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Abstract
Metastasis is the main cause of cancer death. Metastatic foci are derived from tumor cells that detach from the primary tumor 
and then enter the circulation. Circulating tumor cells (CTCs) are generally associated with a high probability of distant 
metastasis and a negative prognosis. Most CTCs die in the bloodstream, and only a few cells form metastases. Such metastatic 
CTCs have a stem-like and hybrid epithelial-mesenchymal phenotype, can avoid immune surveillance, and show increased 
therapy resistance. Targeting metastatic CTCs and their progenitors in primary tumors and their descendants, particularly 
disseminated tumor cells, represents an attractive strategy for metastasis prevention. However, current therapeutic strategies 
mainly target the primary tumor and only indirectly affect metastasis-initiating cells. Here, we consider potential methods for 
preventing metastasis based on targeting molecular and cellular features of metastatic CTCs, including CTC clusters. Also, 
we emphasize current knowledge gaps in CTC biology that should be addressed to develop highly effective therapeutics and 
strategies for metastasis suppression.

Key Points 

Circulating tumor cells (CTCs) originate from primary 
tumors.

Only a small fraction of CTCs may reach distant organs 
and form metastases.

Investigation of metastatic CTCs can identify new targets 
for metastasis-inhibiting therapy.

1 Introduction

Metastasis is the most fatal feature of cancer, and is orches-
trated by tumor cells detaching from the primary tumor and 
entering the bloodstream [1]. Tumor cells are able to pen-
etrate the blood vessels even at the early stages of cancer [2] 
and exist in the blood as single cells or clustered together 
with platelets and leukocytes [3, 4]. A significant proportion 
of circulating tumor cells (CTCs) die in the bloodstream as 
a result of external factors [5], and only a small percent-
age (0.01%) are able to give rise to metastases [6]. Such 
metastasis-associated/initiating CTCs are characterized by 
specific features: stemness, hybrid epithelial-mesenchymal 
transition (EMT) state, escape from immune surveillance, 
and drug resistance [7]. CTC clusters also show a stem-like 
phenotype, immune escape, and low sensitivity to therapy, 
as well as anoikis and shear stress resistance, resulting in an 
increase of their metastatic potential [8–10]. The survival 
of CTCs in the bloodstream and their metastatic potential is 
also determined by their interaction with other blood cells: 
neutrophils, platelets, etc. [11, 12].

Metastasis is a complex process that consists of at least 
five stages: (1) invasion of tumor cells; (2) intravasation into 
the surrounding vascular network; (3) circulation and inter-
action with cells of the immune system; (4) extravasation 
into the secondary tissue, including adhesion to the vascular 
endothelium; and (5) growth of micro- and macrometastasis 
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[13]. Indeed, each of the metastatic cascade stages is a criti-
cal point and can be targeted to prevent or reduce the risk 
of metastasis.

The primary tumor is usually a target in anti-cancer treat-
ment [14]. However, even after the successful removal of 
the primary tumor, there is still a chance of metastasis due 
to the release of tumor cells into the bloodstream during a 
surgical operation and/or the presence of disseminated tumor 
cells (DTCs). Revealing the molecular features of metastasis-
initiating cells, particularly metastatic CTCs, would allow 
the prevention of metastasis through targeting the primary 
tumor, for example, destroying the source of metastatic CTCs 
or preventing their release into the blood and killing DTCs. 
The opportunity to target metastatic CTCs themselves is not 
also excluded despite their short-term stay in the bloodstream 
and the constant feeding by the primary tumor.

Thus, the phenotype of metastatic CTCs can act as an 
indicator for the development of antimetastatic therapy 
simultaneously aimed at the primary tumor, circulation, and 
sites of dissemination. This review describes potential meth-
ods for the prevention of metastasis based on the molecular 
and cellular characteristics of metastatic CTCs, including 
CTC clusters (Fig. 1).

2  Conventional and Potential Targeted 
Therapy Against Metastatic Circulating 
Tumor Cells

Some molecules being suggested as targets for antitumor 
therapy have been described as potential markers of meta-
static CTCs. Their targeting can be considered as one of the 
methods of preventing metastasis.

