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Abstract
Blood test data were traditionally confined to the clinic for diagnostic purposes, but are now becoming more routinely used 
in many professional and elite high-performance settings as a physiological profiling and monitoring tool. A wealth of infor-
mation based on robust research evidence can be gleaned from blood tests, including: the identification of iron, vitamin or 
energy deficiency; the identification of oxidative stress and inflammation; and the status of red blood cell populations. Serial 
blood test data can be used to monitor athletes and make inferences about the efficacy of training interventions, nutritional 
strategies or indeed the capacity to tolerate training load. Via a profiling and monitoring approach, blood biomarker meas-
urement combined with contextual data has the potential to help athletes avoid injury and illness via adjustments to diet, 
training load and recovery strategies. Since wide inter-individual variability exists in many biomarkers, clinical population-
based reference data can be of limited value in athletes, and statistical methods for longitudinal data are required to identify 
meaningful changes within an athlete. Data quality is often compromised by poor pre-analytic controls in sport settings. The 
biotechnology industry is rapidly evolving, providing new technologies and methods, some of which may be well suited to 
athlete applications in the future. This review provides current perspectives, limitations and recommendations for sports 
science and sports medicine practitioners using blood profiling and monitoring for nutrition and performance purposes.
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1  Introduction

Many professional and Olympic-level athlete settings 
comprise comprehensive sports medicine and sports sci-
ence support services, with an objective of: (1) achieving 
the highest possible level of performance with the lowest 
number of days lost to injury or illness [1], and (2) a duty 
of care to protect athletes from long-term negative health 

consequences of their sport [2]. A wealth of measurable 
variables of task-specific performance, training load, phys-
iology, health and wellness exist to facilitate this, which 
can be used to guide coaches and athletes. In many cases 
this now includes blood profiling and monitoring, yet there 
has been no recent review of the practical application of 
blood profiling and monitoring in sport aimed at this inter-
disciplinary team. Here, we define ‘blood profiling’ as any 
blood testing where the data are applied beyond a medical 
diagnostic or anti-doping purpose. This includes the use of 
biomarkers to assess the efficacy of training interventions, 
inform nutritional strategies, and assess the capacity to tol-
erate training load. We define ‘blood monitoring’ as tests 
that are conducted frequently (e.g. once per micro-cycle) in 
order to describe the recovery status of the athlete.

There are a host of positive and negative outcome indica-
tors that can be found within the blood that may corroborate 
or contrast with subjective athlete reports of performance 
readiness and symptoms, or other objective test data. These 
can help the practitioner decide whether an athlete is likely 
to be able to sustain or adapt to training/high performance or 
to assess the efficacy of an intervention. For example, a high 
testosterone-to-cortisol ratio suggests greater anabolic drive 
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and has been strongly associated with positive training and 
performance outcomes [3]; chronically low energy availabil-
ity (evident in a reduction in triiodothyronine as an example) 
reduces the ability to adapt to training [4], while also being 
a risk factor for bone stress injuries [5]; low iron status com-
promises the erythropoietic effects of altitude linked to endur-
ance performance [6]; and vitamin D deficiency is known to 
compromise immunity, muscle repair and bone health [7, 8].

The aim of this review is to provide a useful practical 
guide to blood biomarker profiling and monitoring; it is not 
intended to be an exhaustive summary of the literature. It 
is beyond the scope of the present review to discuss sam-
pling of other body fluids such as saliva, urine and tear fluid 
[9], or to discuss advanced techniques emerging in sports 
science such as metabolomics and ‘athleticogenomics’ 
[10–12]. However, this is not intended to diminish their 
future importance.

Importantly, there are a number of considerations that 
are often overlooked in the application of blood biomarker 
measurement in sport, including: (1) consideration given to 
what is ‘normal’ and what constitutes a meaningful devia-
tion from normal for each individual athlete; (2) pre-testing 
considerations such as the time of day, posture, fasting/
hydration status, transportation and storage of samples, the 
effects of recent training sessions (i.e. timeline for the res-
toration of homeostasis for each analyte); (3) sports-specific 
expertise present to interpret and address actions arising 
from testing; (4) appreciation of plasma volume shifts where 
the biomarker is volumetric in nature, e.g. haemoglobin.

1.1 � Screening Versus Monitoring

Depending on the frequency of measurement, essentially 
two approaches can be adopted. The first is screening, i.e. 

infrequent measurement of selected biomarkers (several 
months apart) to identify deficiencies or excesses; the sec-
ond is monitoring, i.e. high-frequency measurement of bio-
markers (days or weeks apart) in order to assess ongoing 
adaptation or recovery (readiness) from disturbed homeosta-
sis. Once enough data have accumulated, sport- (and posi-
tion-) and athlete-specific reference ranges can be applied. 
In order to optimise the timing and application of these two 
approaches, detailed knowledge of the athlete’s training and 
competition programme is required.

