
Vol.:(0123456789)

Pharmaceutical Medicine (2024) 38:321–329 
https://doi.org/10.1007/s40290-024-00530-1

ORIGINAL RESEARCH ARTICLE

Statistical Signal Detection Algorithm in Safety Data: A Proprietary 
Method Compared to Industry Standard Methods

Eugenia Bastos1 · Jeff K. Allen2   · Jeff Philip2

Accepted: 18 June 2024 / Published online: 13 July 2024 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024

Abstract
Introduction  Several quantitative methods have been established, in pharmacovigilance, to detect signals of disproportion-
ate reporting (SDRs) from databases containing reports of adverse drug reactions (ADRs). The signal detection algorithms 
(SDAs) and the source of the reporting per product vary, but it is unclear whether any algorithm can provide satisfactory 
performance using data with such large variance factors.
Objective  Determine the appropriate SDA for Biogen’s internal Global Safety Database (GSD) given the characteristics of 
the database including frequencies of events, data skewness, outliers, and missing information. Compare performance of 
standard approaches (EBGM, EB05, PRR, and ROR), well accepted by industry, to a Biogen-developed Machine Learning 
(ML) Regression Decision Tree (RDT) model, across several Biogen products, to determine a champion SDA.
Methods  All data associated with seven marketed Biogen products were chosen and a historical subset of reported ADRs 
were considered. Six SDAs (five common industry disproportionality methods) and RDT were evaluated. The SDRs were 
calculated on training and test data composed of quarterly reporting intervals from 2004–2019. The performance measures 
used were sensitivity, precision, time to detect new events, and frequency of detected cases for each algorithm for each 
product. Outcomes in the test data are known a priori and easily compared to predicted outcomes. Validation was performed 
via rates of misclassification. This work solely represents Biogen’s internal information, intentionally chosen to serve the 
performance review of its signal detection systems, and results will not necessarily be generalizable to other external sources.
Results  Several algorithms performed differently among products, but no one method dominated any other. Performance 
was dependent on the thresholds used to define a signal according to different criteria. However, those different statistics 
subtly influenced the achievable performance. The relative performance of RDT and Medicines and Healthcare products 
Regulatory Agency (MHRA) algorithms were superior and paired across products. A reduction in precision for all methods 
spanning the products was present. Hence, companies evaluating signal detection approaches, search for innovative methods 
to minimize this effect.
Conclusions  In designing signal detection systems, careful consideration should be given to the criteria that are used to define 
SDRs. The choice of disproportionality statistics does not affect the achievable range of signal detection performance. These 
choices should consider mainly ease of implementation and interpretation. The implementation of a method is specific to its 
accuracy. The RDT attempted to take advantage of known methods and compare results on a per-product basis. Many factors 
influencing ADRs may improve RDT in future efforts. In this experiment, RDT demonstrated superiority in terms of quickest 
time to detect and capturing of the highest number of ADRs. Next steps include expansion of data for products representing 
other indications and testing models in external databases to investigate generalizability of estimates when comparing SDAs.
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Key Points 

Machine learning (ML) algorithms demonstrate viability 
in detecting safety signals.

The RDT results, a bespoke Decision Tree analysis, 
detected records of 2 × 2 tables representing cases of 
highly disproportionality measures (outliers) while dis-
playing high sensitivity and precision.

The RDT has the shortest times to detect (TTD) signals 
across products.

1  Introduction

The management and analysis of individual case safety 
reports (ICSRs) remains vital to detecting safety signals for 
marketed pharmaceutical products. Dependable ICSR-driven 
signal detection is a staged process combining both quanti-
tative disproportionality analysis and the expertise of phar-
macovigilance (PV) professionals providing ascertainment. 
With the advent of high-performance computing (HPC) 
environments and cloud-based platforms, novel mathemati-
cal approaches such as machine learning (ML) and artificial 
intelligence (AI), which are innately highly iterative and 
require an ever-expanding pool of source data to be effec-
tive, have become an industry passion. As these systems and 
methods are also well embedded in industry, it has become 
incumbent upon safety departments to explore the capacity 
of these systems/methods to predict/detect safety signals and 
subsequently perform time-to-event analysis.

