 
with positive ctDNA in post-treatment plasma experienced 
systemic relapses, whereas its presence in post-HIPEC peri-
toneal fluid was associated with peritoneal recurrence and/or 
systemic relapses. In turn, all patients with negative liquid 
biopsy after treatment remained disease free. Interestingly, 
post-HIPEC cytology was negative in all cases, but ctDNA 
was not neutralized in peritoneal fluid by this treatment, sug-
gesting that its persistence may predict a worse outcome 
[152].

3.2.11  Fine Needle Aspirate

ddPCR for detection of RAS and BRAF mutation has been 
proposed as a complementary tool in association with cytol-
ogy to increase the diagnostic sensitivity and specificity of 
FNA biopsy of thyroid nodules [242]. In another study, these 
mutations were detected by NGS and confirmed by ddPCR 
[243]. In line with this, BRAF V600E mutation was also 
detected in FNA fluid from patients with papillary thyroid 
carcinoma [244]. In fact, the performance of ddPCR was 
better than that of ARMS-PCR when detecting this mutation 
from thyroid nodule FNA samples [20].

Two different studies have highlighted the utility of ana-
lyzing the supernatant cfDNA from FNA, a fluid that is 
usually discarded after centrifugation to separate the cell 
pellet for cytospin or FFPE cell block preparations. Guibert 
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et al. [245] detected EGFR, BRAF and KRAS mutations with 
ddPCR in supernatant cfDNA from patients with suspected 
lung cancer and adenocarcinomas with acquired EGFR 
resistance. Similarly, another study confirmed EGFR, KRAS, 
BRAF, PIK3CA and NRAS mutations by ddPCR in post-cen-
trifuged supernatant from malignant and benign FNA needle 
rinses, including cases of melanoma and pancreatic, lung, 
colorectal, breast, urothelial and hepatocellular carcinoma 
[246]. The same authors later observed a 100% concordance 
between NGS and ddPCR results in a small subset of FNA 
samples from patients with NSCLC [247]. More recently, 
ddPCR has been used to confirm EGFR mutations in sam-
ples from patients with NSCLC when inconsistencies were 
found between ARMS and SuperARMS-PCR [236].

The analysis of KRAS mutations using washes from endo-
scopic ultrasound-guided FNA also proved useful for the 
detection of local recurrence in pancreatic cancer [248].

3.2.12  Pancreatic Juice/Cyst Fluid/Bile

Suenaga et al. [249] determined that KRAS codon 12 and 
GNAS codon 201 mutations are detectable by ddPCR in pan-
creatic juice, finding higher concentrations when directly 
collected from the ampulla using an endoscopic distal cap. 
In addition, they observed that the optimal time for collec-
tion of pancreatic juice to increase the likelihood of detect-
ing KRAS mutations in this biofluid was 10 minutes after 
secretin infusion [250].

KRAS mutations have also been examined with ddPCR 
in cfDNA from bile samples and plasma of patients with 
PDAC and cholangiocarcinoma, with results comparable to 
those with NGS. These results suggest that bile-based liquid 
biopsy by ddPCR might be a reliable tool for diagnosis of 
pancreatobiliary cancers [251].

In a different line of research, ddPCR was used to detect 
clinically relevant bacteria in pancreatic duct fluid and in 
bile and jejunal contents from patients undergoing pancrea-
ticoduodenectomy [216].

Studies describing the use of ddPCR in biologic fluids 
other than blood are summarized in Table 4.

3.3  Concluding Remarks

In this updated review, we emphasize that the number of 
publications evaluating ddPCR has increased considerably 
in recent years, particularly in the field of liquid biopsy. The 
clinical utility of this methodology has been reinforced not 
only by its combination with other techniques, mainly NGS, 
but also by the integration of different biomarkers in multi-
analyte or multiparametric approaches. ddPCR is also usu-
ally employed as a validation, control or reference system 
to confirm the results obtained by other technologies, which 
highlights its reliability for detection of a wide variety of 
genetic alterations.

Blood is the main source of nucleic acids for noninvasive 
biomarker analysis by ddPCR, but the range of biologic flu-
ids exploited for this purpose has extensively broadened in 
the last 4 years, providing a complementary tool for diag-
nosis and surveillance in many cancer types. ctDNA is the 
more widespread nucleic acid-based biomarker studied, but 
there is an increasing trend towards the investigation of RNA 
signatures, including long non-coding RNAs, miRNAs or 
mRNAs, frequently derived from exosomes or EVs, alone or 
in combination with other markers, such as CTCs.