While each biomarker provides information about one 
or more physiological systems, the insights gained are nar-
row if only a single data point is available. Depending on 
the sport, sex, and the specific context, an appropriate bio-
marker or panel of biomarkers can be selected and meas-
ured at a suitable frequency. The success of a biomarker 
screening/monitoring programme depends on a number of 
factors, including the financial cost, validity and sensitivity 
(see Tables 1, 2).

The usefulness of screening and monitoring with blood 
biomarkers in providing information that might ultimately 
reduce injury and illness risk, or impact upon the rate of 
adaptation to training, is a complex subject. The literature 
to date will not always provide a clear guide since large 
randomised, controlled studies of the behaviour of each 
biomarker are unlikely to ever be possible in these special-
ised populations. A needs analysis is a logical starting point 
for undertaking blood biomarker profiling. Over 3 decades 
of applicable studies of biomarkers in sport, together with 
extensive medical literature, exist for practitioners to draw 
upon to enhance decision making. In addition, biomarker 
technology is rapidly evolving, driven by the colossal bio-
technology industry.

1.2 � Interdisciplinary Team Approach

The application of blood testing for sports performance often 
requires the complementary skillsets of the sports medicine 
doctor, sports scientists and biostatistician to work in col-
laboration. For the purpose of this review, the term ‘sport 
scientist’ might include associated disciplines of physiol-
ogy, nutrition/dietetics, and strength and conditioning. The 
importance of these collaborations cannot be overstated 
because clinical oversight is required for all blood tests that 
might be diagnostic of pathology, and therefore due consid-
eration must be given to medical liability. For example, if a 
clinical/pathological abnormality is uncovered during rou-
tine blood profiling, action is required by the sports medicine 
doctor to ensure optimal duty of care.

Statistical ‘best practice’ for the analysis of longitudinal 
data is needed in order to make informed decisions [13], 
with the contextual information provided by the sport scien-
tist. Since athletes are often outliers, routine screening can 

Key Points 

Some blood biomarkers can be used for profiling and 
monitoring purposes in athletes, and the biomarkers 
selected depend on the demands of the sport.

Statistical methods for longitudinal data analysis are 
recommended to generate individualised thresholds to 
identify meaningful changes over time.

The insights gained from blood profiling and monitoring 
can provide an objective means of assessing nutritional 
status and capacity to tolerate training load.

Poor quality data will be generated if pre-analytic pro-
tocols are not carefully followed, for example, posture, 
time of day, recent food or exercise.
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create a high number of abnormal results for clinical diag-
nostic tests, albeit often of no clinical consequence (i.e. false 
positives [14]). Furthermore, on a practical level tests cannot 
typically be requested from a clinical laboratory without a 
medical doctor’s licence, although this varies considerably 
by location.

Athlete health is recognised as being closely linked to 
sustained high performance, and unfortunately some sports 
are known to be strongly associated with disease continu-
ums either during or post career [15–17]. Reducing inflam-
mation and oxidative stress (OS) [18] may be an important 
objective for protecting athletes from overt disease [19], or 
from sports-specific medical problems such as tendinopathy 
in basketball [20] or the deleterious effects of concussion 
[21]. Looking ahead, it seems appropriate for sports science, 
sports medicine and biostatistics to work closely together 
towards athlete health goals, and blood biomarker analysis 
provides a prime opportunity for such collaboration. Further 
studies are needed to demonstrate the effects of modifying 
biomarkers in competing athletes on career longevity and 
on post-career health.

1.3 � How Much Venous Blood is Reasonable 
to Remove from an Athlete?

It is widely accepted that small blood losses via phlebot-
omy are naturally replenished rapidly in the hours follow-
ing a draw, at least among non-athletes. However, remov-
ing a significant quantity of blood on a regular basis could 
clearly be detrimental, and therefore minimising the amount 
of blood removed is advised. Red blood cells (RBCs) are 
released from the bone marrow at an estimated rate of > 2 
million per second [22] to support a total blood volume of 
between approximately 4 l and 8 l, depending on body size 
and sport. Each cubic millilitre of blood contains 4–6 mil-
lion RBCs, and over half of the sample is plasma, compris-
ing > 90% water. Each 10 ml of venous blood drawn rep-
resents approximately 0.1–0.3% of total blood volume. To 
provide some context with regards to the impact of blood 
losses via phlebotomy, it is known that females are more 
susceptible to iron deficiency primarily due to menstrual 
blood loss, with loss estimated as light flow, < 36.5 ml; 
medium flow, 36.5–72.5 ml; and heavy flow, 72.5 ml per 
cycle [23]. A 26-night simulated altitude research study 
that clamped total haemoglobin mass (tHbmass) in a sub-
group of endurance athletes, removed on average of 180 
ml (range 82–314 ml) of blood via phlebotomy to negate 

Table 1   Key factors for the 
success of biomarker profiling 
in sport

Clinical oversight: collaboration between the sports doctor and the sports scientists
Selection of appropriate actionable biomarkers for screening and monitoring (see Table 2)
Appropriate frequency of testing
Sufficient financial resources to cover costs of collection, analysis, interpretation and feedback
Contextual information available to be used in interpretation
Implementing statistical best practice in data visualisation, modelling and translation
Availability of expertise to interpret biomarkers
Athlete and/or coach ‘buy-in’ and appropriate/effective feedback mechanisms

Table 2   Checklist of considerations for assessing biomarker suitability in sport

Evidence Has prior research provided a satisfactory evidence base for the use of this biomarker (clinically, in public health or 
in sport), and for the specific target population and sex?