Most pharmaceutical companies depend on safety data 
relevant to their own products drawn from a variety of 
sources: commercially available safety databases, direct cus-
tomer and provider reports, regulatory authority databases, 
etc. These databases form the bedrock for disproportional-
ity analysis. While clinical assessment is the most crucial 
and requisite stage of signal detection, disproportionality 
analysis is employed to generate hypotheses on potential 
relationships between pharmaceutical products and adverse 
effects; consistent with 2×2 table analysis, it is based on the 
contrast between observed and expected numbers of reports 
for any given combination of drug and adverse event [1].

2 � Objectives

This paper focuses on the use of standard disproportional-
ity measures in tandem with a proprietary ML approach, 
RDT (a bespoke decision tree analysis), to investigate the 
strengths and weaknesses of current standard algorithms 
when compared to and supplemented by an ML approach. 
The main measures we will use to draw our comparisons 
will be sensitivity, specificity, and accuracy.

3 � Data and Methods

3.1 � Data

All available data associated with seven marketed Biogen 
products were chosen in the form of a large historical and 
‘frozen’ subset of all reported ADRs drawn from Biogen’s 
Global Safety Database (GSD) database were considered. 
The data were then summarized at the MedDRA (Medical 
Dictionary for Regulatory Activities) Preferred Term (PT) 
and product level in discrete quarterly intervals of time 
(2014–2019). Counts were established in the fashion of a 
four-cell (A, B, C, D) two-by-two table.

Once the counts were established, from them, a series 
of ratios were then calculated. The resulting measures of 
disproportionalities used in this paper were accuracy, sen-
sitivity, specificity, etc. The full data set, a total of 1193 
table records, were split into a training set (80 %; n = 954 
observations) and test set (20 %; n = 239 observations).

3.2 � Signal Detection Algorithms

Six SDAs (five ratio-based commonly used disproportion-
ality methods within from the industry based on dispropor-
tionality methods) inclusive of RDT, a proprietary method 
employing ML decision tree approach, were evaluated. 
The five ratio-based disproportionality methods include:

1.	 Medicines and Healthcare products Regulatory Agency 
(MHRA) Empirical Bayesian Geometric Mean (EBGM, 
EB05 [6]).

2.	 European Medicines Agency (EMA)-adapted Propor-
tional Reporting Ratio (PRR).

3.	 BAYER-bespoke Proportional Reporting Ratio (PRR 
[5]).

4.	 ROCHE-bespoke Proportional Reporting Ratio (PRR).
5.	 Reporting Odds Ratio (ROR [5]).

Table 1 provides additional details on the calculation of 
each aforementioned method. The ratios (PRR, ROR) are 
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described in Table 2 as a function of a 2 × 2 contingency 
table. In Table 3, the letters A–D correspond to cells in 
Table 2.

Signals of disproportionate reporting (SDRs) were cal-
culated on data composed of quarterly reporting intervals 
during 2004 to 2019. The performance measures used were 
cumulative sensitivity, cumulative precision (positive pre-
dictive value), time to detect new events, and frequency of 
detected cases for each algorithm for each product. Actual 
outcomes in the test data are known a priori and thus easily 
compared to predicted outcomes. Validation was performed 
using misclassification rates to determine measure accuracy.

The proprietary method, RDT, a newly proposed and 
tested classification method, Regression Decision Tree 
(RDT [sensitivity (s), precision (p)]), using a systematic 
approach of path optimization, was employed to predict 
cumulative sensitivity and cumulative precision utilizing 
independent disproportionality rates, leading to SDRs fre-
quencies. Because rates are defined within the interval [0–1], 
regression was our algorithm of choice and RDT (s, p) was 
created. We combined a two-step model utilizing both out-
comes: cumulative sensitivity and cumulative precision.

Step 1: Pred-Y1(Cumulative Sensitivity(a/a+c)) = 
X1(MHRA-EBGM) + X2(MHRA-EB005) + X3(EMA-
PRR) + X4(BAYER-PRR) + X5(ROCHE-PRR) + 
X6(ROR) + error.

Step 2: Pred-Y2(Cumulative Precision(a/a+b)) 
= X1(MHRA-EBGM) + X2(MHRA-EB005) + 

X3(EMA-PRR) + X4(BAYER-PRR) + X5(ROCHE-PRR) 
+ X6(ROR) + error.

After executing both steps independently, using quarter 
periods for each Biogen Product, these resulting records 
were appended, from step 1 and step 2 and together produce 
the RDT results. We referred to this two-step model as RDT 
(s, p). The RDT results detected records of 2 × 2 tables rep-
resenting cases of highly disproportionality measures.

