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Abstract
Background There is evidence that in older adults the combination of strength training (ST) and endurance training (ET) 
(i.e., concurrent training [CT]) has similar effects on measures of muscle strength and cardiorespiratory endurance (CRE) 
compared with single-mode ST or ET, respectively. Therefore, CT seems to be an effective method to target broad aspects 
of physical fitness in older adults.
Objectives The aim was to examine the effects of CT on measures of physical fitness (i.e., muscle strength, power, balance 
and CRE) in healthy middle-aged and older adults aged between 50 and 73 years. We also aimed to identify key moderating 
variables to guide training prescription.
Study Design We conducted a systematic review with meta-analysis of randomized controlled trials.
Data Sources The electronic databases PubMed, Web of Science Core Collection, MEDLINE and Google Scholar were 
systematically searched until February 2022.
Eligibility Criteria for Selecting Studies We included randomized controlled trials that examined the effects of CT versus 
passive controls on measures of physical fitness in healthy middle-aged and older adults aged between 50 and 73 years.
Results Fifteen studies were eligible, including a total of 566 participants. CT induced moderate positive effects on muscle 
strength (standardized mean difference [SMD] = 0.74) and power (SMD = 0.50), with a small effect on CRE (SMD = 0.48). 
However, no significant effects were detected for balance (p > 0.05). Older adults > 65 years (SMD = 1.04) and females 
(SMD = 1.05) displayed larger improvements in muscle strength compared with adults ≤ 65 years old (SMD = 0.60) and 
males (SMD = 0.38), respectively. For CRE, moderate positive effects (SMD = 0.52) were reported in those ≤ 65 years old 
only, with relatively larger gains in females (SMD = 0.55) compared with males (SMD = 0.45). However, no significant dif-
ferences between all subgroups were detected. Independent single training factor analysis indicated larger positive effects 
of 12 weeks (SMD = 0.87 and 0.88) compared with 21 weeks (SMD = 0.47 and 0.29) of CT on muscle strength and power, 
respectively, while for CRE, 21 weeks of CT resulted in larger gains (SMD = 0.62) than 12 weeks (SMD = 0.40). For CT 
frequency, three sessions per week produced larger beneficial effects (SMD = 0.91) on muscle strength compared with 
four sessions (SMD = 0.55), whereas for CRE, moderate positive effects were only noted after four sessions per week 
(SMD = 0.58). A session duration of > 30–60 min generated larger improvements in muscle strength (SMD = 0.99) and power 
(SMD = 0.88) compared with > 60–90 min (SMD = 0.40 and 0.29, respectively). However, for CRE, longer session dura-
tions (i.e., > 60–90 min) seem to be more effective (SMD = 0.61) than shorter ones (i.e., > 30–60 min) (SMD = 0.34). ET at 
moderate-to-near maximal intensities produced moderate (SMD = 0.64) and small positive effects (SMD = 0.49) on muscle 
strength and CRE, respectively, with no effects at low intensity ET (p > 0.05). Finally, intra-session ST before ET produced 
larger gains in muscle strength (SMD = 1.00) compared with separate sessions (SMD = 0.55), whereas ET and ST carried 
out separately induced larger improvements in CRE (SMD = 0.58) compared with intra-session ET before ST (SMD = 0.49).
Conclusions CT is an effective method to improve measures of physical fitness (i.e., muscle strength, power, and CRE) in 
healthy middle-aged and older adults aged between 50 and 73 years, regardless of sex. Results of independent single training 
factor analysis indicated that the largest effects on muscle strength were observed after 12 weeks of training, > 30–60 min 
per session, three sessions per week, higher ET intensities and when ST preceded ET within the same session. For CRE, the 
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largest effects were noted after 21 weeks of training, four sessions per week, > 60–90 min per session, higher ET intensities 
and when ET and ST sessions were performed separately. Regarding muscle power, the largest effects were observed after 
12 weeks of training and > 30–60 min per session.

Key Points 

Concurrent training is an effective method to improve 
measures of physical fitness (i.e., muscle strength, 
power, and cardiorespiratory endurance) in healthy 
adults aged between 50 and 73 years, regardless of sex.

Concurrent training resulted in larger effects on muscle 
strength and cardiorespiratory endurance in females 
compared with males.

Results of independent single training factor analysis 
indicated that the largest effects on muscle strength 
were observed after 12 weeks of training, > 30–60 min 
per session, three sessions per week, higher endurance 
training intensities, and intra-session strength before 
endurance training. For cardiorespiratory endurance, 
the largest effects were noted after 21 weeks of training, 
four sessions per week, > 60–90 min per session, higher 
endurance training intensities, and separate endurance 
and strength training sessions.

1 Introduction

The absolute number of older adults around the world is 
sharply increasing [1], making ageing a key policy issue for 
national and international health organizations. In 2015, the 
World Health Organization (WHO) published the “World 
Report on Ageing and Health,” emphasizing the need to take 
public health action and outlining healthy ageing as more 
than just the absence of disease but as a “process of develop-
ing and maintaining the functional ability that enables well-
being in older age” [1]. Within this holistic concept, physical 
activity is the most important among the behavioral and life-
style factors and a central component of primary and tertiary 
prevention [2]. The positive effects of physical activity on 
health (e.g., preventing cardiovascular disease [3] and type 
2 diabetes [4], reducing the risk of stroke [5, 6], breast and 
colon cancer [2], reducing all-cause mortality risk [7]) were 
previously promoted by global health organizations [8–10]. 
It is worth noting that the WHO attributed 6% of deaths 
worldwide to physical inactivity making it the fourth leading 
risk factor for death, globally [9]. Additionally, recent find-
ings indicate a worldwide trend towards insufficient physical 

activity [11, 12], which emerges substantially with ascend-
ing age [2, 13]. This applies particularly to older adults 
(≥ 60 years), with a median prevalence of up to 54.6% [9].