The epidermal growth factor receptors EGFR and HER2 
are transmembrane glycoproteins that are involved in the 
regulation of cell growth and proliferation [15, 16]. EGFR- 
and HER2-targeted drugs are widely used for the treatment 
of patients with various cancers in clinical practice: lapatinib 
(EGFR and HER2)—breast cancer; pertuzumab (HER2)—
breast cancer; trastuzumab (HER2)—breast and stomach 
cancers; cetuximab (EGFR)—head and neck and colorectal 
cancers, etc. [17]. These drugs inhibit tumor growth, reduce 
the tumor mass, and significantly increase patient survival. 
For example, overall survival (OS) is greater in HER2-over-
expressing advanced breast cancer patients taking lapatinib 
in combination with capecitabine chemotherapy compared 
with capecitabine monotherapy (75.0 vs. 64.7 weeks) [18]. 
The time to death from brain metastases is significantly 
longer in HER2-positive breast cancer patients treated with 
trastuzumab than in cases without this therapy (median 14.9 
vs. 4.0 months) [19]. OS of patients with HER2-positive 
stomach cancer is higher with trastuzumab deruxtecan (a 
conjugate consisting of trastuzumab and a cytotoxic topoi-
somerase I inhibitor) therapy than with irinotecan or pacli-
taxel chemotherapy (12.5 vs. 8.4 months) [20]. In patients 
with unresectable esophageal cancer, OS tends to be longer 
when treated with cetuximab in combination with radio-
chemotherapy compared to radiochemotherapy alone (49.1 
vs. 24.1 months) [21].

EGFR-positive CTCs are detected in 90% of patients with 
prostate cancer and bone metastases [22]. The existence and 
frequency of HER2-positive CTCs correlate with a decrease 
in overall and relapse-free survival in patients with breast 
cancer, distant metastases occur in 22.9% of patients, and 
half of these patients have bone metastases [23, 24]. Tras-
tuzumab and/or pertuzumab/lapatinib in combination with 

Fig. 1  Potential approaches for 
metastasis prevention based on 
molecular features of metastatic 
circulating tumor cells (CTCs)
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or without docetaxel, eribulin, and paclitaxel chemother-
apy leads to the complete disappearance of HER2-positive 
CTCs and an increase in progression-free survival (PFS) 
(14.5 months) and OS (42.7 months) in patients with breast 
cancer compared to patients who do not receive anti-HER2 
therapy (10.6 months and 26.8 months, respectively) [25]. 
PFS is also significantly higher (8.8 months) in breast cancer 
patients with HER2-positive CTCs treated with a combina-
tion of trastuzumab and lapatinib than in patients without 
this therapy (1.5 months) [26]. Interestingly, cetuximab had 
no significant effect on PFS and OS in colorectal cancer 
patients with EGFR-positive CTCs compared to cases with 
EGFR-negative CTCs [27].

The estrogen receptors (ERs) are proteins located in the 
cell nucleus (ERα and ERβ) and membrane (mERs), and 
regulate proliferation, migration, and survival of cells [28]. 
In prostate and breast cancer, ERs also affect the migra-
tion and invasion of tumor cells [29, 30]. Targeting ERs is 
one of the main strategies in breast cancer treatment [31]. 
Adjuvant tamoxifen reduces the incidence of breast cancer-
related events and distant recurrence [32]. Nevertheless, the 
effect of endocrine treatment on CTCs is challenging due 
to the high probability of shifting ER positivity to negativ-
ity in CTCs compared to the primary tumor. As a result, 
ER expression is observed in CTCs of only 19% of patients 
with breast cancer [33]. Metastatic breast cancer patients 
with ER-positive tumors often lack ERs in CTCs, which may 
indicate a mechanism to escape endocrine therapy and lead 
to distant metastasis [34, 35]. The retention of ER positiv-
ity in CTCs after systemic therapy is tended to be related to 
better PFS and can reflect a favorable phenotype that still 
responds to therapy [35].

In breast cancer, metastatic CTCs also demonstrate 
expression of heparanase (HPSE) and Notch homolog 1 
(Notch1) [36], mucin 16 (MUC16), and transmembrane 
protease serine 4 (TMPRSS4) [37], as well as neuroplas-
tin (NPTN) and S100 calcium-binding proteins A4 and A9 
(S100A4, S100A9) [38]. In hepatocellular carcinoma, epi-
thelial cell adhesion molecule (EpCAM)-positive CTCs are 
associated with short disease-free survival (DFS) and OS 
and worse prognosis [39]. In pancreatic cancer, survivin 
(baculoviral inhibitor of apoptosis repeat-containing 5 or 
BIRC5) is one of the highest upregulated genes in CTCs dur-
ing metastatic spread [40]. Targeting these molecules might 
be another promising strategy in anticancer therapy.

