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Abstract Skin fibrosis is a common pathological process

characterized by fibroblast proliferation and excessive

deposition of extracellular matrix. However, the patho-

genesis of the disease is still not clear. Previous studies

have shown that microRNA-21 may play pivotal roles in

the regulation of a variety of skin fibrosis, including keloid,

scleroderma, and hypertrophic scar. In this review, we

outline the structure, expression, and regulation of micro-

RNA-21 and its role in fibrotic skin diseases. In future, it

may be useful as a prognostic or diagnostic marker.

However, there is a significant amount of work required to

increase our current understanding of the role of micro-

RNA-21 in skin fibrosis.

Key Points

MicroRNA-21/Smad7 and microRNA-21/PTEN/

AKT signaling pathways may play crucial roles in

the proliferation and transdifferentiation of keloid

fibroblasts.

MicroRNA-21/PTEN/AKT signaling pathway may

participate in the regulation of epithelial-

mesenchymal transition of keloid keratinocytes.

MicroRNA-21 can regulate cell proliferation and

apoptosis of fibroblasts in systemic sclerosis by

targeting Bcl2 and Smad7.

MicroRNA-21 regulates the cell growth of

hypertrophic scar fibroblast via PTEN/PI3K/AKT,

transforming growth factor-b/microRNA-21/Smad7,

and microRNA-21/transforming growth factor-b2
signaling pathways.

1 Introduction

Fibrosis is characterized by fibroblast proliferation,

excessive synthesis, and deposition of extracellular matrix

(ECM) [1]. Skin fibrosis is a common fibrotic disease,

which includes scleroderma, hypertrophic scar, keloid, and

graft- vs. -host disease [2]. It often affects the patients’

appearance; thus, they may experience social and occupa-

tional discrimination. These diseases will finally develop

into organ dysfunction, greatly affecting the quality of

patients’ lives [3–5] and bringing an enormous healthcare
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burden to the families of patients and society (Table 1).

However, the specific mechanism of skin fibrosis is still not

completely clear.

Fibroblast activation is a key link in skin fibrosis (Fig. 1)

[18]. Chronic inflammation, infection, autoimmune and

allergic reactions, and skin damage owing to radiation or

chemical injury may induce uncontrolled proliferation of

fibroblasts [19, 20]. Persistent activation of skin fibroblasts

promotes the synthesis of ECM, which is mainly composed

of collagen, elastin, non-collagen glycoprotein, and pro-

teoglycan. Excessive ECM deposition in the dermis results

in skin fibrosis [21, 22]. A variety of cytokines and growth

factors such as transforming growth factor (TGF)-b, con-
nective tissue growth factor, and platelet-derived growth

factor can stimulate the activation of fibroblasts, of which

TGF-b1 is the most important profibrotic cytokine [23].

Transforming growth factor-b can promote the prolifera-

tion of fibroblasts, regulate the synthesis of ECM, inhibit

the degradation of ECM, and stimulate the transformation

of fibroblasts into muscle fibroblasts by chemoattracting

inflammatory cells [18]. Transforming growth factor-b/
Smad signaling pathway has been shown to play a key role

in a variety of fibrotic diseases [24].

MicroRNAs (miRNAs) are endogenous non-coding

RNAs consisting of 18–22 nucleotides that inhibit mes-

senger RNA (mRNA) translation or promote mRNA

degradation by partial complementarity recognizing and

binding to the 30 untranslated region of target mRNAs [25].