Application Will the biomarker provide actionable data or serve as a useful positive or negative outcome indicator?
Validity Has the biomarker been demonstrated to be valid? If this is a new technique, does it agree with established ‘gold 

standard’ technique?
Variability
(analytical and biological)

Is the variability of this measurement technique acceptable (often reported as the coefficient of variation; CV). Has 
the analytical and biological variability of the biomarker been reported?

Collection and analysis Is the collection procedure and analysis time fast enough to be useful?
Is the amount of blood required appropriate? (i.e. minimal)

Sample treatment and 
transportation

Can the analysis take place in situ, or does the sample have to be stored in a specific way and/or transported to a 
laboratory

Diurnal variation Does the time of day, exercise, sleep and fasting status influence the biomarker?
Cost Is the full cost of the biomarker data justified?
Covariates Are there factors that are known specifically to influence the biomarker? e.g. environmental impact such as warm 

weather camp, altitude, travel stress and jet lag
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hypoxia-induced erythropoiesis [24], resulting in a cancel-
ling out of aerobic performance gains. This illustrates that 
the environment- or training-induced gains in tHbmass can 
be reversed with blood loss. Blood draw volume and fre-
quency should therefore be kept to a minimum with a clear 
and well-justified purpose.

2 � Limitations of Blood Testing in Athletes

There are a number of practical limitations to blood testing, 
which are evolving as new technology emerges (see Sect. 3). 
Often the cost of testing can be prohibitive and therefore 
some kind of cost-benefit analysis is advised. The cost of 
tests varies vastly by country (e.g. clinical laboratory panels 
are considerably more expensive in the USA than in Europe) 
and by the specific test panels selected. The time between the 
blood draw and the arrival of results can vary considerably 
depending on the test and mode of measurement. Where 
delays occur, the analysis can only be retrospective, thus 
limiting the potential impact of the findings.

The tests themselves also carry limitations. For example, 
measuring haemoglobin concentration in a sample does not 
provide a measure of the tHbmass, since that is depend-
ent upon blood volume and is affected by shifts in plasma 
volume [25] (see Sect. 8). Quantification of immune-cell 
populations is also limited since it does not provide data on 
the function of those cells, and cell populations have the pro-
pensity to migrate or translocate from the circulation [26]. 
Additionally, cells that reside outside of the circulation will 
not be detected with a blood test—for example, immune 
cells that reside in the skin [27].

For monitoring purposes, blood samples are routinely 
drawn with the athlete in a rested state. However, incor-
porating blood tests before and after controlled physical 
testing (e.g. a maximal aerobic capacity test or controlled 
training sessions) can provide additional insights from an 
athlete monitoring perspective. For example, the measure-
ment of endocrine hormones after submaximal and maximal 
exercise is more effective in characterising fatigued states 
in endurance athletes than measures at rest [28]; hormonal 
responses to a two-bout exercise protocol can diagnose over-
training syndrome [29]; inflammatory cytokine responses 
to controlled treadmill running may differ between healthy 
and illness-prone athletes [30]; and the response in redox 
biomarkers to exercise is a well-established method used 
to assess OS [31] and more recently for predicting adapta-
tion [32], with overloaded athletes displaying a diminished 
plasma antioxidant response to an exercise test [33]. Caution 
is warranted over applying an additional physical load purely 
for the purposes of monitoring, but carefully integrating spe-
cific monitoring variables around timed physical testing may 
be beneficial in managing athlete training load and recovery. 

An example of this may be conducting a routine training 
session in a controlled manner and measuring heart rate, 
rating of perceived exertion and blood biomarker responses.

3 � Evolving Biomarker Technology Available 
to Practitioners in Sport

Anecdotally, convenience is a major consideration in the 
success of biomarker measurement in athletes. Blood sample 
collection is now possible without traditional venepuncture 
via micro-filament needles inspired by mosquitoes [34, 35], 
although this technology has not yet been widely deployed. 
A continuum exists with comprehensive biomarker analysis 
via venous blood sampling at one extreme, and point-of-care 
tests for single biomarkers via capillary sampling at the other 
(lactate is the obvious example in sport, blood glucose is 
the most common point-of-care test globally). Additionally, 
some biomarkers can be assessed from a blood spot sample 
collected on filter paper—for example, red cell fatty acids. 
As the market for personalised medicine and the ‘quantified 
self’ has dramatically expanded with promise of a laboratory 
in one’s pocket [36], many companies have started offer-
ing extensive blood panels from small samples collected at 
home but often with compromised precision or accuracy. 
One such company, Theranos, was not only found to be less 
accurate than high-throughput laboratories [37], but was also 
recently exposed as fraudulent in the promise of comprehen-
sive biomarker analysis from a finger-prick sample [38]. In 
this context, caution is warranted when selecting appropriate 
technology for use in sport. Table 2 provides a checklist for 
assessing the suitability of new blood-testing technology.

