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Abstract
Background  Findings from observational clinical studies examining the relationship between biomarker expression and 
theranosis in colorectal cancer (CRC) have been conflicting.
Objective  We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the 
involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways.
Methods  Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took 
place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of 
hazard ratios (HRs) across the included studies. Cochran’s Q test and the I2 statistic were used to detect heterogeneity. A 
funnel plot was used to assess potential publication bias.
Results  Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included 
studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 
were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; 
ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug–regulatory 
pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428–1.110), 
indicating that the expression of miRNAs decreased the likelihood of death by about 32%.
Conclusion  Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and 
sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate 
the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies.
PROSPERO registration number  CRD42017082196.

Key Points 

This is the first comprehensive systematic review to 
define the impact of microRNAs (miRNAs) in chemore-
sistance in colorectal cancer.

Our results aid in comparing the association of drug-
related genetic pathways with chemoresistance in colo-
rectal cancer.

This review highlights the critical role of biomarkers 
involved in colorectal cancer and will help determine 
their possible role in diagnosis and prognosis.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s4029​1-019-00381​-6) contains 
supplementary material, which is available to authorized users.
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1  Introduction

Colorectal cancer (CRC) is the third most common cancer 
in men, with 746,000 cases annually, and is the second most 
common in women, with 614,000 cases per year worldwide 
[1]. The conventional modalities of treatment for CRC 
include surgery [2], chemotherapy [3], radiation therapy 
[4], immunotherapy [5], targeted therapy [6], and precision 
medicine [7]. The commonly used chemotherapy drugs and 
monoclonal antibodies (mAbs) to treat CRC are 5-fluoro-
uracil (5-FU) [8], oxaliplatin [9], cisplatin [10], doxorubicin 
[11], leucovorin [12], paclitaxel [13], mitomycin C (MMC) 
[14], tumour necrosis factor-related apoptosis-inducing 
ligand (TRAIL) [15], deoxycholic acid (DCA) [16], thap-
sigargin (Tg) and trichostatin A (TSA) [17], irinotecan 
[18], cetuximab [19], panitumumab, and bevacizumab [20]. 
However, chemoresistance is a significant hindrance to suc-
cessful treatment in many CRC cases [21–23], and acquired 
drug resistance occurs with 90% of metastatic cancer [24]. 
Despite advances in treatment methods, the 5-year survival 
rate is 12.5% [24].

The involvement of microRNAs (miRNAs) in chemore-
sistance is associated with poor prognosis in several cancers 
[25–31]. Therefore, identification of biomarkers to detect 
possible chemoresistance in individual cases is a significant 
step towards specialised or personalised cancer treatment 
[32]. Emerging evidence has revealed that miRNAs can 
be considered as minimally invasive biomarkers useful for 
prognosis and as theranostic targets for monitoring treat-
ment response (theranosis) [33]. Chemoresistance in CRC 
is mediated by the expression of a few specific miRNAs 
through drug-regulatory pathways [34, 35]. Both miRNA-
19b and -21 were found to influence chemoresistance to 
5-FU in human colon cells (DLD-1 and KM12C) [36]. 
5-FU triggers A-disintegrin and metalloprotease domain-17 
(ADAM-17), which causes growth factor shedding and 
growth factor receptor activation, leading to chemoresist-
ance in CRC, which was found to be profoundly influenced 
by miRNA-222 [37, 38]. These drug-regulatory genes have 
been found to regulate cellular transformation and are influ-
enced by miRNA expression [39].

Huang et al. [40] analysed 12 miRNAs (134, 146a, 17-3p, 
181d, 191, 221, 222, 223, 25, 29a, 320a, and 92a) in plasma 
samples of both patients with CRC and healthy patients and 
found that levels of miRNA-29a and miRNA-92a were sig-
nificantly higher in cancer tissues. miRNA was consistently 
upregulated in patients with CRC, with 21 of 30 patients 
expressing high levels throughout the 50 months of the post-
treatment follow-up period [40]. The investigation of 5-FU 
resistance in 88 patients with CRC revealed that miRNA-10b 
expression was significantly higher in cancer tissues than in 
normal tissues and was connected to lymphatic invasion and 

poor prognosis, thus indicating miRNA-10b expression as a 
potential indicator of chemoresistance [41].