Therefore, miRNAs regulate protein-coding gene expres-

sion, participating in different biological processes such as

Table 1 Incidence rate and economic burden of skin fibrosis

Skin fibrosis Country/region Incidence (per million) Economic burden (€/year)

Keloid China 1400 (2003) [6] A few hundred to several thousand euros [7]

Taiwan 1540 (2000–2005) [8]

Zaire 160,000 [9]

England 500 [10]

Scleroderma Spain 23 (1988–2006) [11] 21,640 ± 24,657 [12]

Sweden 14 (2006–2010) [13] 12,728 ± 14,348 [12]

Italy 32 (1999–2007) [14] 12,560 ± 16,944 [12]

Poland 19 (2008–2012) [15] 10,927 [16]

Hypertrophic scar China 2300 (2003) [6] NA

Germany NA 14,721 [17]

NA not available

Fig. 1 Mechanism of skin

fibrosis. ECM extracellular

matrix, CTGF connective tissue

growth factor, PDGF platelet-

derived growth factor, TGF-b
transforming growth factor-b
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differentiation, propagation, apoptosis, and metastasis [26].

Previous studies have shown that miRNAs have a crucial

role in pathological wound healing and may be closely

related to the development and progression of skin fibrosis

[27, 28]. In recent years, studies have focused on the effects

of miRNA-21 (miR-21) on skin fibrosis [29]. Studies have

shown that the overexpression of miR-21 plays a vital role

in the biological progress of multiple fibrotic diseases;

therefore, miR-21 is expected to become a biomarker for

the diagnosis and treatment of fibrotic diseases [30–32].

2 Literature Research

We performed a comprehensive search for studies related

to regulation mechanisms of miR-21 in various skin

fibrotic diseases using databases including PubMed,

EMBASE, and China National Knowledge Infrastructure.

The keywords used were microRNA-21, miRNA-21, miR-

21 and scleroderma, systemic sclerosis, graft-versus-host

disease, GVHD, hypertrophic scar, and keloid. For this

review, original articles were further identified by manual

searching. Articles published up to March 2017 were

included with the focus on key animal and human studies

related to skin fibrosis.

3 Results

We retrieved 102 articles and a total of 72 articles were

screened after duplicates were removed. Checking of title

and abstract was conducted and 42 papers were irrelevant

to skin fibrosis. Finally, we included 30 articles that met

inclusion criteria in this review.

4 Biogenesis of MicroRNA-21

4.1 Characteristics of MicroRNA-21

The gene encoding for the human pri-miR-21 is located at

17q23.2, within an intron of the transmembrane protein 49

(TMEM49) gene. Although pri-miR-21 is located in the

overlapping region of the TMEM49 gene intron, pri-miR-

21 has its own promoter and poly-A tail. The promoter

region of miR-21 is located 900 bp upstream of the tran-

scription start site. There are possible binding sites of

activated protein 1 (AP-1), CCAAT enhancer binding

protein a, nuclear factor-I, serum response factor, p53,

signal transducer and activator of transcription factor 3, and

other transcription factors in this region. It is reported that

AP-1 and signal transducer and activator of transcription

factor 3 promote the transcription of miR-21, and nuclear

factor-I and CCAAT enhancer binding protein a inhibit the

transcription of miR-21 [33–35].

4.2 Regulation of MicroRNA-21 Expression

Lin et al. [37] found that the expression of miR-21 was

upregulated in vascular smooth muscle cells after reactive

oxygen species treatment [36]. In addition, miR-21 can

reduce hydrogen peroxide-induced apoptosis. Programmed

cell death protein 4 (PDCD4) is a direct target of miR-21,

and inhibits its expression. AP-1 is the downstream sig-

naling molecule of PDCD4, and is a transcription factor of

miR-21 that can also promote the expression of miR-21. It

is therefore possible to regulate the expression of miR-21 at

the transcriptional level by PDCD4 and AP-1, forming a

self-feedback regulatory pathway [38–40].

MicroRNA-21 can be induced by bone morphogenetic

protein-4 and TGF-b [41, 42]. R-Smad knockout prevents

the inhibitory action of bone morphogenetic protein-4 and

TGF-b on the expression of mature miR-21 and pre-miR-

21, but did not affect the transcription of pri-miR-21.

Further studies showed that bone morphogenetic protein-4

and TGF-b increased the expression of pre-miR-21 and

mature miR-21 at the post-transcriptional level by pro-

moting the processing of the Drosha enzyme [43].