4 � Pre‑analytic Considerations

The composition of blood is highly dynamic and never in 
a fixed state in vivo. Following collection, depending on 
the collection tube, blood cells continue to metabolise, the 
cells will begin to separate from the plasma, and the sample 
can coagulate. Therefore, the pre-analytic considerations are 
fundamental to achieving a suitable specimen and robust 
data. These are well-established phenomena [39], yet often 
overlooked in the sport setting.

Here we define ‘pre-analytic’ as all factors that influence 
a blood specimen prior to analysis in the laboratory, dis-
played in Fig. 1. Posture (supine vs. seating vs. standing), 
duration of tourniquet application for venous samples, the 
separation of cells from plasma (i.e. the time of centrifuga-
tion), time of day, psychological stress, fasting status, day 
of the menstrual cycle, hydration status, and the duration, 
intensity and mode of prior exercise can all influence the 
data [40–42]. The relative impact depends on the test being 
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conducted. Flouting these procedures in sport is tempting 
for convenience, but can result in dramatic inaccuracies in 
the data with ‘knock-on’ effects for subsequent data analysis.

5 � Statistical Considerations

Population-based medical reference ranges are typically 
generated using a cross-sectional sample from the general 
population and may not always be useful for interpreting 
athlete data. Furthermore, a ‘baseline’ value can be chal-
lenging to obtain in athletes with congested training and 
competition schedules and ubiquitous global training stress. 
In small samples with large between-subject variability, 
population-based reference ranges are often too wide to be 
informative. As examples, a recent study reported that male 
athletes with testosterone values in the lower quartile of the 
sample, but within the clinical range, had a 4.5-fold higher 
stress fracture rate [5]; hypervolemia associated with endur-
ance training can dilute cell counts, giving a false impression 
of anaemia [43]. Published athlete data that could be used 
to create athlete reference ranges are generally absent, with 
some exceptions [44–48]. A sport or governing body regu-
larly collecting data on a specialised group of athletes might 
rapidly accumulate a suitable dataset in-house, as published 
by the Australian Institute of Sport some 2 decades ago [48].

Monitoring, by its nature, requires statistical methods 
for longitudinal data analysis. For example, a Bayesian 
approach considers prior information (i.e. knowledge about 
the biomarker distribution), to categorise new data and iden-
tify data points of interest. The reference range generated 
adapts dynamically as more information on the athlete’s 
within-subject variability is available. This is the approach 
employed to create the adaptive individualised ranges used 
in the athlete biological passport [49]. These individualised 
approaches are used to identify atypical measures by provid-
ing adaptive rather than static reference ranges, and are of 
higher potential value to the sports science team [50–52]. 
Examples of the application of individualised ranges are 
provided in Fig. 2a, b.

A calculated critical difference threshold (CDT) may be 
useful in monitoring situations whereby the known variance 
due to biological variation and measurement error is quanti-
fied and applied to create an individual CDT for each analyte 
[50]. With the CDT, a greater degree of confidence can be 
achieved in understanding whether a ‘true’ physiological 
change has occurred for the analyte in question [50, 53]; see 
Fig. 2c. Ideally, the CDT should be calculated in the athletic 
group of interest to minimise physiological differences as a 
source of error. Other methodological approaches (e.g. index 
of individuality) are available for assisting practitioners in 
evaluating the usefulness of population-based biomarker 

Fig. 1   Pre-analytic considerations for the measurement of blood biomarkers from a venous blood sample. The recommendation regarding hydra-
tion is based on American College of Sports Medicine guidelines [139]
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reference intervals for interpreting change in individuals 
[50].

Modelling biomarkers jointly (and not marginally) over 
time using suitable multivariate statistical techniques in 
combination with training, wellness and other data sources 
has received little attention in sports science to date, but 
could be of value in the future for the purposes of objectively 
managing training load, identifying injury and illness risk, 
and predicting performance.

6 � Specific Examples of Blood Testing 
for Nutrition Purposes

6.1 � Using Blood Profiling to Inform Nutritional 
Recommendations

The dietary habits of athletes are assessed in order to con-
struct individualised dietary plans designed to optimise 
training responses, performance and health. There are 

limitations associated with the various commonly applied 
qualitative methodologies (i.e. dietary recall, food frequency 
questionnaires, diet diaries) [54]. For example, in an individ-
ual male, in order to estimate his true average intake of iron 
with a degree of confidence, 68 days (range 13–130 days) 
of food intake records would be required (see Basiotis et al. 
[55]). Blood profiling, however, provides an efficient, reli-
able, quantitative means of assessing nutritional status (both 
deficiencies and excesses), which is not subject to reporting 
bias.