The biological process of ageing is characterized by mul-
tifactorial, morphological and functional changes [14–16]. 
More specifically, ageing is associated with a decline in the 
level of physical fitness [17–19], resulting in adverse out-
comes such as impaired mobility, increased risk for falls 
[20] and reduced quality of life [21–23]. These alterations 
are known to be more prevalent in older populations [24], 
but evidence indicates that the decrease in muscle mass 
and function (i.e., muscle strength and power) starts from 
~ 40 years onwards [24, 25] and begins to be visible at ~  
50 years of age [24–27]. Additionally, earlier studies indi-
cated that the level of physical fitness tracks from middle-
age to older adult age [28]. This implies that the level of 
physical fitness in middle-age can predict physical perfor-
mance in later life, indicating that earlier training interven-
tions at ~  50 years can result in positive long-term effects. 
Therefore, maintaining a high level of physical fitness is of 
utmost importance in both middle-aged and older adults. 
The mechanisms underlying age-related alterations in physi-
cal fitness level and motor control are multifactorial, yet not 
fully understood [15]. The available evidence indicated that 
ageing negatively affects human skeletal muscle architecture 
[16], muscle mass and function (i.e., sarcopenia) [29–31] as 
well as neural processes [14, 32, 33]. These adverse effects 
result in impairments in instrumental activities of daily liv-
ing [34] and increase the risk of functional dependency and 
frailty [34, 35].

The available recommendations for exercise training 
and physical activity for older adults comprise endurance 
training (ET) and strength training (ST) [10, 22, 23]. In this 
regard, it is well-established that ST and ET induce specific 
adaptations pertaining to muscle architecture [36–38], neu-
ral factors [39, 40] or energy metabolism [41, 42]. Specifi-
cally, ample evidence indicated that ST induces beneficial 
effects on muscle protein synthesis [43], muscle cross-sec-
tional area (CSA) [44–46] and neural excitability [47], all 
of which lead to increased muscle strength [48, 49], muscle 
power [50, 51] and rate of force development [52]. ET on the 
other hand primarily activates mitochondrial biogenesis and 
angiogenesis (i.e., formation of new capillary blood vessels 
from pre-existing ones), which in turn improve cardiovas-
cular functions and muscle metabolism [53–55]. As such, 
the combination of both ST and ET (i.e., concurrent train-
ing [CT]) could be an effective strategy to improve diverse 
measures of physical fitness (e.g., muscle strength, muscle 
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power, cardiorespiratory endurance [CRE]) in older adults 
[22, 56, 57].

Previous descriptive reviews have recommended CT to 
promote health and counteract ageing-related functional 
declines in older populations [58, 59]. In general, there is 
strong evidence suggesting that in older adults, CT induces 
similar adaptations in muscle strength and muscle power 
compared with single-mode ST [57, 60, 61]. Likewise, it has 
been shown that CT in older adults leads to similar improve-
ments in CRE (i.e., peak oxygen uptake [ V̇O2peak ], maximal 
aerobic cycle ergometer workload [Wmax]) compared with 
single-mode ET [57, 62, 63]. Therefore, CT appears to be an 
effective approach allowing the development of both muscle 
strength and CRE in older adults. To the best of our knowl-
edge, there is only one systematic review with meta-analysis 
[64] addressing the effects of CT on measures of CRE (e.g., 
V̇O2peak ) and functional performance (i.e., Timed Up   & Go 
and 30-s chair stand) in adults aged over 50 years. However, 
this review presents several methodological shortcomings 
[64]. For instance, the authors included non-randomized tri-
als and studies with active control groups, biasing the iden-
tification of the true effects of CT. Additionally, studies that 
combined CT alongside other training methods (e.g., bal-
ance) were included. Moreover, the authors did not account 
for moderating factors such as age, sex or training variables. 
All these shortcomings highlight the need for future research 
to draw more robust conclusions. Furthermore, the effects 
of CT on measures of muscle strength, muscle power and 
balance in older adults are yet to be meta-analyzed.

Therefore, this systematic review and meta-analysis 
aimed (1) to examine the effects of CT on measures of physi-
cal fitness (i.e., muscle strength, power, balance and CRE) 
in healthy middle-aged and older adults aged between 50 
and 73 years and (2) to quantify the moderating effects of 
age, sex and training variables (i.e., intervention duration, 
training frequency, session duration, CT configuration, ST 
intensity, ET intensity) to help inform training prescription.

2  Methods

This systematic review and meta-analysis was conducted 
according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) statement [65, 66] 
and was registered in the International Prospective Register 
of Systematic Reviews (PROSPERO) database on 5 July 
2020 under the registration number “CRD42020188618”.

2.1  Literature Search

A systematic literature search was conducted using the 
electronic bibliographic databases PubMed, Web of Sci-
ence Core Collection, MEDLINE and Google Scholar with 

no date restrictions up to February 2022. Keywords were 
collected through experts’ opinions, literature review and 
controlled vocabulary (e.g., Medical Subject Headings 
[MeSH]). The search was limited to peer-reviewed, rand-
omized controlled studies written in English. A Boolean 
search syntax was applied using the operators “AND,” “OR” 
and “NOT.” The following syntax is an example of a Pub-
Med search: ("strength training" OR "resistance training" 
OR "endurance training" OR “aerobic training” OR “car-
diorespiratory endurance”) AND (training OR exercise OR 
concurrent*) AND (old OR elderly OR seniors or “older 
adults”) AND (“physical fitness” OR strength OR power OR 
endurance OR “aerobic capacity” OR “motor performance”) 
NOT (rehabilitation OR patients OR disease* OR pain OR 
injury OR "multiple sclerosis" OR cancer OR diabetes OR 
obes* OR dementia). Search results were screened by two 
authors (AM, LH). First, titles of all relevant articles were 
screened. Thereafter, abstracts and finally full texts were 
examined to confirm the inclusion. Reference lists of eli-
gible articles were manually searched to identify further 
potentially relevant publications. If a study did not fulfill all 
criteria, the respective exclusion criterion was documented 
and the study was not considered for further analysis. In the 
case of disagreement between the two authors, a third co-
author (HC) was consulted. An overview of the screening 
process is outlined in Fig. 1.