4 � Results

4.1 � Comparisons of Measures, Median Sensitivity, 
and Median Precision, Across SDAs

The overall performance of six SDAs is listed in Table 4. 
The median sensitivity and median precision in this table 
are both calculated using the average across all seven Biogen 
products included in this work, summarized on SDA level. 
We looked for SDAs with the highest sensitivity (denomi-
nator contains related and unrelated events under drug) and 
highest precision (denominator contains all reported events, 
independent of drug exposure) medians. In this case, no 
method meets these exact criteria but the adoption of trade-
offs between both measures can maintain significance in the 
selection of signals. The methods with the highest sensitivi-
ties (ROR, EMA, ROCHE and BAYER) (cluster 1) yielded 
the lowest precisions. And the method with highest precision 
(MHRA) (cluster 2), yielded the lowest sensitivity. The RDT 
(s, p) falls in between those two clusters, with sensitivity 
and precision medians equal to (0.2781; 0.1585). RDT (s, 
p) sensitivity ranks higher than MHRA’s sensitivity (0.2781 
× 0.2449), its precision ranks the second highest, MHRA’s 
precision (0.1585 × 0.3177). In summary, the first cluster 
will be dismissed due to low precision rates. The dispute 
between MHRA and RDT relies on a preference of either 
measure, while RDT (s, p) favors sensitivity versus MHRA’s 
precision. A crucial point to account for method efficiency 
is to consider that both measures are needed at the same 
rate. Imprecise sensitivities or non-sensible precisions can 
be devoid of merit.

The next step was to inquire about which sources of vari-
ation played influential roles when creating these measures. 

Table 1   Signal detection algorithm (SDA) method, identifier, and full 
value requirements

χ2 chi-squared, CI confidence interval, EB05 lower limit of the 90 % 
one-sided CI of the EBGM, EBGM Empirical Bayesian Geometric 
Mean, EMA European Medicine Agency, LB lower limit of the 95 % 
two-sided CI, MHRA Medicines and Healthcare products Regulatory 
Agency; n number of adverse drug reports, PRR proportional report-
ing ratio, ROR reporting odds ratio

SDA Identifier Model (product average)

EBGM [3] MHRA EB05≥1.8, n ≥ 3, EBGM ≥ 2.5
PRR [3] EMA PRR LB 95 % CI ≥1, n ≥3

BAYER PRR ≥2; χ2 ≥4, n ≥3
ROCHE PRR≥2, p(χ2) ≤0.05, n≥3

ROR [3] ROR ROR LB 95 % CI≥1, n≥3

Table 2   The 2×2 contingency table

AE adverse events

2 × 2 Drug positive Drug 
nega-
tive

AE Yes A B
AE No C D

Table 3   Formulas for ratio calculations

EBGM Empirical Bayesian Geometric Mean, PRR proportional 
reporting ratio, ROR reporting odds ratio

EBGM as per RRR formula [6] [A*(A+B+C+D)]/
[(A+C)*(A+B)]

PRR [A/(A+C)]/[B/(B+D)]
ROR [(A/B)]/[(C/D)]
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When we analyzed median sensitivity and median precision, 
broken by seven products for each SDA (graph not shown), 
the behavior of such measures was characterized by spread. 
As each product was compared across SDAs, we observed a 
pairing behavior of BAYER and ROCHE; RDT pairing with 
MHRA, and EMA pairing with ROR. The pair RDT and 
MHRA displayed less spread across products, when com-
pared with all product SDAs.

The work of RDT (s, p) in selecting records of relevance 
in signal detection benefits from the parsimony of two-bias 
influence (C and B from Table 2) equally: unrelated events 
under drug exposure (C), and at the same time, reported 

events unrelated to drug exposure (B), play a crucial role 
in allowing these possible error excesses being model 
adjusted. We believe that such equilibrium produces a 
precise, valid, and equanimous selection process of the 
observations under study.