Nutritional blood biomarker profiling may be used to 
assess compliance and a response to a given dietary inter-
vention (e.g. serum carotenoids following an increase in fruit 
and vegetable consumption), and to ascertain whether timely 
nutritional adjustments are required to optimise recovery and 
adaptation (e.g. thyroid hormones with reference to energy 
availability during a period of intense training; see Sect. 7). 
Although many nutrients are well researched in sport, there 
are some exceptions—for example, iodine, which is well 

Fig. 2   Charts (a) and (b) illustrate biomarkers collected repeatedly 
over time (red lines). The rectangular shaded areas represent a popu-
lation based clinical range for this biomarker; the blue shaded areas 
represent an individual Bayesian adaptive range. Chart (c) illustrates 

a biomarker of oxidative stress (hydroperoxides; black and orange 
squares) collected frequently with blue bars representing a global 
marker of training load for each microcycle. URTI upper respiratory 
tract infection, CDT critical difference threshold
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known to have an interaction with exercise and to be lost 
via sweat [56].

Many nutritional markers are not well suited to blood 
profiling since their concentration in the blood is small in 
comparison to specific tissue compartments—for example, 
serum calcium, which does not reflect calcium status [57], 
and serum magnesium (Mg), for which the gold standard is 
a 24-h urine collection following an oral Mg loading dose 
[58]. Conversely, other nutrient blood tests such as measure-
ment of fatty acids incorporated in RBC membranes [59], 
glycated haemoglobin (HbA1c) and red cell Mg reflect die-
tary exposure over the life of the RBC and therefore provide 
useful indices of global dietary habits.

Since the measurement of biomarkers relating to nutri-
tion is described in detail elsewhere [54], we instead will 
address other, more novel nutritional biomarkers that have 
not been described in detail elsewhere in the sports medicine 
literature, including RBC fatty acids, biomarkers of fruit and 
vegetable intake, and biomarkers of amino acids.

6.2 � Red Blood Cell Fatty Acids

Consumption of dietary fats can be assessed through the 
analysis of RBC fatty acids via a dried blood spot technique 
[60], although it should be acknowledged that endurance 
training alters skeletal muscle membrane phospholipid com-
position through an increase in docosahexaenoic acid (DHA) 
content [61]. Skeletal muscle phospholipid eicosapentaenoic 
acid (EPA) and DHA are strongly correlated to RBC phos-
pholipid EPA and DHA (r = 0.913) [62]. RBC fatty acids 
are responsive to changes in the intake of fish, olive oil and 
fish oil supplements [63, 64]. The omega-3 index (OM3I), a 
validated, reliable and reproducible biomarker for the assess-
ment of omega-3 status, represents the percentage of the 
long chain marine fatty acids EPA and DHA as a propor-
tion (%) of the total RBC fatty acids [59]. Data are now 
available in athletic populations: a mean (standard devia-
tion) of 5.1 (1.0)% in Summer Olympians [65], 4.9 (1.2)% 
in Winter Olympians [66] and 4.4 (0.8)% in National Col-
legiate Athletic Association Division 1 collegiate footballers 
[67]; however, wide inter-athlete variability was consistently 
observed. These findings in athletes contrast with an aver-
age OM3I of 3.7 (1.0)% in a large cohort of vegans, 3.5 
(0.7)% in US military servicemembers, and a median OM3I 
of 7.1% in a Spanish cohort consuming a Mediterranean diet 
[68–70]. Currently, the recommended target range for OM3I 
in athletes is 8–11% [66]. However, there is no experimental 
evidence to date in athletes to substantiate such a precise 
claim for health or performance; further research in this area 
is warranted.

Healthy college students with an OM3I above 4% expe-
rienced significantly lower post-eccentric exercise muscle 
soreness (DOMS) at 72 and 96 h, lower 24-h C-reactive 

protein concentrations, and improved profile of mood states 
compared to the ‘low’ OM3I group (< 4%) [71]. Increasing 
the OM3I from ~ 4.5 to ~ 6% in endurance athletes through 
supplementation enhanced cycling economy [72], and in a 
military study, a relationship was observed between OM3I 
(within a narrow OM3I range of 2–5%) and cognitive flex-
ibility and executive function [70]. Together, these studies 
suggest that measuring and manipulating OM3I in athletes 
may be a useful endeavour to augment both health and per-
formance, although further studies in well trained and elite 
athletes are needed to clearly establish cause and effect, 
particularly given the capacity for training to alter skeletal 
muscle phospholipid composition [61].