2.2  Eligibility Criteria

Following the PRISMA statement, a PICOS (participants, 
intervention, comparators, study outcomes, and study 
design) approach was used to rate studies for eligibility [65]. 
Inclusion criteria were applied as displayed in Table 1.

2.3  Data Extraction

Data from the included studies were extracted into a tem-
plate created with Microsoft Excel [67] by one author (LH) 
and verified by a second one (AM). The source (name of 
the first author and year of publication), participant charac-
teristics (age, sex, number), training variables (intervention 
duration, frequency, session duration, intensity) and main 
outcome(s) of the included studies were extracted. In the 
case of no agreement regarding data extraction, a third co-
author (HC) was consulted for clarification. To compute 
effect sizes, baseline and follow-up means and standard 
deviations (SDs) for measures of physical fitness of both 
the intervention and control groups were extracted. If the 
required data (i.e., means and SD) were not reported in the 
article or were presented in an inappropriate format for data 
extraction, the corresponding authors were contacted and 
kindly asked to provide the missing values. If the relevant 
data were not available, the respective study was excluded. 
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In the case of multiple tests being used for the same measure 
of physical fitness, protocols with superior criterion validity 
[68] were selected. The extracted data were coded as out-
lined in Table 2. The characteristics of the included studies 
are presented in Table 3.

2.4  Methodological Quality and Risk of Bias

We used the Physiotherapy Evidence Database (PEDro) 
scale to appraise the methodological quality and to esti-
mate the potential risk of bias of the eligible studies. The 
internal study validity and the presence of statistical repli-
cable information were rated on a scale from 0 (high risk of 
bias) to 10 (low risk of bias), with a score ≥ 6 representing 
a threshold for studies with low risk of bias [69]. Further, 
contour-enhanced funnel plots were generated by plotting 
the effect sizes (Hedges’ g) of each study against the respec-
tive standard error. To quantify the funnel plot asymmetry 
and to estimate the risk of publication bias, Egger’s test of 
the intercept was used [70]. Results of the risk of bias assess-
ment are displayed in Table 4 and Fig. 2.

2.5  Statistical Analyses

To calculate the effects of CT on measures of physical fit-
ness, weighted between-study standardized mean differences 
(SMDs) were calculated using the equation SMD =

m1−m2

spooled

 , 

with m1 representing the mean pre/post-test value of the 
intervention group, m2 the mean pre/post-test value of the 
control group and spooled the pooled SD. Following Hedges 
and Olkin [71], SMDs were adjusted for the respective sam-
ple size using the factor 1 − 3

4N−9
 , with N representing the 

total sample size. If there was more than one intervention 
group, the control group was divided proportionally by the 
number of experimental groups to facilitate comparison 
between all participants [68]. The SMD values were pre-
sented alongside 95% confidence intervals (CIs), and effects 
were interpreted as tr ivial (SMD < 0.20), small 
(0.2 ≤ SMD < 0.50), moderate (0.50 ≤ SMD < 0.80) or large 
(SMD ≥ 0.80)  [72]. Of note, reductions in the measures of 
balance (i.e., center of pressure distance or area, timed-up-
and-go performance) were reported as positive values for 
better readability. To estimate the overall effects of CT on 
measures of physical fitness, we pooled effect sizes using a 

Fig. 1  PRISMA flow chart illustrating the different phases of the search and study selection. PRISMA Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses
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random-effects pooling model approach [73]. We used this 
approach because we assumed that our data derived from a 
heterogeneous population and interventions vary in certain 
characteristics. We estimated the variance of the distribution 
of true effect sizes denoted by τ2, choosing the Sidik-Jonk-
man estimator [74] with Hartung-Knapp adjustment. This 
method has been shown to produce more robust estimates 
and outperforms the often-used DerSimonian-Laird estima-
tor [75], especially when the number of studies is small and 
there is substantial heterogeneity [74, 76]. At least three 
studies had to be included to pool the data and calculate the 
main effects of CT on each measure of physical fitness [68]. 
We assessed the level of between-study heterogeneity using 
Higgin’s and Thompson’s I2 [77], which displays the amount 
of variability not caused by sampling error [76]. The level 
of between-study heterogeneity was interpreted as low 
(I2 < 25%), moderate (25% ≤ I2 < 50%), high (50% ≤ I2 < 75%) 
or considerably high (I2 ≥ 75%) [68, 78]. Further, a multi-
variate random-effects meta-regression was conducted to 
verify if any of the training variables (i.e., intervention dura-
tion, training frequency, session duration, training order, ST 
intensity, ET intensity) predicted the effects of CT on 

measures of physical fitness. As recommended, we only 
computed meta-regression for covariates denoted by at least 
ten studies [68, 73]. The level of statistical significance was 
set at p ≤ 0.05. All analyses were conducted using R (v. 
3.6.0) [79], using the packages “meta” [80] and “metaphor” 
[81].

2.6  Subgroup and Single‑Factor Analyses

Subgroup analyses were computed for the factors sex (male 
vs. female) and age (≤ 65 vs. > 65). In addition, single-factor 
analyses for training variables were conducted. For that, we 
analyzed the effects of training frequency (i.e., 2 vs. 3 vs. 
4 sessions per week), session duration (i.e., > 30–60 min 
vs. > 60–90 min), total intervention duration (i.e., 12 vs. 
21 weeks), CT configuration (i.e., intra-session ST prior 
to ET vs. intra-session ET prior to ST vs. separate days) 
and training intensity for ET (i.e., low vs. moderate-to-near 
maximal). According to the American College of Sports 
Medicine [8], ET intensities below 70% of the V̇O2peak , 
below 70% of the maximum heart rate  (HRmax) or below 
the anaerobic threshold were interpreted as “low,” while 