5 Functions of MicroRNA-21 in Skin Fibrosis

5.1 Keloid

Keloid is a benign skin tumor characterized by abnormal

proliferation of fibroblasts and excessive ECM deposition

[44, 45]. This disease often occurs subsequent to a burn,

surgery, or trauma and the keloid often extends beyond the

original incision and can progressively enlarge in size. The

pathogenesis of keloid is complicated, and still remains

unclear [46]. Compared with a hypertrophic scar, a keloid

has a more obvious family genetic predisposition [47].

Growing evidence shows miRNA plays an important role

in regulating the proliferation of fibroblasts and the

excessive deposition of collagen, proteoglycan, and gly-

coprotein [48, 49].

5.1.1 MicroRNA Expression Profiles in Keloid

The miRNA differential expression profiles of keloids have

been explored in keloid tissue, fibroblasts, and serum

[49–55]. Wu et al. [51] found 17 differentially expressed

miRNAs in four keloid tissue samples compared with three

normal skin samples using miRNA microarrays. In another

study of 12 pairs of keloid tissues and corresponding nor-

mal skin tissues, a total of 32 differentially expressed
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miRNAs were screened [50]. Using a miRNA polymerase

chain reaction array consisting of 88 miRNAs, miRNA

expression patterns were evaluated in three keloid samples

compared with three normal skin samples [52]. Interest-

ingly, the abnormal expression of hsa-miR-21 was detected

in all three studies. Accordingly, we speculate that miR-21

may play a key role in the development of keloid scarring.

5.1.2 Role of MicroRNA-21 in Keloid

The miR-21/SMAD7 pathway mediates collagen I syn-

thesis in keloid-derived fibroblasts. Li et al. [56] found that

miR-21 was downregulated and SMAD7 was upregulated

by irradiation (Fig. 2). Therefore, miR-21 was negatively

correlated with SMAD7 in keloid. A further study showed

SMAD7 was a direct target of miR-21. Moreover, SMAD7

controls synthesis of type I collagen by mediating p38

phosphorylation [56]. Zhou et al. [31] also reported that

miR-21 promoted collagen production in keloid by nega-

tively regulating the expression of SMAD7. They also

found miR-21 mimics enhanced the expression of Col1A1,

Col3A1 by downregulating SMAD7.

Transforming growth factor-b1 can promote cell pro-

liferation, transdifferentiation and inhibit cell apoptosis via

upregulation of miR-21. Wang et al. [57] found the

interaction between miR-21 and TGF-b1 might be associ-

ated with the regulation of the FasL protein, which is

involved in keloid formation. Liu et al. [58] demonstrated

upregulation of miR-21 increased fibroblast proliferation

by regulating the expression of PTEN and phosphorylated

AKT in human keloid. This result was confirmed by

another study [59]. They found overexpression of miR-21

could downregulate the expression of PTEN and had sim-

ilar effects to TGF-b1 on proliferation and transdifferen-

tiation [58, 59]. Therefore, the miR-21/PTEN/AKT

signaling pathway may play a crucial role in TGF-b1-in-
duced proliferation and transdifferentiation of keloid

fibroblasts.

MicroRNA-21 also contributes to the processes of

epithelial-mesenchymal transition (EMT) and cell stem-

ness involved in keloid scarring. Using miRNA microarray

analysis, Yan et al. [60] found miR-21 was significantly

upregulated in the keloid epidermis. Upregulation of miR-

21 significantly increased the migration, invasion, and

sphere-forming abilities of keloid-derived keratinocytes,

and the phenotypes of EMT and cell stemness were also

enhanced. Furthermore, PTEN and p-AKT were shown to

participate in the regulation of miR-21 on EMT phenotypes

and stemness signatures of keloid keratinocytes, which

Fig. 2 Interaction between

microRNA-21 and relevant

signaling pathways in the

regulation of keloid, systemic

sclerosis, and hypertropic scar.