6.3 � Biomarkers of Fruit and Vegetable Intake

Fruits and vegetables (FV) contain an array of polyphe-
nols, vitamins, minerals and fiber, and are essential to ath-
lete health, recovery and performance. The measurement 
of serum carotenoids constitutes a valid means for the 
assessment of FV intake [73]. Studies deploying a short-
term (2-week) restriction of FV intake (i.e. a low antioxi-
dant diet: restricted to one serving of fruit and two servings 
of vegetables per day) in athletes resulted in substantial 
decreases in resting serum carotenoid concentrations, along 
with increased exercise-associated lipid peroxidation with 
exercise, increased ratings of perceived exertion (RPE), 
and increased resting and exercise inflammatory responses 
[74, 75]. A comparable low antioxidant diet in asthmatics 
resulted in a decline in serum carotenoids and decreased 
lung function [76]. Moreover, increasing athlete phyto-
nutrient (FV, nuts and seeds) intake has been observed to 
substantially increase serum carotenoid concentrations 
and contribute to enhanced recovery and performance in a 
world-class endurance athlete [53]. Specific training para-
digms such as ‘live-high, train-low’ may lead to decreases 
in serum antioxidant vitamins and carotenoids [77, 78]. It 
follows that modifying these variables may support athlete 
recovery and health, although further studies are needed. 
These studies relate to dietary fruit and vegetable intake, 
and for clarity it should be noted that this is not synonymous 
with high-dose antioxidant supplementation where there is a 
well-established risk of blunting adaptation [79].

OS is affected by a broad range of factors, such as diet, 
lifestyle, environment and training, and OS biomarkers (of 
which there are many, and beyond the scope of this review) 
have been extensively researched in athletes (see Lewis et al. 
[80] and Finaud et al. [81]). OS biomarkers are modifiable 
through diet [74, 75], and vitamin insufficiencies (e.g. vita-
min C) increase OS and decrease physical performance [82]. 
Recent studies have recognised the importance of identify-
ing a blood redox profile for an individual (i.e. the existence 
of a low, medium or high level of oxidative stress, and/or 
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antioxidant enzyme or nutrient) in order to identify those 
individuals in whom physical performance may be enhanced 
through the correction of the redox ‘deficiency’ with the 
appropriate treatment, i.e. antioxidant [32, 83]. The admin-
istration of N-acetylcysteine (NAC) to a group with ‘low’ 
red blood cell glutathione (GSH; a ubiquitous antioxidant 
enzyme) improved both aerobic and anaerobic capacity, 
whereas an adverse effect was observed for NAC on aerobic 
performance in the ‘high’ GSH group [83]. Similarly, vita-
min C supplementation improved physical performance in 
those with low but not high plasma vitamin C concentrations 
[82]. Measuring biomarkers of redox status may therefore 
aid in the individualisation and frugal use of antioxidant 
supplementation.

6.4 � Biomarkers of Amino Acids

Exercise training is known to alter plasma blood amino 
acid concentrations, with chronically fatigued elite athletes 
reported to have significantly different resting concentrations 
to some healthy elite athletes [84]. Over the past 25 years, 
two amino acid biomarkers in particular—glutamine (GLN) 
and glutamate (GLU)—have been researched as a method of 
monitoring for fatigued states in athletes, with noteworthy 
observations [84–89].

Briefly, prior to the 1992 Barcelona Olympics, both 
acutely fatigued and chronically fatigued elite athletes were 
screened and observed to have significantly lower plasma 
GLN than healthy non-fatigued elite athletes (a diet low in 
protein may have been a contributing factor [84]). The ratio 
of GLU to GLN consistently showed promise for monitor-
ing training stress. Indeed, a number of authors in different 
locations [87–89] demonstrated significant changes in the 
plasma GLU/GLN ratio in national and international ath-
letes, well-trained endurance cyclists, and team sport ath-
letes during periods of intensified training.

Unfortunately, from a practical standpoint, assays of any 
amino acid are not readily available in clinical or commercial 
laboratories, which may explain the lack of recent research. 
Additionally, recent advances in approaches to periodising 
protein intake [90] around training load may serve to reduce 
the need for GLU/GLN monitoring. Metabolomic studies 
are emerging and may reinvigorate this field [91], although 
metabolomic data so far are currently sparse in sport.

7 � Assessing Energy Availability

Assessing energy availability is desirable to avoid the risk 
of the female athlete triad or the broader relative energy 
deficiency in sport (RED-S) theoretical framework [17, 92]. 
We have previously documented the importance of measur-
ing bioenergetic hormones in athletes in order to protect the 

athlete from the deleterious effects of unexplained underper-
formance syndrome (also known as overtraining syndrome), 
of which chronic low energy availability (LEA) is a major 
risk factor [93]. LEA was strongly associated with athlete 
illness in the lead-up to a summer Olympic Games [94] and 
was associated with a 4.5-fold higher risk of bone injuries 
in both male and female distance runners with LEA [5]. 
There are a number of ways to estimate energy availability, 
such as monitoring changes in body mass, or by calculating 
energy availability as the difference between total energy 
intake and estimated energy output; however, the latter can 
be a time- and resource-consuming endeavour and there are 
a number of sources of potential inaccuracies associated 
with both these methods. Screening for energy availability 
indirectly with blood profiling is therefore a recommended 
approach [95].