Table 1  Study selection

ET endurance training, ST strength training

Category Inclusion criteria Exclusion criteria

Population Healthy adults aged ≥ 50 years, irrespective of sex and level of 
physical activity

Individuals with adverse health events (e.g., diabetes, sarcope-
nia, asthma, hypertension) or outside the preferred age range

Intervention Concurrent training interventions (i.e., a combination of ST and 
ET)

Single-mode training interventions (e.g., single-mode ST or ET)

Comparator Passive control group Absence of a control group, active controls
Outcome Measures of physical fitness (i.e., muscle strength, cardiorespi-

ratory endurance, muscle power, balance)
Lack of baseline and/or follow-up data

Study design Randomized controlled trials Non-randomized controlled trials

Table 2  Study coding

V̇O2max maximal oxygen uptake, V̇O2peak peak oxygen uptake
*  Balance was used as an umbrella term to describe both static and dynamic balance

Outcome categories Measure

Muscle strength Maximal isokinetic torque of the knee extensors
Maximal isometric force of knee extensors
One-repetition maximum of knee extensors

Muscle power Muscle power of knee extensors
Rate of force development of knee extensors
Countermovement jump height
Squat jump height
Squat jump power

Cardiorespiratory endurance Maximal oxygen uptake (V̇O2peak or V̇O
2max

)
Maximal aerobic workload

Balance* Center of pressure surface area or distance
Timed-up-and-go test
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intensities above 70% V̇O2peak , 70%  HRmax or the anaerobic 
threshold were considered “moderate-to-near maximal” [8].

3  Results

3.1  Study Selection

Figure 1 illustrates the systematic search process. The search 
strategy yielded a total of 1048 hits. The reference list search 
of the included studies provided 34 further studies. After 
screening study titles and eliminating duplicates, 986 poten-
tially eligible studies were identified. Following the abstract 
examination, 75 studies remained. After reviewing the full 
texts, 53 studies were excluded. Out of the remaining 22 
studies, seven studies were further excluded due to unavail-
able data [57, 62, 82, 83] or because of reporting outcomes 
and datasets [61, 84, 85], which were already presented in 
other studies [60, 86, 87]. Finally, 15 studies were eligible 
for inclusion in this meta-analysis (Table 3).

3.2  Description of the Included Studies

The 15 eligible studies included an overall sample size 
of 566 participants, with a mean age ranging from 50 to 
73.5 years (mean 61.0 ± 5.9 years). Out of the studies that 
reported sex distribution, 188 were females and 363 males, 
with 332 participants (228 males, 104 females) receiving 
the training intervention and 219 (135 males, 84 females) 
serving as controls. The characteristics of the included stud-
ies are summarized in Table 3. Twelve out of the 15 studies 
provided data with respect to the effects of CT on muscle 
strength [63, 86–97]. Five studies investigated the effects 
of CT on muscle power [60, 63, 92, 96, 98], nine studies 
on CRE [63, 86, 87, 89, 92–94, 96, 97] and four studies 
on balance [95–98]. Intervention duration ranged from 8 
to 21 weeks, and training frequency varied from two to 
four sessions per week, with CT sessions lasting from 30 to 
90 min. A more thorough description of the study charac-
teristics is provided in Table 3.

3.3  Methodological Quality and Risk of Bias 
Assessment

The median PEDro score across the included studies was 
5 (range 3–6), with only two studies [92, 95] reaching the 
score of 6 (Table 4). Results from the risk of bias assessment 
using funnel plot asymmetry are displayed in Fig. 2. Egger’s 
test of the intercept provided no evidence for funnel plot 
asymmetry and potential publication bias (p > 0.05).
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Table 4  Study quality

PEDro Physiotherapy Evidence Database
PEDro scale items: (1) eligibility criteria were specified; (2) participants were randomly allocated to 
groups (in a crossover study, participants were randomly allocated an order in which treatments were 
received); (3) allocation was concealed; (4) the groups were similar at baseline regarding the most impor-
tant prognostic indicators; (5) there was blinding of all participants; (6) there was blinding of all therapists 
who administered the therapy; (7) there was blinding of all assessors who measured at least one key out-
come; (8) measures of at least one key outcome were obtained from more than 85% of the participants 
initially allocated to groups; (9) all participants for whom outcome measures were available received the 
treatment or control condition as allocated or, where this was not the case, data for at least one key outcome 
were analyzed by “intention to treat”; (10) the results of between-group statistical comparisons are reported 
for at least one key outcome; (11) the study provides both point measures and measures of variability for at 
least one key outcome

Studies PEDRo Scale Items* PEDro Score

1 2 3 4 5 6 7 8 9 10 11

Abbasi et al. [88] 1 1 0 1 0 0 0 0 0 1 1 4
Amaro-Gahete et al. [89] 1 1 0 1 0 0 1 0 0 1 1 5
Campos et al. [90] 1 1 0 1 0 0 0 1 0 1 1 5
Figueroa et al. [91] 1 1 0 1 0 0 0 1 0 1 1 5
Haykowsky et al. [92] 0 1 0 1 0 0 1 1 0 1 1 6
Holviala et al. [63] 1 1 0 1 0 0 0 1 0 1 1 5
Holviala et al. [98] 1 1 0 1 0 0 0 1 0 1 1 5
Karavirta et al. [60] 1 1 0 1 0 0 0 1 0 1 0 4
Karavirta et al. [86] 1 1 0 1 0 0 0 0 0 1 0 3
Karavirta et al. [87] 1 1 0 1 0 0 0 1 0 1 1 5
Libardi et al. [93] 1 1 0 1 0 0 0 0 0 1 0 3
Takeshima et al. [94] 0 1 0 1 0 0 1 0 0 1 1 5
Timmons et al. [95] 1 1 0 1 0 0 1 1 0 1 1 6
Wilhelm et al. [96] 1 0 0 1 0 0 0 0 0 1 1 3
Yoon et al. [97] 0 1 0 1 0 0 0 0 0 1 1 4

Median score = 5

Fig. 2  Funnel plot: risk of bias assessment
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3.4  Main Effects

Figures 3, 4, 5 and 6 display the overall effects of CT on 
measures of physical fitness in middle-aged and older 
adults. CT induced moderate effects on muscle strength 
(SMD = 0.74 [95% CI 0.37–1.11]; p < 0.001; I2 = 49.4%) 
(Fig.  3) and power (SMD = 0.50 [95% CI 0.04–0.96]; 
p = 0.037; I2 = 0.0%) (Fig. 5). Additionally, a small effect 
was observed for CRE (SMD = 0.48 [95% CI 0.31–0.64]; 
p < 0.001; I2 = 0.0%) (Fig. 4). However, no significant effects 
were detected for balance (SMD = 0.33 [95% CI − 0.31 to 
0.97]; p = 0.221; I2 = 16.5%) (Fig. 6).