HPSE is an enzyme that cleaves heparin sulfate lead-
ing to extracellular matrix remodeling with the release of 
growth factors and cytokines and the induction of angiogen-
esis, immune cell migration, inflammation, wound healing, 
and metastasis [41]. A number of HPSE inhibitors (PI-88, 
PG545, SST0001, M402, etc.) showed tumor- and metasta-
sis-suppressor activities in different types of cancer in vivo 
[42–45]. PI-88 (phosphomannopentaose sulfate) reduced 

both tumor volume and intrahepatic metastasis of hepato-
cellular carcinoma [46]. PG545 (heparan sulfate mimetic) 
inhibited angiogenesis and demonstrated anti-tumor and 
anti-metastatic effects in murine models of breast, prostate, 
liver, lung, colon, head and neck cancers, and melanoma 
[43].

TMPRSS4 is overexpressed in various cancers and 
is involved in tumor progression [47]. IMD-0354 and 
KRT1853, inhibitors TMPRSS4 and IKKβ (inhibitor of 
nuclear factor kappa-B kinase subunit beta), were shown 
to reduce migration, invasion, and proliferation of colon 
(SW480, HCT15, HCT116, and SW620 lines), prostate 
(DU145 and PC3), cervix (HeLa), stomach (SNU-638), and 
liver cancer cells (SNU-398) [48].

S100A4 and S100A9 are involved in the regulation of 
cell cycle progression and differentiation [49, 50]. Stable 
knockdown of S100A4 was found to suppress cell migra-
tion and metastasis of osteosarcoma [51]. A chimeric anti-
body (S100A8/A9 signal transfer inhibitor) consisting of 
mouse Ab45-Fab and human IgG2-FC reduced the mobil-
ity of tumor cells and suppressed melanoma metastasis to 
the lungs [52].

EpCAM is a cell adhesion molecule and is often 
expressed in CTCs in patients with breast, colon, pancreatic, 
prostate, and other cancers [53]. High-dose adecatumumab 
(recombinant human IgG1 monoclonal anti-EpCAM anti-
body) was shown to reduce the development of new metas-
tases in breast cancer patients with high EpCAM expression 
[54].

Survivin is a regulator of mitosis and apoptosis. Treat-
ment of a metastatic PDX model of pancreatic cancer by 
YM155 survivin inhibitor (sepantronium bromide) alone and 
in combination with nab-paclitaxel and danusertib chemo-
therapy hindered metastasis and improved survival [40].

3  Targeting CTC Plasticity

Tumor cells demonstrate high plasticity undergoing EMT and 
acquiring distinct stem phenotypes. EMT is a dynamic and 
reversible program that results in the loss of epithelial identity 
and morphology, and acquisition of mesenchymal character-
istics and increased drug-resistant, invasive, and metastatic 
potentials [55, 56]. EMT is not a binary process and tumor 
cells can be found at any locale on the EMT spectrum, often 
sharing certain epithelial and mesenchymal characteristics 
[57]. Stemness is the ability of cells to proliferate in an asym-
metric way, allowing maintenance of stem cell identity and 
generating differentiated cells. EMT and stemness are closely 
related to each other. Hybrid EMT cells show similarity with 
stem cells [58] and contribute to metastatic progression of dif-
ferent cancers [59]. As primary tumor cells, CTCs are highly 
heterogeneous in terms of EMT and stem phenotypes [57, 



552 M. E. Menyailo et al.

60–62]. CTCs considered to be in a hybrid epithelial/mes-
enchymal state are more apoptosis-resistant and have higher 
tumor-initiating potential [63, 64]. CTCs in partial EMT cor-
relate with advanced disease, worse progression-free and 
overall survival, and earlier recurrence [65]. CTCs with stem 
properties display enhanced tumorigenicity and resistance to 
radiation and chemotherapy [66, 67]. Such plasticity provides 
CTCs with an increased potential to adapt to the different 
microenvironments encountered during metastatic spread and 
successful formation of metastases [68]. An increase in plas-
ticity of CTCs, namely dynamic interconversion of diverse 
subsets of CTCs, is frequently observed upon anticancer 
therapy. CTC expressing EMT-inducing gene transcripts are 
enriched in primary breast cancer patients who receive neo-
adjuvant chemotherapy [69]. Taxane treatment of patients 
with castration-resistant prostate cancer results in changes 
of expression of EMT and neuroendocrine markers in CTCs 
[70]. A dynamic change of mesenchymal CTCs is detected in 
patients with colorectal and esophageal squamous cell cancers 
during chemo- and radiation therapy [71, 72].