Endocrine biomarkers, including the male and female 
sex hormones and thyroid hormones free triiodothyronine 
(free T3) and total triiodothyronine (TT3), offer insight into 
energy availability [96]. Although the benefits of using hor-
monal biomarkers as part of an athlete wellness/nutritional 
screening process are becoming more evident, tracking intra-
individual changes through various training and competition 
phases may provide more meaningful data (enabling a shift 
from the dependence on clinical ranges for interpretation; 
see Sect. 5), and thus enabling physicians, sports practi-
tioners and coaches to make timely adjustments to training 
and nutritional programs in order to optimise recovery and 
adaptation.

In addition, it is recognised that experienced elite male 
and female athletes do not self-adjust their energy intake 
during periods of intensified training, the outcome of which 
is a deterioration in performance [97]. A training study in 
female swimmers elegantly demonstrated the clear depend-
ence upon sufficient energy availability for training success 
by monitoring a group of swimmers across a 12-week train-
ing block [4]. Five athletes with normal ovarian hormone 
cycles (estradiol and progesterone) were compared with five 
athletes with suppressed ovarian hormones and a signifi-
cantly lower energy availability. Furthermore, 400-m swim-
ming performance (velocity) improved in the energy-replete 
swimmers but not the energy-deficient swimmers despite 
completing the same training distance. Both bioenergetic 
hormones (TT3 and insulin-like growth factor-1) showed a 
significant decline in the energy-deficient swimmers only. 
While the absence of fluctuation in ovarian hormones is a 
useful marker of energy status in itself, the impact of the oral 
contraceptive pill can mask sex steroid differences, resulting 
in an advantage for measuring the bioenergetic hormones.

Although published data are undeniably limited in male 
athletes, poor energy availability and hormonal suppres-
sion (hypogonadism) may occur with persistently excessive 
endurance exercise and/or inadequate energy intake, and 
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thus there is a parallel with the female athlete triad [98]. 
Significant changes over time in bioenergetic (free T3) and 
stress (cortisol) hormones during intensified training have 
been reported in male rowers, albeit performance was not 
assessed [99]. Hypogonadism has been documented in male 
Ironman athletes attending the World Championships [100] 
and in a case study of an elite mixed martial arts athlete 
[101]. Such case studies provide for ‘real-world’ insight. 
Kasper et al. [101] succinctly captured the severe negative 
effects of making weight and the gross energy deficiency 
on endocrine function (testosterone, cortisol, IGF-1) across 
8 weeks; both health and performance were negatively 
affected in conjunction with the hormonal disturbances. 
Furthermore, military studies (in males) tracking bioener-
getic and steroid hormones over periods of basic training 
clearly demonstrate the significant effects of a combination 
of stresses (intensified training, sleep loss and energy defi-
ciency) on these hormonal systems [102]. Finally, carbo-
hydrate restriction can significantly affect testosterone and 
cortisol responses to intense training in male athletes [103].

Physiologically relevant changes in IGF-1, thyroid hor-
mones, testosterone and cortisol are observed in short time 
frames (e.g. 1 week), with marked recovery when nutrition 
and energy status are restored, demonstrating the sensitivity 
of these hormones to nutritional interventions.

8 � Oxygen‑Carrying Capacity and Red Blood 
Cells

Haemoglobin is the oxygen-carrying protein in the RBC, 
containing iron-rich heme sub-units. A higher total tHb-
mass enables a greater maximal oxygen-carrying capacity 
and therefore a higher aerobic power. Endurance athletes 
have been reported to have around a 40% higher tHbmass 
than the general population [104], and many invest consid-
erably in altitude training, aiming to further increase their 
tHbmass. Unfortunately, haemoglobin concentration in a 
blood sample is poorly correlated with tHbmass since this 
is dependent upon blood volume and is susceptible to dilu-
tion from plasma volume expansion with heat acclimation or 
prolonged exercise [104–106]. Carbon monoxide rebreath-
ing has become the method of choice for measuring tHb-
mass in research settings and some sports institute settings; 
however, it requires specialist equipment and technical skills 
[25]. A recent attempt has been made to estimate plasma 
volume based on a host of biochemical markers, and the 
results are promising [107]. Sixty-eight percent and 69% of 
the variation in plasma volume was explained by eight and 
15 routinely measured biomarkers, respectively, e.g. salts. It 
remains to be seen if this approach will be verified by further 
studies, but the potential is enticing, since tHbmass could be 
estimated from plasma volume estimates and haematocrit 

measurements. This opens the possibility of estimating 
aerobic capacity from a single blood test, which would be 
ground-breaking in both athlete monitoring and anti-doping.