3.5  Results of Subgroup Analyses

The results of the subgroup analyses are displayed in 
Table 5. For measures of muscle strength, CT induced mod-
erate effects in middle-aged and older adults aged ≤ 65 years 
(SMD = 0.60 [95% CI 0.19–1.01]; p < 0.05; I2 = 29.7%), 
with a large effect in adults aged > 65 years (SMD = 1.04 
[95% CI 0.07–2.01]; p < 0.05; I2 = 68.4%). Regarding sex, 
CT resulted in large effects in females (SMD = 1.05 [95% 
CI 0.13–1.98]; p < 0.05; I2 = 71.7%), with small effects in 
males (SMD = 0.38 [95% CI 0.18–0.59]; p < 0.05; I2 = 0.0%). 
However, no statistically significant difference between sub-
groups was detected (p > 0.05).

For muscle power, no effects were observed in adults 
aged ≤ 65  years (SMD = 0.36 [95% CI − 0.19 to 0.91]; 
p > 0.05; I2 = 0.0%) and > 65  years (SMD = 0.97 [95% 
CI − 2.29 to 4.22]; p > 0.05; I2 = 0.0%). In terms of CRE, 
CT induced moderate effects in adults aged ≤ 65  years 
(SMD = 0.52 [95% CI 0.35–0.69]; p < 0.05; I2 = 0.0%), 
with no effects in adults aged > 65 years (SMD = 0.39 [95% 
CI − 0.27 to 1.05]; p > 0.05; I2 = 0.0%). Additionally, results 
showed moderate effects in females (SMD = 0.55 [95% CI 
0.02–1.08]; p < 0.05; I2 = 0.0%) and small effects in males 
(SMD = 0.45 [95% CI 0.19–0.71]; p < 0.05; I2 = 0.0%). 
However, no statistically significant differences between 
subgroups were noted (p > 0.05).

With respect to balance, trivial effects were observed in 
adults aged ≤ 65 years (SMD = 0.11 [95% CI 0.10–0.11]; 
p < 0.05; I2 = 0.0%), with no effects in adults aged > 65 years 
(SMD = 0.54 [95% CI − 1.21 to 2.29]; p > 0.05; I2 = 46.0%). 
No significant difference between subgroups was noted 
(p > 0.05).

3.6  Results of Single Training Variables Analyses

All results of single training variables analyses are displayed 
in Table 5. For muscle strength, larger effects of 12 weeks of 
CT (SMD = 0.87 [95% CI 0.40–1.35]; p < 0.05, I2 = 55.3%) 
were observed compared with 21 weeks (SMD = 0.47 [95% 

Fig. 3  Forest plot for the overall effect of concurrent training on measures of muscle strength. CI confidence interval, CON control, df degrees of 
freedom, INT intervention, IV inverse variance, PI prediction interval, SE standard error of the effect size, Std. standard, TE calculated effect size
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CI 0.22–0.72]; p < 0.05, I2 = 0.0%). Additionally, results indi-
cated larger effects of three training sessions (SMD = 0.91 
[95% CI 0.15–1.67]; p < 0.05; I2 = 71.5%) compared with 
four sessions per week (SMD = 0.55 [95% CI 0.25–0.85]; 
p < 0.05, I2 = 0.0%). For session duration, > 30–60  min 
resulted in larger effects (SMD = 0.99 [95% CI 0.41–1.57]; 
p < 0.05; I2 = 62.0%) compared with > 60–90  min 
(SMD = 0.40 [95% CI 0.19–0.61]; p < 0.05; I2 = 0.0%). Simi-
larly, ET of moderate-to-near maximal intensities resulted in 
moderate effects (SMD = 0.64 [95% CI 0.42–0.87]; p < 0.05; 
I2 = 0.0%), with no observed effects for low intensities 
(p > 0.05). In terms of training configuration, intra-session 
ST before ET produced larger effects (SMD = 1.00 [95% CI 

0.02–1.97]; p < 0.05; I2 = 63.3%) compared with ST and ET 
applied on separate days (SMD = 0.55 [95% CI 0.25–0.85]; 
I2 = 0.0%). No effects were observed when ET was per-
formed prior to ST within the same session (p > 0.05). There 
was no statistically significant difference between all training 
variables (p > 0.05).