Despite the evident prevalence of the Bio-Rad ddPCR 
platform in the literature, the development of new ddPCR 
platforms with additional detection channels paves the way 
for improved multiplexing strategies. Even so, limitations 
regarding issues such as scalability and sensitivity in sam-
ples with low DNA content and low-DNA-shedding tumors 
at early stages or anatomically sequestered locations, and 
the lack of standardized protocols still need to be overcome. 
Further research on the application of ddPCR in oncology 
is warranted.
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Table 4  Use of droplet digital polymerase chain reaction in biologic fluids other than blood

Biologic fluid Malignancy Target Clinical usage References

CSF Lower-grade gliomas IDH1 R132H Diagnosis [170]
PCNSL MYD88 L265P Diagnosis [171–173]
SCNSL [174]
Bing–Neel syndrome Diagnosis and early detection 

of relapse
[171, 175]

B-cell lymphomas with CNS 
involvement

Mutations in  cfDNAa Disease monitoring, MRD 
detection and prediction of 
CNS relapse

[176]c

DMG H3K27M, ACVR1, PIK3R1 and 
BRAF mutations

Monitoring treatment response [181]c

DIPG HIST1H3B K27M and H3F3A 
K27M

[180–183]
High-grade glioma
Pediatric medulloblastoma Detection of a wide variety of 

 mutationsb
Disease monitoring, MRD 

detection, detection of intratu-
mor and interlesion hetero-
geneity

[184]c

Lung adenocarcinoma EGFR mutations Detection of metastatic disease 
in the CNS

[185–187]
Breast cancer TP53 p.R248Q, PIK3CA 

p.R93W, cMYC amplification, 
ERBB2 amplification

[188]

Melanoma BRAF p.V600E, NRAS p.Q61R [189]

Urine Prostate cancer GSTP1, APC, RASSF1A, PITX2 
and C1orf114 methylation

Screening and diagnosis [190]

PCA3 and PCGEM1 expression 
in exosomal mRNA

[191]

FTH1, BRPF1, OSBP, PHC3, 
and UACA  expression in cen-
trifuged and non-centrifuged 
urine

[192]

PDLIM5, GDF-15, THBS4, 
UPK1A, SSTR3 and NPFFR2 
expression

[193]

AR-V7 expression in EV-derived 
mRNA

[194]

Bladder and urothelial cancer Mutations in TERT promoter Early detection, diagnosis, 
disease and treatment monitor-
ing; detection of early signs of 
metastasis; prognosis

[195, 197–200]

FGFR3 and PIK3CA mutations [196–198], [201, 
202]c

CLOVES PIK3CA p.C420R, p.E542K, 
p.E545K, p.H1047R and 
p.H1047L

Screening in patients with 
CLOVES syndrome, some 
of whom are candidates to 
develop Wilms tumor

[203]

PROS PIK3CA variants [c.3140A >G; 
p.(His1047Arg), c.3140A > T; 
p.(His1047Leu),or c.1624G > 
A; p.(Glu542Lys)]

Identifying patients at high risk 
for Wilms tumor

[204]c

PDAC KRAS G12D and G12V Diagnosis [205]c

mCRC KRAS and BRAF mutations Tumor genetic profiling [206]c

NSCLC EGFR mutations Disease monitoring, detection of 
relapse and MRD, identifica-
tion of patients with poten-
tially worse outcome

[207], [208]c
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Table 4   (Continued)

Biologic fluid Malignancy Target Clinical usage References

Stool CRC ITGA6 and ITGA6A transcripts Screening and early diagnosis [209]

KRAS G12D [210]

GRIA4 and VIPR2 hypermeth-
ylation

[211]

DNA from Fusobacterium 
nucleatum

[212]

Gastric cancer Copy number of the H. pylori 
16S rRNA gene

Risk marker for gastric cancer, 
test of resistance to clarithro-
mycin

[213]

H. pylori 16S, East Asian cagA 
allele

[214]

Clarithromycin resistance-asso-
ciated mutations in H. pylori 
23S rRNA gene (A2143G, 
A2142G and A2142C)

[215]

Pancreatic cancer Bacterial 16S rRNA Diagnosis and potential predic-
tive value to identify patients 
at high risk for pancreatic 
cancer

[216]

Ocular fluids VRL MYD88 L265P Diagnosis and treatment moni-
toring

[217]