AKT AKT serine/threonine

kinase, Bax BCL2-associated X,

Bcl2 B-cell leukemia/lymphoma

2, EMT epithelial-mesenchymal

transition, FasL Fas ligand,

hTERT human telomerase

reverse transcriptase, MAPK

mitogen-activated protein

kinase, PDCD4 programmed

cell death 4, PI3K

phosphoinositide-3 kinase,

PTEN phosphatase and tensin

homolog, SIRT6 sirtuin 6, Smad

drosophila mothers against

decapentaplegic protein, TGF

transforming growth factor, :
increased, ; decreased
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might account for the invasion and recurrence of keloid

[58, 60].

5.2 Scleroderma

Scleroderma (systemic sclerosis, SSc) is a chronic

autoimmune disease characterized by vasculopathy and

progressive fibrosis of skin or/and internal organs, and

prolonged activation of dermal fibroblasts is considered to

be the main trigger factor for SSc [61–63]. An increasing

number of studies have confirmed that systemic multiple

organ fibrosis and dysfunction is responsible for the high

mortality rate of SSc [64, 65]. Despite this, the cellular and

molecular mechanisms of SSc are still uncertain; some

research has highlighted that TGF-b plays a main role in

this progress [66]. Transforming growth factor-b is a

multifunctional cytokine that can regulate fibroblast pro-

liferation, differentiation, and apoptosis, induce cytokine

secretion, and upregulate the synthesis of collagen and

ECM. Studies demonstrated that miRNAs could play

important roles in the fibrosis of SSc by regulating the

TGF-b signaling pathway [67–69].

5.2.1 MicroRNA Expression Profiles in Systemic Sclerosis

Several studies investigated the miRNA profiles of patients

with SSc and healthy control individuals. miRNA microar-

ray chip analysis identified dozens of miRNAs that were

differentially expressed in patients with SSc [67, 70–75].

These miRNAs may be correlated with the pathogenesis of

SSc [67]. Zhu et al. [76] identified and confirmed thatmiR-21

was increased both in the skin tissues and fibroblasts.Makino

et al. [52, 77] demonstrated miR-21 expression was upreg-

ulated in SSc skin both in vivo and in vitro, compared with

normal skin tissues. Zhou et al. identified that 21 miRNAs

were differentially expressed in SSc. Among these, 17

miRNAs were involved in Toll-like receptor, TGF-b, and
Wnt signaling pathways. Validation experiments revealed

that miR-21 and four other miRNA expression levels were

higher in SSc skin tissues and fibroblasts, normal fibroblasts,

and endothelial cells stimulated with SSc serum. They found

miR-21 was specifically expressed at higher levels in SSc

serum, in which serum miR-135b was also measured

[78, 79]. Systemic sclerosis miRNAmicroarray data showed

lung fibroblasts mildly expressed miR-155/miR-21 after

several stimuli [75].

Analysis of serum exosomal miRNAs from patients with

SSc showed that six profibrotic miRNAs were increased

and ten anti-fibrotic miRNAs were decreased. The

expression level of miR-21 was significantly different in

exosomes between limited SSc and diffuse SSc, suggesting

a plausible mechanism for the extension of the fibrotic SSc

process to non-affected tissues [80].

5.2.2 Role of MicroRNA-21 in the Regulation of Systemic

Sclerosis

Long-term activation of dermal fibroblasts is the main cause

of progressive fibrosis in SSc (Fig. 2). Jafarinejad-Farsangi

et al. [30] found miR-21 was a pro-fibrotic factor with high

expression in lesional areas of SSc skin and fibroblasts. The

rate of apoptosis in SSc fibroblasts increased following miR-

21 inhibition, which may be associated with a decrease in

Bcl-2 expression and a shift in the Bax:Bcl-2 ratio. Bcl-2 is

considered to be an inhibitor of apoptosis and the Bax:Bcl-2

ratio may represent a cell fate determinant. Therefore, inhi-

bition of miR-21 in dermal fibroblasts may harness pro-

gressive fibrosis in SSc [30, 81].