Regarding CRE, larger effects were observed follow-
ing 21 weeks of CT (SMD = 0.62 [95% CI 0.13–1.11]; 
p < 0.05; I2 = 0.0%) compared with 12 weeks (SMD = 0.40 
[95% CI 0.19–0.61]; p < 0.05; I2 = 0.0%). In addition, four 
sessions per week induced moderate effects (SMD = 0.58 
[95% CI 0.34–0.81]; p < 0.05; I2 = 0.0%), with no effects 
of three or two sessions per week (p > 0.05). For session 

Fig. 4  Forest plot for the overall effect of concurrent training on 
measures of cardiorespiratory endurance. CI confidence interval, 
CON control, df degrees of freedom, INT intervention, IV inverse var-

iance, PI prediction interval, SE standard error of the effect size, Std. 
standard, TE calculated effect size

Fig. 5  Forest plot for the overall effect of concurrent training on measures of muscle power. CI confidence interval, CON control, df degrees of 
freedom, INT intervention, IV inverse variance, PI prediction interval, SE standard error of the effect size, Std. standard, TE calculated effect size
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duration, > 60–90 min resulted in larger effects (SMD = 0.61 
[95% CI 0.39–0.82]; p < 0.05; I2 = 0.0%) compared 
with > 30–60  min (SMD = 0.34 [95% CI 0.04–0.65]; 
p < 0.05; I2 = 0.0%). ET of moderate-to-near maximal 
intensities induced small effects (SMD = 0.49 [95% CI 
0.30–0.68]; p < 0.05; I2 = 0.0%), while low intensities 
resulted in no effects (p > 0.05). With respect to training 
configuration, larger effects were observed when ET and 
ST were conducted on separate days (SMD = 0.58 [95% CI 
0.34–0.81]; p < 0.05; I2 = 0.0%) compared with intra-session 
ET prior to ST (SMD = 0.49 [95% CI 0.21–0.77]; p < 0.05; 
I2 = 0.0%). No effects were noted following intra-session ST 
prior to ET (p > 0.05). The difference between all training 
variables was not statistically significant (p > 0.05).

For muscle power, results showed that 12 weeks of CT 
induced large effects (SMD = 0.88 [95% CI 0.19–1.58]; 
p < 0.05; I2 = 0.0%), while 21 weeks of training resulted in 
no effects (p > 0.05). Of note, the difference between 12 and 
21 weeks of training was significant (p = 0.016). Regard-
ing session duration, > 30–60 min induced large effects 
(SMD = 0.88 [95% CI 0.19–1.58]; p < 0.05; I2 = 0.0%), with 
no effects of > 60–90 min (p > 0.05). The difference between 
subgroups was significant (p = 0.016).

3.7  Results of Meta‑Regression Analyses

We computed meta-regression for separate training variables 
(i.e., intervention duration, frequency, CT configuration, 
session duration, ST intensity, ET intensity) for measures 
of muscle strength only. Results indicated that none of the 
training variables predicted the effects of CT on muscle 
strength (R2 = 0–3.76%; p > 0.05).

4  Discussion

The main findings of this study indicated that CT resulted 
in small-to-moderate effects on measures of physical fitness 
(i.e., muscle strength, power, and CRE) in middle aged and 
older adults aged between 50 and 73 years, irrespective of 
sex. Additionally, the effects of CT on measures of muscle 
strength and CRE were larger in females compared with 
males. Results of independent single training factor analy-
sis for different training variables indicated that the largest 
effects on muscle strength were observed after 12 weeks of 
training,  > 30–60 min per session,  three sessions per week, 
higher ET intensities and after intra-session ST prior to ET. 
For CRE, the largest effects were noted after 21 weeks of 
training, four sessions per week,  > 60–90 min per session,  
higher ET intensities and after separate ET and ST sessions. 
Regarding muscle power, the largest effects were observed 
after 12 weeks of training and with > 30–60 min per session.

4.1  Main Effects

Our results indicate moderate effects of CT on measures 
of muscle strength and power and small effects on CRE, in 
agreement with the literature. Several studies indicated that 
CT produced positive effects on muscle strength [99–101], 
muscle power [100, 102, 103] and CRE [61, 92, 98] in 
healthy older adults, regardless of sex. For instance, Wil-
helm et al. [88] investigated the effects of 12 weeks (two 
sessions per week) of CT in 66-year-old men and reported 
improved muscle strength (i.e., one-repetition-maxi-
mum [1RM]; ∆14%), CRE (i.e., V̇O2peak , ∆7%) and muscle 
power (i.e., ∆22%). These effects were observed irrespec-
tive of the applied exercise sequence (i.e., intra-session ST 
prior to ET vs. intra-session ET prior to ST). This is sup-
ported by Libardi et al. [85], who compared the effects of 
12 weeks (two sessions per week) of CT with or without 
blood flow restriction on CRE, muscle strength and mass in 

Fig. 6  Forest plot for the overall effect of concurrent training on measures of balance. CI confidence interval, CON control, df degrees of free-
dom, INT intervention, IV inverse variance, PI prediction interval, SE standard error of the effect size, Std. standard, TE calculated effect size
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healthy older adults aged 65 years. The authors found that 
both methods were effective in improving muscle strength 
(i.e., 1RM; ∆38%) and CRE (i.e., V̇O2peak ; ∆9%). However, 
we did not find any significant effect of CT on measures of 
balance. This is not consistent with the general trend in the 
literature. Earlier studies reported increased balance perfor-
mance following single-mode strength [104], single-mode 
aerobic [105] and combined strength and aerobic training 
[106, 107]. Of note, only four studies were included that 
measured balance, indicating that this specific outcome 
should be considered with caution. Nevertheless, the pre-
sent finding appears to be partly due to an insufficient train-
ing stimulus and/or lack of training specificity across the 
included studies. Results of a systematic review with meta-
analysis indicated that balance training protocols are effec-
tive to improve balance performance in older adults [108]. 
Additionally, high-certainty evidence demonstrates that 
balance exercises mitigate the rate of falls in older adults 
[10]. As such, to improve balance performance and reduce 
the rate/risk of falls in older adults, a balance training pro-
tocol alongside CT seems to be needed. Taken together, 
CT is an effective method to enhance measures of physi-
cal fitness (i.e., muscle strength, power, balance and CRE) 
in healthy middle-aged and older adults aged between 50 
and 73 years. However, CT appears not to be effective for 
stimulating improvements in balance performance. This 
implies that balance exercises in addition to CT seem to be 
a plausible option to induce gains in balance performance 
in older adults.