4.2 � Comparisons of Median Misclassification Rates 
Per Product, Across SDAs

Figure 1 displays misclassification (MC) rates [3] by each 
product per SDA, inclusive of comparisons to BAYER, 
EMA, MHRA, RDT, ROCHE and ROR, a measurement 

Table 4   Median sensitivity and 
median precision by each SDA

χ2 chi-squared, CI confidence interval, EB05 lower limit of the 90 % one-sided CI of the EBGM, EBGM 
Empirical Bayesian Geometric Mean, EMA European Medicine Agency, LB lower limit of the 95 % 
two-sided CI, MHRA Medicines and Healthcare products Regulatory Agency, n number of adverse drug 
reports, PRR proportional reporting ratio, RDT Regression Decision Tree, ROR reporting odds ratio, SDA 
signal detection algorithm, s, p sensitivity precision

SDA MODEL (product average) Median sensitivity Median precision

MHRA EB05 ≥1.8, n ≥3, EBGM ≥2.5 0.2449 0.3177
RDT RDT (s, p) 0.2781 0.1585
BAYER PRR ≥2, χ2 ≥4, n ≥3 0.4431 0.1338
ROCHE PRR≥2, p(χ2)≤0.05, n≥3 0.4435 0.1325
EMA PRR LB 95 % CI≥1, n≥3 0.5245 0.1387
ROR ROR LB 95 % CI≥1, n≥3 0.5245 0.1387

Fig. 1   Median Misclassification Rates by products and SDAs. EB Empirical Bayes, EBGM Empirical Bayes Geometric Mean, PRR proportional 
reporting ratio, ROR reporting odds ratio, RDT regression decision tree, SDAs signal detection algorithms
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error that evaluates the accuracy of sensitivity and preci-
sion measures. The MHRA method displays the smallest 
MC rates (MC mean = 0.043), followed in descending order 
by RDT (MC mean = 0.100), BAYER (MC mean = 0.109), 
ROCHE (MC mean = 0.110), and EMA and ROR tied val-
ues (MC mean = 0.121). While all SDA methods have sud-
den increase and decrease changes in the MC rates, MHRA 
and RDT display stable small MC rates, except RDT, which 
points to a product 5 outlier. Of note, it is the MC rates of 
product 5, that display the highest rates across all methods. 
We observe mostly small (≥ 0.07) MC rates for all prod-
ucts, except for product 5, in MHRA and RDT. In summary, 
MHRA stands out with the smallest MC rates, followed by 
the RDT method. It is of interest to clarify that most prod-
ucts had multiple sclerosis (MS) indication; and one had 
indication for spinal muscular atrophy (SMA). Product 5 
had MS indication specifically for patients with walking dis-
ability. All methodological procedures were equally applied 
to all products, and we are not sure why product 5 exhibited 
such a high MC rate. We know a priori that product 5 had 
the smallest sample size among all products, which could 
have driven spurious results.

4.3 � Comparisons of Frequencies and Median Time 
to Detect the First Event, Across SDAs

Table 5 presents trends in frequencies and the median time 
to detect by number of observations, as the first signal asso-
ciated with products compared across SDAs. When we 
consider the median time to detect and the frequencies of 
detected events, we desire to have the maximum number 
of events first detected in the shortest time spent by each 
method. In our data, these measures are approximately cor-
related. The RDT model had the quickest detection of new 
events by time (0.30) when compared to all other SDA meth-
ods, while detecting 118 observations. Of note, the absolute 
frequency of events is also valuable. If we drop the first 

cluster and compare RDT versus MHRA, RDT is the winner 
overall. We look forward to a method capable of a short and 
speedy time to detect events but also with a robust frequency 
of events, making both measures meaningful. The time unit 
was measured from the time a product enters the market 
until the last reported quarter of each product.

Next, we analyzed the median time to detect ADR events, 
broken down on product level. Medicines and Healthcare 
products Regulatory Agency had the highest time to detect 
an event for product 1. Except for product 7, RDT had the 
shortest times to detect signals across products (graph not 
shown).

4.4 � Median Time to Detect the First Event 
by Products on Chronological Time, for MHRA 
and RDT

Figure 2 presents the median time to detect events by prod-
ucts, with chronological time on the x axis, comparing only 
the most efficient but similar methods, MHRA and RDT. 
The height of the small vertical lines on the graph repre-
sents the frequencies of events captured by each method, 
for each product, in each quarter. The blue color represents 
the frequencies of events captured by the MHRA method, 
and the red color represents the RDT method. The clouds 
with varying levels of red/blue intensity represent a smooth-
ing effect intended to create a singular visual flow of event 
frequency over time where there are few-to-no events hav-
ing occurred. Additionally, you can see products enter the 
market at various times where there is neither cloud nor line. 
When comparing both methods, the graph shows a higher 
prevalence of events across all quarters for RDT rather than 
MHRA, evidenced by the red color prevailing and dominat-
ing most areas of the graph in Fig. 2, especially for product 
1, product 2 and product 7.