Meanwhile, TGF-b activation plays a fundamental role in

the process of uncontrolled fibrosis in SSc. After stimulation

with TGF-b, the expression of miR-21 was increased and

that of SMAD7mRNAwas decreased [76]. Thus, TGF-b can
regulate the expression of miR-21 and SMAD7 [81].

5.3 Hypertrophic Scar

Hypertrophic scar is abnormal wound healing after trauma.

Although the hypertrophic scar is raised above the skin

surface, it does not extend beyond the original wound

[82, 83]. In the process of scar formation, fibroblasts syn-

thesize and secrete redundant collagen, so that ECM

components are deposited in the tissue. Because fibroblasts

are participating in the whole process of scar formation,

inhibiting the proliferation and transformation of fibrob-

lasts is important for the treatment of scars [84, 85]. As a

key regulatory factor, miR-21 plays a pivotal role in the

regulation of scar formation, therefore, it may be a new

target for treating hypertrophic scar.

5.3.1 MicroRNA Expression Profiles in Hypertrophic Scar

The differences of miRNA expression between human

hypertrophic scars and normal skin have also been

obtained. Using a preliminary screen, Ning et al. [86] found

92 miRNA genes were upregulated and 13 downregulated

from five human hypertrophic scar tissues compared with

normal skin tissues. They then further demonstrated that

the trend of hsa-miR-21 through reverse transcription-

polymerase chain reaction was consistent with the

microarray results. Another microarray analysis was per-

formed and 152 miRNAs were observed to be differentially

expressed in hypertrophic scar tissues compared with

normal skin tissues. Among the identified miRNAs, miR-

21 was significantly increased in hypertrophic scar tissues

and fibroblasts [87].

Previous studies have indicated that mesenchymal stem

cells (MSCs) can promote skin regeneration and contribute
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to scar formation [88, 89]. In a skin-defect mouse model,

Fang et al. found that umbilical cord-derived MSCs reduced

scar formation and myofibroblast accumulation, which may

be associated with umbilical cord-derived MSC-derived

exosomes and especially exosomal miRNAs [90]. Using

high-throughput RNA sequencing, they found a group of

umbilical cord-derived MSC-derived exosomes enriched in

specific miRNAs, including miR-21, miR-23a, miR-125b,

and miR-145. Bioinformatic analysis demonstrated miR-21

played a critical role in suppressing myofibroblast formation

by inhibiting the TGF-b2/SMAD2 pathway [90]. Therefore,

in addition to keloid, miR-21 may also be a marker for the

phenotype of hypertrophic scar fibroblasts.

5.3.2 Role of miR-21 in the Regulation of Hypertrophic

Scar

MicroRNA-21 regulates the cell growth of hypertrophic

scar fibroblasts (Fig. 2). The underlying mechanism may

be that miR-21 regulates hTERT expression via the PTEN/

PI3K/AKT signaling pathway by directly targeting PTEN

[91]. PDCD4 is another key target gene of miR-21.

Downregulation of miR-21 level can promote the expres-

sion of PDCD4, reduce the expression of cell-cycle-asso-

ciated protein C-MYC, CCND1, and inhibit the PI3K/AKT

signaling pathway [92].

Another experiment noted that theTGF-b/miR-21/Smad7

pathway might participate in the pathogenesis of the hyper-

trophic scar [32]. Upregulation of miR-21 promoted the

expression of fibrosis markers such as Col1A1, Col3A1, Fn,

and a-SMA in fibroblasts. It has also been found that miR-21

enhanced TGF-b1-induced fibroproliferative expression by

repressing SMAD7 expression in vitro.

Transforming growth factor-b2 was predicted to be a

target of miR-21. Fan et al. [93] demonstrated that over-

expressed SIRT6 suppressed the TGF-b2 level by pro-

moting the expression of miR-21. SIRT6 suppressed the

proliferation of the fibroblasts, expression of TGF-b2 and

interleukin-1a, and the production of collagen type I via

the miR-21/TGF-b2 pathway [93, 94]. These results indi-

cated that miR-21 was a critical regulator for hypertrophic

scar formation and miR-21 may be a potential novel

molecular target for the treatment of hypertrophic scarring.