Cancer invasiveness and an increase in  resistance to 
oxaliplatin and cisplatin were observed in both in vitro 
and in vivo studies; this mechanism was mediated by fork-
head transcription factor forkhead box O3a (FOXO3a) and 
miRNA-induced metalloprotease enzyme, which indirectly 
promotes invasion [42]. Preclinical and clinical observa-
tional studies demonstrated that miRNA expression profiling 
could help to identify high-risk patients with CRC who may 
develop chemoresistance. Therefore, a comprehensive sys-
tematic review and meta-analysis was sought to review the 
published studies on miRNA-mediated chemoresistance in 
CRC (refer to the Electronic Supplementary Material [ESM] 
for the rationale of the study).

2 � Methods

This systematic review and meta-analysis followed the 2015 
PRISMA (Preferred Reporting Items for Systematic Review 
and Meta-analysis) guidelines [43] and was conducted fol-
lowing a previously established protocol (PROSPERO reg-
istration number: CRD42017082196).

2.1 � Search Strategy and Selection Criteria

We searched the PubMed and Science Direct databases on 
October 2017 from 1 January 2012 to 25 October 2017, 
restricting the search to papers in the English language and 
to the last 5 years so the use of chemotherapeutic drugs was 
relatively current. The literature search was performed using 
the Medical Subject Heading (MeSH) search terms miRNA 
or microRNA, chemoresistance/sensitivity, and colorectal 
cancer in combination. The search strategy is presented in 
Table 1 in the ESM. We also manually searched the refer-
ence lists of all included publications for additional relevant 
studies. The titles and abstracts of all relevant studies were 
carefully examined and screened before full-text articles 
were retrieved. All search results were collated in a reference 
manager database (EndNote) to avoid duplication. Eligible 
studies had to meet the following inclusion criteria: involved 
miRNA and CRC, involved both clinical samples and 
in vitro preclinical analyses for patients with CRC, focused 
on resistance to CRC therapy, reported miRNA profiling 
platforms, and reported the genes or pathways involved in 
chemoresistance or sensitivity. We excluded the following: 
studies in languages other than English; reviews, editorials, 
opinions, case studies, and reports; unpublished materials, 
uninterpretable data, conference proceedings, or thesis; stud-
ies focusing only on long non-coding (lnc) RNA, and studies 
involving Fusobacterium nucleatum and its association with 
CRC chemoresistance.
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2.2 � Data Extraction and Quality Assessment

Two authors (RJ and MRM) independently evaluated and 
extracted the data from the screened articles using the selec-
tion criteria. Corresponding authors were contacted for sup-
plementary materials if any necessary data were unavailable 
from the full text. Any disagreements between reviewers 
were resolved through discussion between the authors or 
by team decision or by consultation with the third reviewer 
(CK). The following data were collected and recorded for 
each study: first author and year of publication, patient infor-
mation, location of the study, sex, ethnicity, tumour stage, 
number of samples, lymph node metastasis/nodal status, cell 
lines used, miRNAs involved, miRNA profiling platform, 
chemotherapy drugs used, drug-regulatory pathways, and 
associated genes. We described the effect size of the progno-
sis using the hazard ratio (HRs) and 95% confidence interval 
(CI) of survival of patients with CRC.

Two investigators (RJ and MRM) independently assessed 
each study for methodological quality using the MOOSE 
(Meta-analysis Of Observational Studies in Epidemiology) 
checklist by the Dutch Cochrane Centre [44]. A study check-
list with predefined criteria prepared from the MOOSE study 
criteria list was used to assess the methodological quality of 
the studies included in the systematic review.