4.5 � Comparisons of Frequencies of SDRs 
in Chronological Time, Across SDAs

Figure 3 displays a general comparison of frequencies of 
SDRs for all quarters since 2005, output by SDA methods, 
without product distinction. The colors are used to distin-
guish between the methods. The green color seen on the 
bottom of the graph is associated with the MHRA method, 
while the light purple indicates the dots associated with RDT 
method. These two methods, MHRA and RDT, detected 
most of the small quantities of SDRs, while the other SDR 
methods show a mix of colors with localized trends. Multi-
ple occurrences of the same colors in a column (static point 
in time) are a function of multiple products experiencing an 
SDR. The overall view of the graph, drawn by the smooth 
line, shows that as time in the market for a product increases, 
the SDRs rates also increase.

Table 5   Frequencies, median time to detect (mos.) and median time 
to detect (mos./obs.) by SDA

EMA European Medicine Agency, MHRA Medicines and Healthcare 
products Regulatory Agency, n number of adverse drug reports, RDT 
Regression Decision Tree, ROR reporting odds ratio, mos. months; 
mos./obs. months by observation, SDA signal detection algorithm

SDA n Median time to 
detect (mos.)

Median time to 
detect (mos.)/N

MHRA 64 25.94 0.41
RDT 118 34.95 0.30
BAYER 117 39.42 0.34
ROCHE 117 39.42 0.34
EMA 137 42.02 0.31
ROR 137 42.02 0.31
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4.6 � Precision Rates in Chronological Time, Across 
SDAs

Next, as shown in Candore et al [2], the precision (or posi-
tive predictive value) over time can dictate future trends and 
the proportion of SDRs that turn into ADRs. We analyzed 

precision rates for all Biogen products by SDA methods dur-
ing the totality of times of products in the market, some 
since 2005. The RDT and MHRA methods maintained sta-
bility in precision over increasing time periods, while the 
other methods have high volatility and decreasing trends 
(graph not shown). As mentioned in previous literature [8], 

Fig. 2   Median time to detect in months by products comparing MHRA and RDT SDAs. MHRA Medicines and Health Care Products Regulatory 
Agency, RDT random decision tree, SDAs signal detection algorithms

Fig. 3   Signals of disproportionate reporting by period (quarters) comparing all SDAs. EMA European Medicines Agency, RDT random decision 
tree, ROR reporting odds ratio, SDAs signal detection algorithms
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a general reduction in precision during time in the market for 
most products is expected. Companies that monitor internal 
signal detection systems are compelled to explore advanced 
ML algorithms to compensate for decreasing precision.

5 � Discussion

The proprietary decision tree approach we created for this 
experiment performed well in several key areas that are 
critical to detecting signals of disproportionate reporting. 
In terms of quantitative stability, RDT demonstrated the best 
trade-off between the study’s key measures (s, p) among all 
methods compared. The RDT also proved superior in terms 
of time to detect a signal of disproportionality. However, 
the RDT did not perform as well as MHRA in misclassifi-
cation rates across products. The RDT was also superior to 
MHRA in detecting SDRs, in total chronological time. The 
MHRA and RDT methods were parallel to one another in 
many of the results. This is quite encouraging as RDT is an 
ML approach using ratios as inputs while all other methods 
use count data.

We demonstrated a trend of stable and small MC rates 
for MHRA and RDT. After excluding product 5 outlier, we 
observed mostly small and acceptable (≤0.07) MC rates for 
all products in MHRA and RDT. Although MHRA displays 
the smallest MC rates, followed by the RDT method, MHRA 
loses momentum when analyzing "rate of median time to 
detect events" by SDAs (MHRA 0.41; RDT 0.30).

The choice between granular, event-level ADR count data 
and aggregated, parameterized SDR measures (such as sen-
sitivity, specificity, accuracy, etc.) as inputs for predictive 
models should generate a lively and healthy debate. As regu-
latory authorities continue to expect pro-active refinements 
and methodological breakthroughs in terms of predicting 
untoward drug events, a ML approach such as RDT, does 
represent a fresh foray in that spirit. Methods like RDT are 
worthy of consideration, at minimum, as a tool of govern-
ance. Current, well-accepted disproportion measurements 
depend directly on source data and formulaic simplicity. A 
decision tree approach allows for a top-down approach to 
(a) auto-generate common industry methods (ROR, PRR, 
EBGM, etc.) (b) control variances by generating a stable dis-
tribution (c) learn about proper thresholds and event count 
for detecting signals. Careful attention must be paid to like-
ness of drugs (drug classes) under consideration in models: 
indications/contra-indications, label warnings, intended con-
sumers, route, etc. The period of data capture for the training 
data set and product market inception (most notably, time to 
event) may also affect interpretation of results.