6 MicroRNA-21 as a Diagnostic and Therapeutic
Target for Skin Fibrosis

6.1 MicroRNA-21 as a Biomarker for Diagnosis

of Skin Fibrosis

Increasingly, studies have shown that miRNAs can serve as

biomarkers for the diagnosis of skin fibrosis and

assessment of disease state and severity [62, 95]. There was

a strong correlation between the miR-21 level and the

severity of skin fibrosis in the skin, serum, and hair of each

patient, suggesting that miR-21 can be an independent

biomarker [69, 96, 97]. Koba et al. also found the combi-

nation of serum levels of miR-206 and miR-21 was more

useful in distinguishing patients with SSc from normal

subjects than either miR-206 or miR-21 alone [72].

Although skin and serum miRNA levels are known as

useful biomarkers for various diseases, hair may be more

accessible than sera when looking at human samples. Inoue

et al. [96] and Wang et al. [97] found miRNA levels in hair

roots or hair shafts may become effective and independent

biomarkers in SSc.

6.2 MicroRNA-21 as a Therapeutic Target for Skin

Fibrosis

The expression of miR-21 in skin fibrosis provides a

potential target to treat this series of diseases. Guo et al.

[87] indicated that the miR-21 antagomir has a therapeutic

effect on the hypertrophic scar. MicroRNA-21 may also

function in an amplifying circuit to enhance TGF-b sig-

naling events in SSc fibrosis, and it is suggested that miR-

21 may act as a potential therapeutic target [81]. This

molecular mechanism of miR-21 on keloid keratinocytes

linked EMT with cell stemness and suggests novel thera-

peutic targets for keloids [58]. These studies offer a novel

strategy for the development of new anti-fibrotic drugs.

The basic anti-fibrotic strategy is to design a small-

molecule miRNA inhibitor according to the Watson–Crick

base pairing rule, which can be used to suppress or

downregulate the expression level of the relevant miRNAs

[98, 99]. Currently, the common inhibitors for miR-21

include: anti-miRNA oligonucleotides, locked nucleic acid

(LNA), and miRNA small-molecule inhibitors [100–102].

Locked nucleic acid is a unique class of nucleic-acid

modification possessing very high binding affinity, thermal

stability, and excellent specificity toward complementary

RNA or DNA oligonucleotides [103]. Obad et al. injected

intravenously radiolabeled LNA into mice [104, 105].

Autoradiography showed that LNA was absorbed in all

organs except the brain in the mice; then, the luciferase

assay showed that LNA could inhibit the activity of miR-

21 in the long term, which suggested that LNA has

potential pharmacological value for anti-fibrosis [104].

Vascular abnormalities in SSc may induce a reduction in

the transfer of exosomes from the skin tissue to the blood

stream, resulting in a decrease of serum exosome levels,

causing a delay in wound healing. Therefore, exosomal

miRNA research will lead to a detailed understanding of

SSc pathogenesis and new therapeutic approaches [106].
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Although miRNA has proven to be a great prospect in

the treatment of skin fibrosis, there are still a number of

problems to be solved before it could be an effective

clinical treatment. The targets will need to be refined, as

targeting just one miRNA may have a limited effect given

that often multiple miRNAs target one mRNA and will all

affect protein production. Furthermore, miRNA can also

bind to the sequences of multiple target genes as a result of

incomplete pairing and can regulate their expressions,

which may produce off-target effects [107, 108].

7 Conclusion

Improving our knowledge on the function of miR-21 may

provide a new direction for the study of the pathogenesis of

skin fibrosis. The regulation of the relevant signaling

pathways involved in miR-21 will produce new diagnostic

and therapeutic options. However, the application of miR-

21 in the future is still a great challenge. Prospective cohort

studies are necessary to identify and establish miR-21 as a

biomarker of skin fibrosis for clinical applications in the

near future.
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