2.3 � Statistical Analysis

Reporting of the sections, meta-analysis, subgroup analysis, 
and publication bias follows guidelines from the Meta-anal-
ysis concepts and applications workshop manual by Michael 
Borenstein. We used the Comprehensive Meta-Analysis 
(CMA) software (version 3.0, USA) to analyse the HRs and 
95% CIs. The survival data, in the form of Kaplan–Meier 
curves, were transformed into HRs and 95% CIs. The forest 
plot was generated with combined outcome data to elucidate 
the clinical outcome effects of patient survival in CRC. Het-
erogeneity was obtained using Cochran’s Q test and Higgins 
I2 statistic [45]. Z-statistics were generated to analyse the 
standard deviations from the mean of all included studies 
if the pooled study results deviated. We used the subgroup 
analysis to compare the effect size in studies that employed 
a high expression and low expression of miRNAs.

2.4 � Publication Bias

The inverted funnel plot depicts the level of publication bias. 
Publication bias was quantified using Egger’s bias indicator 
test, the Orwin and classic fail-safe N test, the Begg and 
Mazumdar rank collection test, and Duval and Tweedie’s 
trim-and-fill calculation.
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3 � Results

3.1 � Study Search and Characteristics

The initial search yielded 4700 studies. By implementing 
the search strategy, we identified a total of 2450 studies from 
PubMed (n = 200) and Science Direct (n = 2250) (Fig. 1). 
After removing duplicates, 163 potentially eligible studies 
were scrutinised for selection criteria. Crosschecking the 
existing reference lists of narrative and systematic reviews 
revealed no further relevant articles. Careful review of the 
163 articles against the PRISMA guidelines identified 43 
full-text studies that contained available data items. Of these 
43, four were excluded because three studies evaluated lnc 
RNA expression in CRC and one investigated the association 
between F. nucleatum and CRC chemoresistance. We identi-
fied 39 studies involving 2822 patients with CRC, eligible 
for our systematic review. Seven studies were ultimately 
included in the meta-analysis.

Table  1 provides the main characteristics of the 39 
included studies. The study period of the included stud-
ies was between 1999 and 2015. The most commonly used 
chemotherapy agents were 5-FU and oxaliplatin. Frozen 
CRC tissue samples were used in 23 studies, and four stud-
ies used formalin-fixed paraffin-embedded (FFPE) tissues; 
17 studies did not specify the sampling type. A total of 3868 
CRC tissue samples and 231 blood samples were included 
for analysis, 94 in stage I, 312 in stage II, 548 in stage III, 
and 114 samples in stage IV. Furthermore, 228 samples were 

observed from stage I to II, and 342 samples from stage III 
to IV. miRNA expression was analysed via microarray in 
a few studies, and all 39 studies used reverse transcription 
polymerase chain reaction (RT-PCR) for miRNA expression 
profiling.

3.2 � Preclinical Investigation of MicroRNA (miRNA) 
Expression

In total, 39 studies reported a total of 40 cell lines utilised in 
the in vitro analysis to evaluate miRNA expression and its 
association with drug-regulatory genetic pathways. Figure 1 
in the ESM presents the number of studies illustrating the 
most common assays. The most common cell lines were 
HCT-116, HCT-29, LoVo, SW480, and SW620. HCT-116 
was used in 27 studies. The highest number of cell lines used 
in a single study was 13 [46]. The in vivo and in vitro assays 
from the studies included in our systematic review were the 
MTT/cell viability assay, luciferase assay, cell proliferation, 
western blotting, chemotherapy sensitivity assay, cell migra-
tion, cell invasion, apoptotic assay, clonogenic assay, tumo-
rigenesis, colony formation, caspase-3 assay, BrdU assay, 
and radiosensitivity assay.

3.3 � Clinical Investigation of miRNA Expression

3.3.1 � Association Between miRNA Expression 
and Chemoresistance/Chemosensitivity

Of 60 miRNAs reported in the systematic review, 34 were 
downregulated and 24 were upregulated in patients with 
CRC (Fig. 2). Five upregulated miRNAs were associated 
with chemosensitivity, and 13 upregulated miRNAs were 
associated with chemoresistance. Similarly, 22 downregu-
lated miRNAs were associated with chemosensitivity, and 
six downregulated miRNAs were associated with chem-
oresistance. Our report showed that miRNA-224 was dif-
ferentially expressed and not related to either chemoresist-
ance or sensitivity. Overall, the role of these miRNAs was 
investigated individually, as enhancers of chemoresistance 
(n = 20 miRNAs) or chemosensitivity (n = 28 miRNAs). 
We observed five miRNAs that were predominantly stud-
ied in ten different studies, with all being downregulated in 
patients with CRC. The internal control used was glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH) (ten studies) 
and U6 small nuclear RNA (U6 snRNA) (27 studies) for 
normalising the expression of miRNAs in the pooled studies. 
Some studies used both GAPDH and U6 snRNA.