Diffuse large B-cell lymphoma Diagnosis [218]
Lymphoplasmacytoid lym-

phoma
PCNSL and other primary 

extranodal lymphomas
[173]

Saliva HPV-OPC HPV DNA (16, 18, 31, 33 and 
45 subtypes)

Diagnostic, prognostic and 
predictive purposes in disease 
monitoring

[220] c

HPV16, miR-148-a and 
piR014923 from salivary 
exosomes

Diagnosis [222]

NSCLC EGFR mutations Complement plasma and tissue 
biopsies

[223, 224]c

PROS PIK3CA p.E542K Biomarker for renal involvement [204]

Sputum Early lung cancer HOXA9, RASSF1A, SOX17 and 
TAC1 methylation

Early lung cancer detection [225]

NSCLC EGFR mutations Lung cancer detection, potential 
predictive factor for positive 
cytology, increases diagnostic 
efficiency in patients with 
progressive disease

[226], [227]c

BAL NSCLC miR-205-5p and 944 Diagnosis, distinguishing 
squamous cell carcinoma from 
adenocarcinoma

[228]

TMPRSS4 and SHOX2 methyla-
tion

Indicator of malignancy in early 
stage

[230]c

RASSF1A, CDH1, DLC1 and 
PRPH

Diagnosis [231]

EGFR-TKI-sensitizing muta-
tions

[232]c

Pulmonary Langerhans cell 
histiocytosis

BRAF V600E Complementary tool for diag-
nosis

[229]
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Table 4   (Continued)

Biologic fluid Malignancy Target Clinical usage References

Pleural effusions/
pleural fluid

NSCLC KRAS and EGFR mutations Diagnosis [233–236]

NSCLC, colon carcinoma, 
appendiceal carcinoma and 
adenocarcinoma of unknown 
primary

Detection of both driver and 
resistance mutations

[235]

Mucin Pseudomyxoma peritonei KRAS mutations Diagnosis, detection of cfDNA 
in acellular mucin

[237]c

Peritoneal fluid/
ascites

HGSOC, fallopian tube and 
primary peritoneal cancer

TP53 mutations Validation of NGS results, 
providing information about 
tumor heterogeneity and 
residual disease

[238]

PDAC miR-593-3p Validation of microarray results, 
prognostic biomarker, indica-
tor of subclinical intraabdomi-
nal micrometastasis

[239]

KRAS mutations Prediction of poor prognosis 
and peritoneal recurrence

[240]

Peritoneal carcinomatosis KRAS mutations Surrogate of disease burden, 
indicator of resectability and 
detection of intratumoral 
heterogeneity

[241]

Advanced colorectal and appen-
dicular tumors

Prognostic factor in patients 
undergoing CC-HIPEC

[152]c

FNA Thyroid nodules HRAS G12V, HRAS Q61K, 
HRAS Q61R, NRAS Q61R, 
NRAS Q61K and BRAF 
V600E

Diagnosis [242]

NRAS Q61K and BRAF V600E Validation of NGS results, 
diagnosis

[243]

BRAF V600E Validation of ARMS-PCR 
results, diagnosis

[20]

Papillary thyroid carcinoma BRAF V600E Diagnosis [244]
NSCLC EGFR mutations Diagnosis; verification of incon-

sistencies between ARMS and 
SuperARMS-PCR

[236]

EGFR, BRAF and KRAS muta-
tions in supernatant cfDNA

Diagnosis in suspected lung 
cancer and established 
NSCLC with acquired TKI 
resistance

[245]

Diagnosis, detection of clini-
cally relevant mutations; con-
firmation of NGS results

[247]

Melanoma, pancreatic, lung, 
colorectal, breast, urothelial 
and hepatocellular carcinoma

EGFR, KRAS, BRAF, PIK3CA 
and NRAS mutations

Diagnosis, confirmation of NGS 
results

[246]

Pancreatic cancer KRAS mutations Diagnosis of local recurrence in 
pancreatic cancer

[248]

Pancreatic juice/
cyst fluid/bile

Pancreatic cancer KRAS codon 12 and GNAS 
codon 201 mutations

Diagnosis [249]

KRAS mutations Screening and diagnosis [250]

Pancreatobiliary cancers KRAS mutations Diagnosis, confirmation of NGS 
results

[251] c

Duodenal and pancreatobiliary 
cancers

Bacterial 16S rRNA Detection of clinically relevant 
bacteria; diagnosis

[216]
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