3.1  Targeting Epithelial‑Mesenchymal 
Transition‑Positive CTCs

CTCs with an expression of EMT transcription factors 
(SLUG, SNAIL, TWIST1, and ZEB1) and associated genes 
(VIM, TGFβ1, ZEB2, FOXC1, and CXCR4) are related to 
negative prognosis and low survival in breast cancer patients 
[38, 73]. Upregulation of Notch activity in CTCs is associ-
ated with breast cancer metastasis to the brain [74]. The pres-
ence and quantity of N-cadherin-positive CTCs are linked to 
inferior PFS of patients with renal cell carcinoma [75].

The molecules and signaling pathways involved in the 
regulation of EMT are considered attractive therapeutic tar-
gets for the prevention of metastasis [76]. Several strategies 

have been proposed to target EMT: suppression, reversion, 
and terminal (mesenchymal) stage stimulation, or transdif-
ferentiation, each of which is thoroughly discussed in Den-
isov et al. [77].

EMT suppression allows retaining the epithelial pheno-
type of tumor cells and thereby avoiding the appearance of 
the ability to migrate and invade. A wide variety of chemi-
cally synthesized and natural agents have been described to 
have a suppressive effect on EMT and metastasis (Table 1). 
Nimotuzumab, humanized anti-EGFR monoclonal anti-
body, inhibits KKU-214 and KKU-213 cholangiocarci-
noma metastasis by suppressing SNAIL and vimentin (VIM) 
[78]. Ginsenoside Rg3, extracted from ginseng, upregulates 
E-cadherin, reduces the expression of SNAIL, N-cadherin, 
and VIM, blocks the MAPK and NF-kB signaling pathways, 
and suppresses lung cancer metastasis [79]. The flavonoid 
quercetin suppresses the metastatic ability of lung cancer 
by inhibiting the SNAIL-dependent Akt signaling pathway 
[80].

EMT reversal (mesenchymal-epithelial transition) means 
the loss of mesenchymal features in tumor cells and acquisi-
tion of the epithelial phenotype. A few EMT reversal drugs 
have been described. Inositol (cyclohexane polyol) reverses 
EMT in metastatic MDA-MB-231 breast cancer cell line 
by inhibiting EMT-inducing proteins (PI3K/Akt, NF-kB, 
COX-2, and SNAIL) and suppresses cell motility and inva-
siveness [89]. Genistein, one of the active ingredients of 
soy isoflavones, inhibits the HT-29 colon cancer cell migra-
tion by reversing EMT and increasing the E-cadherin and 
decreasing SNAIL/SLUG, ZEB1, ZEB2, FOXC1, FOXC2, 
TWIST1, and N-cadherin expression [90]. Liposomal deliv-
ery of organic disulfide and a glutathione derivative—glu-
tathione disulfide (GSSG)—reverses EMT via downregula-
tion of N-cadherin, β-catenin, and STAT3 and prevents lung 
metastasis in a murine melanoma model [91].

Table 1  Agents suppressing epithelial-mesenchymal transition (EMT) and cancer metastasis

CXCR4 C-X-C chemokine receptor type 4, PDX patient-derived xenograft, Ref. reference, SLUG zinc finger protein SNAI2, SNAIL zinc finger 
protein SNAI1, TGFβ transforming growth factor beta, VIM vimentin, ZEB zinc finger E-box-binding homeobox

Agent Target In vivo model References

TTB (targeted TGFβ blocker) TGFβ 4T1 breast cancer [81]
Withaferin-A (steroid lactone) VIM [82]
LBH589 (pandeacetylase inhibitor) ZEB, VIM MDA-MB-231 breast cancer [83]
Tranylcypromine (LSD1 inhibitor) SLUG [84]
Ulocuplumab (recombinant antibody IgG4) CXCR4 RPMI-8226, MM.1S and OPM-2 multiple 

myeloma
[85]

Ginsenoside Rg3 (ginseng extract) SNAIL, N-cadherin, VIM A549 non-small-cell lung cancer [79]
Quercetin (bioflavonoid) SNAIL [80]
PF-03084014 Notch 97H hepatocellular carcinoma [86]
Brontictuzumab PDX model adenoid cystic carcinomas [87]
Salinomycin E-cadherin, VIM T24 bladder cancer [88]
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Stimulation of EMT to the terminal mesenchymal stage 
suggests a complete loss of epithelial characteristics and dif-
ferentiation of tumor cells into other cells. For example, the 
antidiabetic drug rosiglitazone and MEK (mitogen-activated 
protein kinase) inhibitors, PD98059 and trametinib, induce 
the differentiation of EMT-undergoing breast cancer cells 
into adipocytes and reduce metastasis in vivo [92].