3.4 � Colorectal Cancer (CRC) Chemotherapy

Information about the CRC chemotherapy was available 
for 2822 patients across 37 studies. The included studies Fig. 1   Flowchart of the literature study process and selection
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used a total of 14 drugs and their combinations, including 
5-FU (1404 patients) [47], oxaliplatin (890 patients) [48], 
mitomycin C (180 patients) [49], cisplatin (314 patients) 

[50], doxorubicin (number of patients not reported) [51], 
leucovorin (137 patients) [52], paclitaxel (67 patients) 
[46], TRAIL (257 patients) [53], DCA (40 patients) [54], 
irinotecan (173 patients) [55], capecitabine (74 patients) 
[52], cetuximab (117 patients) [56], and thapsigargin (Tg) 
and TSA (ten patients) [17]. Of the 14 chemotherapy drugs 
studied individually and in combinations, 5-FU [57–59] was 
the most studied, followed by oxaliplatin [60, 61]. 5-FU is 
a non-specific drug treatment for all types of cancers [47, 
62–64] and is also used in combination with oxaliplatin [65], 
leucovorin, and irinotecan [66]. The four studies investigated 
miRNA-139-5p [67, 68] and -497 [47, 50] twice in 5-FU 
treatment, whereas the remaining miRNAs were studied 
with other chemotherapy only once. Studies using cohort 
populations in the USA and China indicated a correlation 
between chemoresistance to 5-FU and increased miRNA-21 
expression [69].

3.5 � CRC Chemoresistance and Drug‑Regulated 
Genetic Pathways

In the 39 studies, 34 unique miRNA-mediated drug-regula-
tory pathway-associated genes were reported (Fig. 2). We 
collated the drug-regulated gene pathways in CRC, with 
epidermal growth factor receptor (EGFR) (n = 3), phosphati-
dylinositol 3-kinase/protein kinase B (PI3K/AKT) (n = 2), 
ADAM (n = 2), B-cell lymphoma 2 (BCL-2) (n = 3), and 
insulin like growth factor 1 receptor (IGF1R; n = 7) being 
the most common pathways explored.

Tables 2 and 3 present the upregulation and downregula-
tion of miRNAs contributing to chemosensitivity and resist-
ance in patients with CRC through drug-regulated genetic 
pathways. 

Fig. 2   Nine hallmarks of colorectal cancer chemotherapy BCL-2, 
GRP-78, EGFR, ADAM, cyclin, IGFR, AKT/PI3K, RAS, and FOX. 
Each hallmark shows specific miRNA that influences particular cellu-
lar function in CRC; some miRNAs control more than one hallmark, 
indicating multiple pathways regulated by them. Orange colour refers 
upregulated miRNAs; green colour indicates downregulated miR-
NAs. BCL-2 B-cell lymphoma-2, GRP-78 glucose-regulated protein 
78 kDa, EGFR epidermal growth factor receptor, ADAM A disinteg-
rin and metalloproteinase domain, IGFR insulin-like growth factor 1 
receptor, AKT/PI3K protein kinase B/phosphoinositide 3-kinase, FOX 
forkhead box

Table 2   Genetic pathways involving colorectal cancer chemoresistance

miRNA microRNA, NR not reported, OHP oxaliplatin, PI3K/Akt phosphatidylinositol 3-kinase/protein kinase B, TGF transforming growth fac-
tor, TRAIL tumour necrosis factor-related apoptosis-inducing ligand, 5-FU 5-fluorouracil