Past literature has published increasing trends of SDRs 
across product time in the market [6] on a cross-sectional 
analysis of adverse events in the FDA Adverse Event 

Reporting System (FAERS) Database. Other works [7], 
which have analyzed SDRs trends, state the importance 
of periodicity (quarterly vs monthly), re-signaling, double 
detection of the same event in future time intervals, and 
threshold definitions when applying SDRs, in improving 
the quality of statistical signal detection or SDRs. These 
decisions influence the quality, efficiency, and workload of 
outputs for all SDRs methods.

Ideally, novel SDAs should demonstrate improvement in 
all outcomes over established SDAs. However, in this case, 
RDT championed the quickest time to detect ADRs and the 
highest number of detected known ADRs.

Sub-group analyses comparing SDA sensitivity, precision 
and SDR rates were calculated for events after demographic 
classification including age, gender and year groups. Small 
differences across classes of such variables were observed 
but no trend was statistically significantly observed. Tables 
are not shown.

For instance, the FAERS was used as a gold standard for 
ADR rates. Tables with model comparisons were created 
and results of Biogen GSD versus FAERS sensitivity and 
precision rates were not statistically significant. Tables are 
not shown. The establishment of a safety profile of products 
was not the goal of this work but rather a subproduct of such 
analysis.

The use of AUC measures [9] and F1-scores [10] would 
have been useful to summarize even more the performance 
of SDAs. However, we wanted to produce measures com-
monly used in literature to allow comparisons across dif-
ferent publications, therefore our choice for sensitivity and 
precision rates.

In order to address biases, we ran an equitable model, 
such that on step one, we predicted sensitivity, represented 
by the correlation between drug exposure with associated 
adverse events by all who took the drug, additionally, on 
step two, we predicted precision, represented by the correla-
tion between drug exposure with associated adverse events 
by all who experienced adverse events. That way, we cau-
tiously considered the two sources of bias reflected on the 
denominator of rates, from all drug exposure (a+c) and all 
product- and non–product-related adverse events (a+b). Our 
objective was to address bias coming from different sources 
of disproportionality rates and still obtain high rates for both 
sensitivity and precision.

In summary, RDT (s, p) methodological strengths are 
that the model is easily understandable and interpretable; 
the lack of non-linearity does not affect the model’s perfor-
mance; it is a non-parametric method and data distribution 
free, and robust against outliers and missing information. 
This model also maximizes the statistical effect on each 
observation while minimizing white noise and the num-
ber of hyper-parameters to be tuned. Its main disadvantage 
is over-fitting, which can be resolved using data splitting, 
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cross-validation or comparisons with other ML algorithms 
like Random Forests, Neural Networks, etc.

6 � Conclusions

In designing signal detection systems, careful consideration 
should be given to the criteria that are used to define SDRs. 
The choice of disproportionality statistics does not affect the 
achievable range of signal detection performance, but fac-
tors like periodicity and threshold definitions will influence 
the workload outputs of these SDRs. These choices should 
consider mainly ease of implementation, interpretation, and 
minimization of computing resources/platform dependen-
cies. The changes in sensitivity and precision obtainable 
by replacing one algorithm with another are predictable. 
However, the absolute performance of a method is specific 
to its intended, particularized function. The RDT method 
in question here, attempted to take advantage of known 
industry-established methods and demonstrated the ability 
to customize SDAs on a per-product basis. Model refine-
ments associated with internal and external factors influenc-
ing ADRs may improve ML methods, inclusive of RDT, in 
future developments. Other methods, such as Information 
Component (IC) have been discussed in other journals [4] 
and certainly showed strong results particularly when meas-
ured by AUC (i.e., sensitivity/specificity) against methods. 
While our experiment with RDT proved provocative, it is 
still not a thoroughly vetted or broadly understood approach 
and, at present, is not a tool employed in ongoing PV efforts.

As suggested here, there are many considerations when 
assessing the future of AI/ML and other new/emerging tech-
nologies in the realm of signal detection. The endeavor to 
further understand the safety of marketed drugs with these 
tools is not only a public ‘consumer’ good but an obliga-
tion when these tools are clearly available in the industry. 
Finally, the precision and reliability of such tools can be 
evolved if an industry/regulatory ecosystem allows for such 
experimentation.
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