3.2  Targeting Stem‑Like CTCs

Several markers have been described to identify tumor cells 
with the stem phenotype: cell adhesion molecule CD44, 
CD133 (prominin-1), aldehyde dehydrogenase (ALDH), etc. 
Some of these molecules are considered potential targets 
for therapeutic actions on CSCs. At this time, many agents 
have been identified to inhibit cancer cell stemness [93]. 
For example, withaferin A (a bioactive compound isolated 
from the plant Withania somnifera) in combination with cis-
platin results in a 70–80% reduction in tumor growth and 
complete inhibition of metastasis in an orthotopic model 
of ovarian cancer [94]. P245 monoclonal antibody inhibits 
breast cancer growth and prevents relapse through targeting 
 CD44+ CSCs in vivo [95]. These drugs may also be valid 
for targeting CTCs, especially metastasis-associated popu-
lations, which often show stem features. For example, the 
expression of CD44 in CTCs has been found to be related to 
the high probability of gastric cancer metastasis and relapse 
[96]. The number of metastatic foci positively correlates 
with the amount of  EpCAM+CD44+CD47+MET+ CTCs 
[97]. Metastasis of colorectal cancer to the liver is asso-
ciated with  CD133+CD54+CD44+ CTCs [98]. Frequently, 
stem-like CTCs show the expression of mesenchymal mark-
ers that indicate a close relationship between stemness and 
EMT and the necessity for the development of combined 
therapy [99, 100].

4  Disaggregation of CTC Clusters

Most single CTCs die in the bloodstream during anoikis 
(apoptosis due to the loss of cell-matrix interactions), 
immune attack, and other causes. The probability of CTC 
survival increases if they interact with each other, forming 
clusters and with immune cells and platelets. These clusters 
usually consist of two to 50 tumor cells and account for 
5–20% of the total amount of CTCs depending on tumor 
stage [101–104]. Compared to single CTCs, circulating clus-
ters have a 50-fold higher metastatic potential [105] and, as 
shown in mouse models, are responsible for the formation 
of 50–97% of metastases [106]. Nevertheless, CTC clusters 
are more frequently detected in non-metastatic than in meta-
static breast cancer patients, suggesting that their dissemina-
tion is an early event [107].

Tumor cells in the circulating clusters have increased 
adhesion to the vascular endothelium that can be one of the 
reasons for their high metastatic potential [11]. Although 
traditional antitumor treatment focuses on the inhibition of 
tumor cell proliferation and induction of apoptosis, blocking 
the attachment of CTCs to the vessel walls may be another 
potential therapeutic strategy. For example, the antitumor 
drug temozolomide (TMZ) significantly weakens the adhe-
sion of single-U87 cells (acted as CTCs) on the HUVEC cell 
(acting as endothelial cells) layer through the induction of 
DNA damage and apoptosis in tumor cells [108].

Targeting CTC clusters usually consists in their disag-
gregation and, consequently, the loss of metastatic capac-
ity (Table 2). The size of CTC clusters can be reduced by at 
least 39 compounds, including inhibitors of  Na+/K+ ATPase, 
histonedeacetylase (HDAC), nucleotide biosynthesis, 
kinases, and tubulin, as well as DNA-binding compounds, 
antibiotics, cardiac glycosides, etc. [109].

Cell adhesion molecules such as plakoglobin and keratin 
14 (K14) are involved in the formation of CTC clusters and 
maintaining high metastatic potential [105]. Accordingly, 
their targeting may be another potential strategy for the dis-
aggregation of CTC clusters. In particular, shRNA-mediated 
plakoglobin suppression was found to trigger disruption of 
cell-cell contacts in breast cancer lines. Placoglobin knock-
down led to a decrease of CTC cluster formation and an 80% 
reduction of lung metastasis of breast cancer in vivo [105]. 
K14 knockdown resulted in a sevenfold reduction in the 
mean number of breast cancer metastases in a mouse model 
[106]. Another cell adhesion protein, CD44, is regulated by 
EGFR and drives the aggregation of triple-negative breast 
cancer cells. EGFR inhibition effectively blocks cell aggre-
gation in vitro and reduces lung metastasis in vivo [110].

5  Targeting Neutrophils in CTC Clusters

Neutrophils are the most common type of leukocytes 
(50–70%), and as such a heterogeneous cell population 
[111]. In cancer, these cells play either an anti-tumor (N1) 
or a pro-tumor role (N2) [112]. N2 neutrophils contribute 
to CTC survival in the bloodstream and their subsequent 
extravasation. The total number of neutrophils correlates 
with the probability of CTC-neutrophil cluster formation. In 
patients with breast cancer, the frequency of CTC-leukocyte 
clusters reaches 3.4%, including 86–92% CTC-neutrophil 
clusters [11].