Downregulated Upregulated

Drugs miRNA Pathway Drugs miRNA Pathway

5-FU 181a-5p Wnt/β-Catenin/CRNDE 5-FU 7 PTEN
497 KSR1/IGF/AKT 17-5p PTEN
519c ABCG2 19b PTEN
181a-5p Wnt/β-Catenin/CRNDE 93 PTEN

OHP 34a TGF-β/Smad4 135b PI3K/AKT
181a-5p Wnt/β-Catenin/CRNDE 182 PI3K/AKT

TRAIL 497 IGF/AKT OHP 27b NR
Cisplatin 497 IGF/AKT 153 FOXO3a
Irinotecan 519c ABCG2 181b NR

625-3p NR
TRAIL 20a BID-BCL2
Cisplatin 153 FOXO3a
Doxorubicin 592 NR
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3.6 � Meta‑Analysis

3.6.1 � Does miRNA Expression Affect Survival of Patients 
with CRC?

HRs and 95% CIs were explicitly reported in only four [42, 
70–72] of the 39 studies and could be estimated from three 
studies [66, 71, 73] covering a total of 697 patients with 
CRC (Fig. 3). The mean effect size was 0.689, indicating that 

the expression of miRNAs decreased the likelihood of death 
by about 32%. The 95% CI for the HR was 0.428–1.110, 
which tells us the mean HR in the universe of studies could 
fall anywhere in this range.

Similarly, the Z value for test null hypothesis (that the 
mean risk ratio is 1.0) was − 1.531, p = 0.126. Therefore, 
we can reject the null that the risk of an event is the same in 
both upregulated and downregulated groups and conclude 
that the risk is higher in the upregulated group.

Table 3   Genetic pathways involving colorectal cancer chemosensitivity

ADAM A disintegrin and metalloprotease, BCL-2 B-cell lymphoma 2, DCA deoxycholic acid, EGFR epidermal growth factor receptor, IGF1R 
insulin-like growth factor-1 receptor, miRNA microRNA, MMC mitomycin C, OHP oxaliplatin, Tg thapsigargin, TRAIL tumour necrosis factor-
related apoptosis-inducing ligand, TSA trichostatin A, 5-FU 5-fluorouracil

Downregulated Upregulated

Drugs miRNA Pathways Drugs miRNA Pathways

5-FU 20b ADAM 9/EGFR 5-FU 23a APAF-1
128 Galectin-3 218 BIRC5
129 BCL-2 Lin28A H2AX
139-5p NOTCH-1/BCL-2 Cetuximab 7 EGFR
141 Cyclin D2 Doxorubicin 592 NR
195 BCL-2
200c C-Jun
203 SIK-2
219-5p Sall-4
302a IGF1R
320 FOXM1
506 MDR-1/P-gp
874 XIAP

OHP 128 Galectin-3
139-5p NOTCH-1/BCL-2
141 Cyclin D2
143 IGF1R
181a GRP78
200c C-Jun
204-5p RAB224
218 YEATS-4
219-5p Sall-4
320 FOXM1
409-3p Beclin-1 mediated autophagy
506 MDR-1/P-gp

Cisplatin and pacli-
taxel

128 Galectin-3
203 SIK-2

Cetuximab 133b EGFR
TRAIL 195 BCL-2
DCA 199a-5p CAC1
MMC 200c C-Jun
Tg & TSA 30d GRP78

199a-5p GRP78
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3.6.2 � How Much Does the Effect Size Vary Across Studies?

The Q value was 34.640, df = 6, p = 0.000. Since the 
observed variance falls within the range that can be attrib-
uted to sampling error, we cannot reject the null that the true 
effect size is the same in all studies. Here, I2 was 82.679%. 
T2 is the variance of true effect sizes (in log units). Here, T2 
was 0.360. T is the standard deviation of true effects (in log 
units). Here, T was 0.600.

3.6.3 � Does the Effect Size Vary by Subgroup?

While the mean effect size across all studies is modest (HR 
0.689), it is possible that the mean HR varies by subgroup. 
The mean HR in the upregulated and downregulated groups 
was 1.812 and 0.515, respectively. The Q value for the differ-
ences was 4.916, df = 1, p = 0.027. Therefore, there was no 
evidence that the HR varied according to survival of patients 
with CRC.