4.2  Subgroup Analyses

Based on our results, moderate and large effects of CT on 
muscle strength were noted in middle-aged and older adults 
(i.e., individuals aged ≤ 65 years and > 65 years, respec-
tively). For CRE, only individuals aged ≤ 65 years displayed 
moderate improvements following CT. The effects of CT 
on cardiovascular endurance in individuals aged > 65 years 
were small and statistically non-significant. The latter find-
ing should be considered with caution given the few studies 
included [84, 86, 88, 89] and the large heterogeneity of the 
effects across them (SMD = 0.39 [− 0.27 to 1.05]). Take-
shima and colleagues [86] reported significant improvements 
in measures of CRE (e.g., V̇O2peak ) and muscle strength (e.g., 
knee flexors) in healthy older adults aged 68 years follow-
ing 12 weeks of CT (three sessions per week). Likewise, 
Haykowsky et al. [84] compared the effects of 12 weeks 
(three sessions per week) of CT, ET and ST versus a control 
group on CRE (i.e., V̇O2peak ) and muscle strength (i.e., 1RM 
leg press and chest press) in healthy older women aged a 
mean 68 years. The authors found that CT is as effective 
as ET and ST alone to improve CRE and muscle strength.

In terms of sex, our findings indicated larger effects of 
CT on measures of muscle strength and CRE in females 
compared with males. However, the difference between 
subgroups was not statistically significant. Similar to our 
findings, larger increases in muscle strength and cardiovas-
cular endurance in older females compared with older males 
were observed in previous studies [109, 110]. In a systematic 
review with meta-analysis of sex differences in adaptations 
following ST in older adults, Jones et al. [109] revealed 
larger relative improvements in lower limb muscle strength 
in females compared with males. However, when gains are 
expressed in absolute terms, older males showed larger 
improvements in upper and lower limb strength than older 
females. This indicates that the interpretation of sex-related 
adaptation differences is dependent on the way the results 
are presented (i.e., absolute vs. relative). Of note, despite 
the absolute expression of older females’ outcomes in this 
study, we were able to observe larger gains compared with 
older males. Similarly, a relatively higher increase in cardio-
vascular endurance (i.e., maximal oxygen uptake [ V̇O2max ]) 
was reported in older females (∆22%) compared with older 
males (∆19%) following ET [110]. Multiple factors could 
underpin the difference in the magnitude of response to 
training between males and females, among which is train-
ing status. However, we were not able to gain consistent 
information about participants’ training status due to the lack 
of relevant details in the included studies. It is worth noting 
though that none of the included studies directly contrasted 
the effects of CT between males and females, highlighting 
a gap in the literature. Because our findings are based on an 
indirect comparison between studies, they have to be inter-
preted with caution. Future studies that directly contrast the 
effects of CT between males and females and across different 
older adults’ age groups are needed.

4.3  Results of Single Training Variable Analyses

The largest effects of CT on muscle strength and power 
were observed after 12 weeks. However, for CRE, the larg-
est improvements were noted after 21 weeks of training. 
This indicates different time-course-specific adaptations 
between muscle strength/power and CRE, being shorter in 
the former compared with the latter. Karavirta et al. [79] 
investigated the effects of 21 weeks of CT on measures of 
CRE (i.e., V̇O2max ) and muscle strength (i.e., knee extension) 
in healthy untrained men aged a mean 54 years. The authors 
reported marked improvement in CRE after 21 weeks of 
training. However, it is worth mentioning that the improve-
ments in V ̇O2max followed a gradual pattern throughout 
the entire program. More specifically, the authors reported 
that CT lasting > 12 weeks induced larger gains than CT 
lasting ≤ 12 weeks. Additionally, our results indicated that 
longer single CT session durations (i.e., > 60–90  min) 
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produced the largest enhancements in CRE. In contrast, the 
largest effects on muscle strength and power were observed 
after shorter session durations (i.e., > 30–60 min). Taken 
together, unlike muscle strength and power, it seems that 
longer duration of total training as well as of single training 
sessions is key to stimulating substantial improvements in 
CRE in middle-aged and older adults.

With respect to CT frequency, the largest effects on mus-
cle strength were observed after three sessions per week. For 
CRE, results indicated that four sessions per week induced 
the largest adaptations. Of note, the frequency of training has 
an effect on the weekly distribution of intervention duration 
[111]. Therefore, this particular finding is consistent with the 
outcomes related to total training duration and single-session 
duration. More specifically, our analyses indicated that more 
frequent exposure to CT with its potential effects on the 
weekly distribution of intervention duration benefits CRE 
more than muscle strength. Ferrari et al. [112] examined the 
effects of 10 weeks of different weekly CT frequencies (i.e., 
two vs. three sessions) on CRE in previously trained, healthy 
older men aged 65 years. The authors found similar effects 
on V̇O2peak following both training frequencies. However, 
for maximum aerobic workload, significant improvements 
were reported only after three CT sessions per week. Taken 
together, it seems that CRE and muscle strength are differ-
entially influenced by CT frequency, suggesting that higher 
frequency benefits the former more than the latter.

Regarding training intensity, our findings indicate that 
moderate-to-near maximal ET intensities benefit both mus-
cle strength and CRE more than low intensities do. This 
implies that to optimize CT-related strength and cardiorespi-
ratory adaptations, higher ET intensities should be favored. 
It has previously been shown that higher ET intensities 
(≥ lactate threshold intensity) resulted in larger CRE gains in 
young adults aged between 18 and 35 years compared with 
lower intensities [113]. In older adults, larger CRE adapta-
tions following higher compared with lower ET intensities 
were reported [81]. Fyfe et al. [114] investigated the effects 
of two different ET intensities (i.e., moderate vs. high inten-
sity) prior to ST on the mechanistic target of rapamycin com-
plex 1 (mTORC1) signaling in healthy young adults aged a 
mean 27 years. The authors found that neither of the applied 
intensities attenuated the mTORC1 signaling pathway. They 
also showed that high-intensity ET may provide a greater 
anabolic stimulus compared to moderate ET intensities, sug-
gesting it is a facilitator for strength adaptations. On the 
other hand, it has been argued that higher intensities of ET 
can lead to metabolic perturbation in type II muscle fibers 
(e.g., glycogen depletion), reducing anabolic responses to ST 
[115, 116]. Clearly, the outcomes of the literature as to ET 
intensities and their effects on the underpinning mechanisms 
of muscle strength adaptation are heterogeneous, precluding 

any consistent conclusion. This is why future studies are 
needed to further clarify this aspect.