Neutrophils can induce an immunosuppressive envi-
ronment by disrupting the  CD8+ T cell activation [113] or 
preventing the activity of natural killer cells (NKs) during 
the circulation and extravasation of tumor cells [114]. The 
interaction of neutrophils with endothelium contributes to 
tumor cell adhesion to the hepatic sinusoids and subsequent 
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extravasation [115]. Inflammatory factors released by the 
tumor stimulate neutrophils to form chromatin networks 
termed neutrophil extracellular traps (NET). NETs can trap 
CTCs and enhance metastasis by facilitating cancer cell 
adhesion, migration, invasion, and proliferation during the 
establishment of metastatic foci [116, 117].

There are a few agents that can target neutrophils and 
abrogate their interaction with CTCs (Table 2). For exam-
ple, DNase I resolves NETs and reduces the number of 
breast cancer metastases in the lungs and metastases of 
lung cancer in the liver in vivo [117, 118]. Inhibition of 
the enzyme peptidylarginine deaminase, which is essen-
tial for the NET formation, abrogates the progression of 
metastatic colorectal cancer in vivo [116]. The decrease in 
CTC-neutrophil clusters may be another strategy to sup-
press metastasis. Neutralizing antibodies against Ly-6G 
(lymphocyte antigen 6 complex locus G6D) destroy CTC-
neutrophil clusters and delay their shedding in a mouse 
model of breast cancer [11]. This study also shows that 
vascular cell adhesion molecule 1 (VCAM1) functionally 
mediates the interaction between CTCs and neutrophils, 
and its knockout blocks the appearance of CTC-neutrophil 
clusters [11]. Moreover, suppression of VCAM1 by resver-
atrol (phytopolyphenol found in grapes and other fruits and 
medicinal plants) remarkably inhibits metastatic growth of 
melanoma cells in vivo [119].

6  Targeting Platelets in CTC Clusters

Platelets produce various molecules that contribute to the 
inflammation, progression, and metastasis of cancer [120, 
121]. When tumor cells leave the primary tumor and enter 
the bloodstream, they firstly meet with platelets [122]. Can-
cer-related thrombosis is one of the causes of death among 
cancer patients. Tumor cells aggregate with platelets by 
activating the coagulation cascade [123]. Platelets facili-
tate CTC retention in the bloodstream and promote their 
extravasation [124, 125]. Tumor cells and platelets gener-
ate a positive feedback loop: tumor cells secrete adenosine 
diphosphate and activate platelets, which in turn secrete fac-
tors promoting tumor cell proliferation [12]. Platelets also 
produce TGFβ and induce EMT in CTCs [126].

Antithrombotic drugs, such as aspirin, warfarin, etc. 
(Table 2), improve the survival of patients with different 
cancers [127–129]. The primary target of antithrombotic 
therapy is P-selectin, which is necessary for the effective 
formation of platelet-CTC aggregates and is one of the 
key factors of cancer metastasis [130]. P-selectin knockout 
reduces aggregations between platelets and tumor cells and 
colon cancer metastasis in a mouse model [131, 132]. The 
antithrombotic drug ticagrelor blocks the activation of plate-
let  P2Y12 receptors and is widely used in the treatment of 
patients with cardiovascular diseases [133]. Patients with 

Table 2  Agents targeting circulating tumor cell clusters

ATP adenosintriphosphatase, ATP102 apyrase, ADPase adenosinediphosphatase, MICA MHC class I polypeptide-related sequence A, MICB 
MHC class I polypeptide-related sequence B, NET neutrophil extracellular traps, NK natural killer cells, Ref. reference

Agent Effect Model References

Ouabain Disaggregation of clusters In vivo BR16 and BRx50 breast cancer cells [109]
Digitoxin
Na+/K+ ATPase inhibitors
Aspirin Patients with rectal cancer [155]
Doxorubicin combined with aspirin Reduction of CTC cluster formation In vitro MDA-MB-231 breast cancer [156]
Anti-Ly-6G antibodies (anti-Ly-6G IgG2a) Decrease in CTC-neutrophil clusters In vivo 4T1-GFP and BR16-GFP breast 

cancer
[11]

DNase I and peptidylarginine deiminase 4 
(IPAD4)