3.7 � Publication Bias

Figure  4 presents the funnel plot correlating overall 
patient survival and miRNA expression with regards to 
chemotherapy.

3.7.1 � Classic Fail‑Safe N

This meta-analysis includes data from seven CRC studies, 
which yield a Z value of − 1.70300 and a corresponding 
2-tailed p = 0.08857. Since the combined result was not 
statistically significant, the fail-safe N was irrelevant.

Fig. 3   Forest plot of pooled hazard ratio values from studies correlat-
ing the overall patient survival and miRNA expression with regards 
to chemotherapy. The pooled hazard ratios of hazard ratio values for 
colorectal cancer prognostic data were calculated and analysed using 
CMA software (version 3.3.070, USA). The red diamond represents 
the pooled effect estimate of survival for patients with colorectal can-

cer randomly assigned to miRNA evaluation. The black square line 
indicates the effect size of miRNA of the included studies with 95% 
confidence interval. The hazard ratio of 1 suggests no difference in 
survival risk of patients with colorectal cancer. A hazard ratio > 1 
indicates an increased risk of patients’ survival, whereas a hazard 
ratio < 1 suggests a reduced risk of patients’ survival

Fig. 4   Funnel plot of studies correlating the overall patient survival 
and miRNA expression with regards to chemotherapy. Dots repre-
sent the individual study; two studies on the bottom and three stud-
ies on the left-hand side of the plot. Given most of this area contains 
regions of high significance, publication bias would be unlikely to 
cause that asymmetry. This would reflect the fact that smaller studies 
(which appear toward the bottom) are more likely to be published if 
they have larger than average effects, which makes them more likely 
to meet the criterion for statistical significance
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3.7.2 � Orwin Fail‑Safe N

The criterion value must be set between the other two values 
for the Orwin fail-safe N to be computed. Here, the HR in 
observed studies was 0.689, which did not fall between the 
mean HR in the missing studies, so we could not calculate 
the Orwin fail-safe N.

3.7.3 � Begg and Mazumdar Rank Correlation Test

In this case, Kendall’s tau b (corrected for ties, if any) was 
0.09524, with a 1-tailed p value (recommended) of 0.38195 
or a 2-tailed p value of 0.76389 (based on continuity-cor-
rected normal approximation).

3.7.4 � Egger’s Test of the Intercept

In this case, the intercept (B0) was 1.11103 (95% CI 
− 2.98430 to 5.20636), with t=0.69738, df = 5. The 1-tailed 
p value (recommended) was 0.25833, and the 2-tailed p 
value was 0.51665.

3.7.5 � Duval and Tweedie’s Trim and Fill

This method suggests that two studies are missing (Fig. 2 
in the ESM). Under the fixed-effects model, the point 
estimate for the combined studies was 0.76243 (95% CI 
0.65272–0.89057). Using trim and fill, the imputed point 
estimate was 0.72164 (95% CI 0.61924–0.84096). Under the 
random-effects model, the point estimate for the combined 
studies was 0.92213 (95% CI 0.54705–1.55438). Using trim 
and fill, the imputed point estimate was 0.67177 (95% CI 
0.39161–1.15234).

4 � Discussion

Recent studies have demonstrated that specific miRNA 
expressions in CRC modulate chemosensitivity and resist-
ance through regulation of drug-related genetic pathways 
[47, 58, 70, 74]. miRNA-mediated chemoresistance mecha-
nisms in CRC have been explored in individual studies but 
have not been comprehensively characterised. Therefore, 
this systematic review and meta-analysis aimed to provide 
insights into miRNA expression patterns in the chemother-
apy–drug mechanistic relationship as well as the regulation 
of genes associated with chemoresistance/sensitivity. This is 
the first systematic review to include different ethnic groups 
in various clinical settings.

Numerous studies have focused on the effect of miRNAs 
on chemoresistance, including in breast [75], cervical [76], 
colorectal [77], gastric [78], lung [79], oral [80], ovarian 
[81], pancreatic [82], prostate [83], and skin [84] cancers. 