Exercise configuration during CT is another aspect 
that requires attention as it affects the magnitude of 
muscle strength [117, 118] and CRE [119] adaptations. 
Currently, there is no consensus concerning the most 
effective exercise configuration [119]. However, CT con-
figuration recommendations are mainly based on the pro-
gram priorities/desired adaptation (i.e., muscle strength 
or CRE). Our findings indicated a larger increase in mus-
cle strength when ST preceded ET. As such, to optimize 
muscle strength adaptations, intra-session ST prior to 
ET should be favored. This is in agreement with the lit-
erature [117–119]. Cadore et al. [120, 121] reported that 
performing ST prior to ET is the optimal sequence to 
induce muscle strength adaptations in older adults aged 
65 years. Eddens et  al. [117] conducted a systematic 
review with meta-analysis and provided evidence for the 
favorable effects of intra-session ST prior to ET on lower 
limb muscle strength adaptations in healthy adults aged 
between 18 and 65 years. This same exercise sequence 
was supported by the meta-analytical study of Murlasits 
et al. [118]. Of note, our findings indicated no significant 
effects on muscle strength when ET was applied prior to 
ST. This seems to be due to ET-inducing residual fatigue, 
which may hinder training-induced muscle strength gains 
[120]. For CRE, while intra-session ET prior to ST pro-
duced small effects, ET and ST applied on separate days 
resulted in moderate effects, suggesting favorable effects 
of the latter. Of note, intra-session ST prior to ET pro-
duced no effects on CRE. Generally, it has been reported 
that the sequence ET prior to ST is the better choice 
for developing maximal aerobic power [119]. Addition-
ally, separation of sessions has been suggested by ear-
lier studies as a useful strategy to optimize CT adapta-
tions [118]. However, an earlier meta-analysis indicated 
that intra-session CT sequence has no impact on CRE 
[118]. Of note, the meta-analysis of Murlasits et al. [118] 
included trials that considered both sexes and various age 
groups (i.e., from 14 to 66 years), with only four stud-
ies conducted with older adults. The same applies to the 
meta-analysis of Eddens et al. [117], where two studies 
only out of the ten included addressed older adults. Our 
meta-analysis, however, attempted to overcome the pre-
vious limitations by focusing on middle-aged and older 
adults only. Overall, practitioners are advised to manipu-
late exercise configuration during CT according to the 
desired adaptation. Specifically, ST prior to ET appears 
to be an adequate sequence to optimize muscle strength 
in middle-aged and older adults. For larger CRE gains, 
ET and ST on separate days should be prioritized over 
intra-session ET prior to ST.
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4.4  Limitations and Future Research Perspectives

Our results were based on studies that investigated the 
effects of CT on measures of physical fitness (i.e., muscle 
strength and CRE), with no emphasis on the mechanistic 
aspects (e.g., key pathways of muscle protein synthesis). Of 
note, there is a dearth of data in the current literature on the 
underlying physiological mechanisms. Further, while the 
main outcomes of the present analysis are relevant from a 
practical standpoint, it would have also been interesting to 
meta-analyze the effects of CT versus single-mode ST or ET 
in middle-aged and older adults. This should be addressed 
in the future. Additionally, some of the addressed outcome 
measures displayed moderate-to-substantial heterogeneity. 
Indeed, we accounted for the amount of heterogeneity by 
applying a random-effects model and constantly reporting I2 
values of the respective outcome. Also, moderator analyses 
represent an additional useful tool to explore heterogene-
ity across different subgroups or training variables to esti-
mate effect specific to the respective group or variable [68, 
122–124]. However, we should acknowledge that the small 
number of studies included in subgroup analyses often pro-
vides insufficient statistical power, inflating the risk of type 
II error rate [68, 125]. Moreover, moderator analyses were 
computed independently, ignoring any potential interaction 
between variables. Therefore, the results of moderator analy-
ses must be considered with caution, though we do consider 
the current analyses as an appropriate starting point to estab-
lish effective dose–response relationships of the effects of 
CT on measures of physical fitness in middle-aged and older 
adults. Finally, the PEDro score of most of the included stud-
ies is below the cut-off value of 6, reflecting low methodo-
logical quality and high risk of bias (Table 4). It is, however, 
worth noting that blinding of participants and investigators 
is not feasible in exercise interventions. Also, blinding of 
assessors is rarely considered. In this sense, none of the 
included studies considered the blinding of participants or 
investigators, while only four of them considered blinding 
of assessors, increasing the risk of bias in the reported out-
comes. Therefore, future studies with higher methodological 
quality are warranted.

5  Conclusion

CT is an effective method to improve measures of physical 
fitness (i.e., muscle strength, power,  and CRE) in healthy 
adults aged between 50 and 73 years, irrespective of sex. 
Therefore, CT is recommended for middle-aged and older 
adults to maintain/improve functional capacities and pro-
mote health. Additionally, results of independent single 
training factor analysis indicated that 12 weeks of train-
ing, > 30–60 min per session, three sessions per week, higher 

ET intensities and intra-session ST prior to ET produced 
the largest effects on muscle strength. For muscle power, 
the largest effects were observed after 12 weeks of training 
and > 30–60 min per session. Regarding CRE, the largest 
effects were observed after 21 weeks of training, four ses-
sions per week, > 60–90 min per session, higher ET intensi-
ties and after separate ET and ST sessions. Practitioners can 
use CT to improve physical fitness (i.e., muscle strength, 
power, and CRE) in middle-aged and older adults. Moreo-
ver, results of independent single training factor analysis 
can serve to guide CT prescription in middle-aged and older 
adults.
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