Disruption of NET In vivo MC38 breast and colorectal cancer [116, 118]

Aspirin Platelet disaggregation In vitro MDA-MB-231 breast cancer and 
patients with rectal cancer

[155]

Heparin In vivo MDA-MB-231 and MCF-7 breast 
cancer

[125]

Ticagrelor Patients with metastatic breast and colorectal 
cancers

[134]

Platelet decoys In vivo D3H2LN breast cancer [136]
Platelet decoys combined with APT102 

ADPase and aspirin
In vivo B16-FL metastatic melanoma and 

4T1-GFP-FL breast cancer
[157]

7C6, 6F11, and 1C2 antibodies Suppression of MICA and MICB 
production and activation of NK 
cells

In vivo B16F10 melanoma and CT26 colon 
cancer

[143]
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metastatic breast and colorectal cancers show an almost 
twofold decrease in spontaneous platelet aggregation and 
activation after taking ticagrelor [134].

Unfortunately, anticoagulants lead to an excessive 
decrease in platelet function. Considering the fact that the 
production of new platelets takes at least 7–10 days, patients 
who receive antithrombotic drugs have an increased risk 
of bleeding. Therefore, it would be optimal to maintain 
the properties of platelets, and at the same time avoid pro-
thrombotic effects. The use of platelet decoys is considered 
the most promising therapeutic approach aimed to reduce 
platelet aggregation and, consequently, their aggregation 
with CTCs [135] (Table 2). Platelet decoys have a simi-
lar round shape but a smaller size and reduced granular-
ity with decreased membrane adhesion receptors compared 
to normal platelets. They are not activated or aggregated 
with other cells during physiological conditions. The addi-
tion of platelet decoys to intact platelets at a ratio of 1:5 
reduces their aggregation functions. The antiplatelet activity 
of these decoys is similar to that of the clinically approved 
antithrombotic drugs aspirin and abciximab. It is important 
that decoys do not disrupt the thrombin activation path-
way and normal hemostasis, as well as do not damage the 
liver and spleen tissues [136]. Another potential strategy 
to block tumor-specific platelet functions can be use tumor 
microenvironment-responsive nitric oxide release nanoparti-
cles (Ptx@AlbSNO), which suppress EMT, prevent platelet 
adhesion around CTCs, and reduce distant metastasis in vivo 
[137].

Platelets protect CTCs from immune surveillance, for 
example, by hiding them from natural killer (NK) cells 
[138]. Particularly, MHC class I molecules are transmitted 
by platelets to tumor cells leading to a decrease in reactiv-
ity and cytotoxicity of NK cells [139]. Platelets also induce 
the release of soluble NKG2D ligands from CTCs, such as 
MICA and MICB, which suppress NK cell degranulation 
and inflammatory cytokine production [140]. The increased 
content of soluble MICA and MICB in the blood serum in 
cancer patients is closely associated with metastasis [141, 
142]. Targeting NKG2D ligands may be a promising strategy 
in preventing metastasis. For example, antibodies targeting 
the MICA α3 domain (7C6, 6F11, and 1C2) prevent MICA 
and MICB production and inhibit lung metastasis of B16F10 
melanoma and CT26 colon cancer in the humanized mouse 
model through NKG2D- and CD16-related activation of NK 
cells [143]. An additional approach for the CTC destruction 
and reducing metastasis, especially if platelet protection is 
removed, can be an adoptive transfer of highly activated NK 
cells to cancer patients [144] and increase in their cytotoxic 
activity, for example through the injection of TLR4-agonist 
(glucopyranosyl lipid-A), oncolytic viruses, or suppression 
of CD96, a negative regulator of NK cells [145–148].

7  Other Methods for CTC Eradication

CTCs in the bloodstream can be also neutralized by differ-
ent vascular devices, which are widely discussed in other 
reviews [7, 149, 150]. In recent years, other methods were 
developed to eradicate CTCs. Minimally invasive thera-
peutic intravenous catheters with anti-EpCAM antibod-
ies and interiors filled with black phosphorus nanosheets 
kill CTCs by photothermal effect [151]. Curcumin loaded 
poly(lactic-co-glycolic acid) nanoparticles and laser irra-
diation (λ = 447 nm, P = 100 mW) result in photodynamic 
inactivation of CTCs [152]. Electrostatic charge stimula-
tion (PPECS) of the whole blood selectively deactivates 
the invasive function of CTCs and suppresses pulmonary 
metastasis of 4T1 breast cancer cells and extended survival 
in an in vivo model [153]. Combining bionic NSK (nano-
sponges and nanokillers—platelet-neutrophil hybrid mem-
brane (PNM)-camouflaging gold nanocages (AuNCs)) with 
chemo-photothermal therapy is effective for actively clear-
ing CTCs, neutralizing migrating tumor-derived exosomes, 
activating the innate immune system, and inhibiting breast 
cancer metastasis in 4T1 xenograft and orthotopic breast 
tumor-bearing mice [154].