Our systematic review showed that 60 miRNAs were upreg-
ulated as well as downregulated in CRC cell lines and tis-
sues. Most of the studies investigated only one miRNA [47, 
68, 85], whereas only seven studies focused on two or more 
miRNAs.

Previous reports have demonstrated crucial clinical func-
tions of miRNAs that were consistent with our findings, par-
ticularly miRNA-21, which is used as a diagnostic and prog-
nostic marker for several cancers, such as lung [86], breast 
[87] pancreas [88], CRC [89], and prostate [90]; miRNA-
10b, -141, and -155 are used as diagnostic markers for lung 
cancer [91]; miRNA-143 is used as a diagnostic marker for 
CRC [92]; and, more importantly, miRNA-21 [93], -22 [94], 
-23a [95], -27b [96], -34a [97], -124 [98], and -135b [99] 
are being proposed as diagnostic markers in CRC. However, 
reports have also demonstrated conflicting expression pat-
terns for miRNAs: miRNA-27a was found to be downregu-
lated in one study [100] but upregulated in another [101].

Our systematic review highlights the importance of 34 
drug-regulatory pathways, including the EGFR, IGF1R, and 
AKT/PI3K pathways, in CRC chemoresistance and suscep-
tibility. Research has revealed that EGFR is involved in the 
prediction of overall survival and prognosis of cancers such 
as gastric [102], lung [103], head and neck cancer (HNC) 
[104], and CRC [105]. IGF1R plays an essential role in the 
regulation of cell proliferation, differentiation, and survival 
of tumour development [106] and has been well-studied in 
breast cancer [107], CRC [108], and prostate cancer [109]; 
it directly promotes angiogenesis via the PI3K/AKT path-
way. Alternation in the PI3K pathway helps in identification 
of clinical outcomes in breast cancer [110], gastric cancer 
[111], CRC, and HNC [112]. The AKT pathway is a fre-
quent target for lung cancer [113], breast cancer [110], CRC 
[114], and gastric cancer [115]. Our results highlighted the 
involvement of EGFR in increased chemosensitivity through 
miRNA-7, -20b, and -133b. Our results are consistent with 
another study on EGFR-targeted therapy [116]. Further-
more, miRNA-34a was observed as the direct target of Wnt 
signalling pathways, similar to other reports [39].

Our meta-analysis showed an overall pooled effect size 
could be a good predictor of patient survival. However, it 
is essential to note that we used only seven studies because 
insufficient data were reported in 32 studies. We noticed that 
several factors, including study strategy, inadequate informa-
tion, and sample size might be responsible for the high level 
of heterogeneity.

4.1 � Limitation and Strengths

Lack of statistical data in many included studies, includ-
ing clinicopathological parameters, odds ratios (ORs), HR 
values, and quantitative data for various assays, limited our 
quantitative data synthesis. As the HR and CI values were 
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retrieved from Kaplan–Meier curves, there could be some 
marginal errors, as values were not reported explicitly in the 
articles. The heterogeneity and differences in study design 
between different studies could have restricted both the 
analysis and a clinical hypothesis. A solution to this issue in 
future studies evaluating miRNA as theragnostic biomarkers 
would be to perform large collaborative studies in patients 
with CRC in established clinical settings.

One of the strengths of our study is the detailed correla-
tion of the specific miRNAs with the regulation of chem-
oresistance in CRC. The clinical sources for miRNA profil-
ing were investigated in our study using different clinical 
samples, including tissue and plasma. This study may be 
useful as a repository tabulating the miRNA gene regula-
tory pathways and its associations with chemotherapy in 
CRC. Furthermore, this study will provide lists of potential 
miRNA targets that could help to detect early chemoresist-
ance and sensitivity in patients during treatment, encourag-
ing individualised treatment.

5 � Conclusions

This comprehensive systematic review and meta-analysis 
of published studies from around the world indicates the 
associations between the molecular mechanisms of chem-
oresistance and specific miRNAs in CRC. We anticipate that 
the interpretation of the molecular mechanisms of miRNAs 
in CRC will lead to improvements in the theranosis-based 
cancer therapy and oligonucleotide drugs currently under 
development.
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