8  Challenges and Perspectives

Metastasis is the biggest threat to cancer patient survival. 
However, current therapeutic strategies mainly target the 
primary tumor, assuming that metastatic seeds will also be 
killed. Indeed, several drugs, for example EGFR tyrosine 
kinase inhibitors and anti-HER2 monoclonal antibodies, 
can suppress metastasis and improve the survival of cancer 
patients [19, 21]. Nevertheless, this is rather an exception 
than the rule; most anticancer therapies only indirectly affect 
metastasis-initiating cells. In addition, these cells, including 
metastatic CTCs, can be resistant to drug therapy a priori 
due to stem-like features, partial EMT, and the ability to 
escape from immune control [7]. Therefore, the identifica-
tion of metastatic CTCs and revealing their molecular fea-
tures may be effective in developing therapeutic approaches 
for targeting metastasis-initiating cells in both the primary 
tumor and circulation and disseminated sites.

Despite the abundance of the studies reviewed here, there 
are almost no data that would describe the comprehensive 
makeup of metastatic CTCs in different cancers and their 
potential targets. As a rule, most researches are limited by 
the description of CTC composition using a panel of spe-
cific membrane markers and the identification of cell phe-
notypes that are associated with cancer metastasis. Only 
recent studies have focused on the deep molecular analysis 
of CTCs, revealing the mechanisms of their survival and the 
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colonization of distant organs, and the discovery of drug-
gable targets. For example, CTC heterogeneity and meta-
static phenotype are successfully deciphered by single-cell 
sequencing-based technologies [62, 158, 159]. Metastasis 
is significantly inhibited by targeting molecules that are 
critical for CTC transmigration and adaptation in the alien 
microenvironment of other organs [160]. The progress in 
understanding CTC biology is also challenged by their het-
erogeneity [30, 57, 60, 62, 159] and the absence of com-
mon methods to isolate all subsets of these cells for further 
molecular, in vitro, and in vivo analyses.

Approaches for metastasis prevention based on the molec-
ular features of metastatic CTCs are mainly experimental 
and should be validated in future clinical studies. Some pre-
ventive strategies, particularly aimed at platelet disaggrega-
tion in CTCs, can be highly toxic, and alternative drugs need 
to be developed. Most methods for metastasis suppression 
are still not proposed due to gaps in the current knowledge 
of metastasis-initiating cells. In particular, little informa-
tion is available regarding the phylogenetic paths of CTCs 
from their origin in the primary tumor to transformation 
into metastases. It is unclear how diverse CTCs are in clonal 
composition and how much genetic diversity correlates to 
phenotypic heterogeneity in CTCs. The question remains as 
to whether molecular features of metastatic CTCs are kept in 
primary tumor cells and presented in DTCs and their target-
ing could prevent the entrance of tumor cells into circulation 
and the formation of micrometastases. There are almost no 
results regarding how much CTC phenotype changes in the 
bloodstream. Studies have still not been able to reveal the 
relationships between single CTCs and circulating clusters 
and their common or distinct role in metastasis, especially 
in the same patients. In addition, complete phenotypic and 
functional information of CTCs is missing, although there 
are several approaches for single-cell analysis of proteins by 
mass spectrometry [161–163]. Thus, further studies should 
focus on the comprehensive multi-omic analysis of CTCs, 
including the identification of metastatic seeds and their 
molecular targets to develop new methods for metastasis 
prevention.

9  Conclusion

Prevention of cancer metastasis is a high priority in oncol-
ogy. Detection of metastatic CTCs in different cancers and 
understanding their molecular profile could be an effective 
tool for identifying new targets and developing therapies 
targeting both these cells and their progenitors in primary 
tumors and descendants (disseminated tumor cells) that 
have been exposed in distant sites. Several specific markers 
are already known for metastatic CTCs, and their target-
ing reduces the metastasis probability in vivo. However, 

these therapeutic strategies have not been validated in clini-
cal studies and many potential targets found in metastatic 
CTCs are not evaluated in terms of metastasis suppression. 
Moreover, metastatic CTCs are not described for the major-
ity of cancers at all. So, further studies are needed to clarify 
these issues.
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