Compromised iron status can affect both male and female 
athletes [45, 108] and can result in a sub-optimal tHbmass, 
with a recent study neatly demonstrating the effects of cor-
recting an iron deficiency via supplementation [109] when 
using tHbmass as the outcome measure. In severe iron defi-
ciency (ferritin < 12 ng mL−1), dramatic increases in tHb-
mass were demonstrated via supplementation [109]. Using 
blood-profiling data alone, the response to supplementation 
is more difficult to quantify. RBC data including the mean 
corpuscular volume and the mean corpuscular haemoglobin 
provide an indication of compromised erythropoiesis due to 
iron deficiency [110]. Similar variables in the reticulocytes 
(depending on the analyser used [110]) can also provide 
evidence of compromised iron status. Measurement of the 
peptide hormone hepcidin, although not yet widely avail-
able, shows promise as a highly informative addition to an 
iron panel in athletes, since it can define an individual’s pro-
pensity to absorb iron and has an interaction with exercise, 
iron deficiency and iron overload [111, 112]. For a compre-
hensive review of the identification of iron-deficient states, 
see Archer and Brugnara [113]. In athletes, altitude training 
represents a risk factor for iron deficiency, and following a 
blood test iron supplementation should be considered in this 
context where appropriate [6]. Other factors in athletes such 
as footstrike haemolysis, excessive sweating and dietary fac-
tors may also compromise iron status [108].

9 � Using Biomarkers to Assess Training 
Capacity and Manage Workload

Fine margins exist between the training dose necessary for 
adaptation and that which elicits maladaptation at the elite 
level, paralleling the theory of hormesis [114, 115], where a 
moderate dose of a stressor combined with effective recov-
ery results in an adaptive response, but an excessive dose is 
maladaptive (synonymous with ‘overcooking it’). There has 
been a great deal of attention on the acute : chronic workload 
as a predictor of injury, with recent thinking recognising 
that covariates such as stress, sleep and age are potentially 
of equivalent importance [116]. Although more research is 
needed, blood profiling and in particular blood monitoring, 
in conjunction with workload and wellness data, can offer 
an objective tool for identifying capacity to train and recover 
in the context of a multiplicity of stressors, and can there-
fore be used to enhance the management of athlete workload 
schedules.

The timely point-of-care measurement of capillary 
blood biomarkers of muscle damage (e.g. creatine kinase), 
OS (biomarkers of pro-oxidant and antioxidant activity), 
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inflammation (e.g. C-reactive protein, pro-inflammatory 
cytokines) and anabolic or catabolic status (e.g. cortisol, 
testosterone, urea) can provide data that may help sport sci-
entists to assess individual tolerance of training and there-
fore propensity for successful adaptation, and inform the 
recovery needs of the athlete.

It is well known that intense exercise causes transient 
exercise-induced muscle damage (EIMD), and this is pro-
portional to the stress imposed, particularly eccentric muscle 
loading [117–119]. A transient increase in creatine kinase 
can be expected with EIMD, which returns to baseline 
within 60 h depending on the physical insult and training 
status. Inflammation may also occur with EIMD to varying 
degrees, and there are many studies to support this [120, 
121]. Athletes therefore can be expected to routinely have 
higher concentrations of creatine kinase [44], and this may 
be more pronounced during intense or unaccustomed train-
ing, for example during pre-season training.

Physiological stress, i.e. a disturbance in homeostasis, is 
a desired outcome of training in order to trigger adaptation. 
OS has been termed a ‘molecular switch’ [122] for upregu-
lating antioxidant systems for healthy adaptation and avoid-
ance of disease [114, 115]. However, where an imbalance 
occurs between stress and recovery, negative outcomes can 
ensue, such as maladaptation (performance plateau) [123] 
and fatigue, as several overload studies have demonstrated 
in endurance athletes [124, 125].

Other activities can cause augmented stress or reduce the 
rate of recovery—for example, long-haul travel where bio-
markers with a strong circadian effect can be influenced, for 
example testosterone and cortisol and the so-called ‘sleep 
hormone’ melatonin [126]. Sleep quantity (and quality), a 
primary variable that influences recovery, can also impact 
upon a biomarker profile. Sleep loss is associated with 
elevated cortisol [127] and inflammation markers that are 
reversed with extra recovery sleep [128].

The team sport athlete (e.g. soccer player) is subject to 
various forms of stress (physical, psychological, lifestyle) 
over the course of a season that vary according to the profes-
sional league, player experience, position, fitness and indi-
vidual adaptability. The daily monitoring of elite players’ 
workloads through objective (e.g. global positioning sys-
tems) and subjective measures (e.g. daily readiness to train 
responses) is pervasive in elite soccer [129], with biomark-
ers predominately used for health- and nutrition-screening 
purposes. However, the weekly application of biomarker 
monitoring has gained increasing traction at the elite level 
in team sports.

Several studies have explored the effect of a single soc-
cer match on the recovery time course of markers of mus-
cle damage, inflammation and OS, in which elevations may 
persist for 24–74 h post-match depending on the biomarker, 
recovery time between matches (micro-cycle), playing 

standard, sex and position [119, 130–133]. Others have 
recorded significant OS biomarker changes in relation to 
measures of workload (i.e. muscle damage; internal load) 
across various time points of the season in elite soccer play-
ers [134, 135]. In addition, biomarker investigations over a 
season in other team sports, such as professional rugby [136] 
and handball [137], corroborate observations in professional 
soccer that periods of OS occur in association with periods 
of higher training loads and competition.

10 � Conclusions and Future Directions

There are early signs of new ‘-omics’ science in sport [91, 
138], but these are a long way from becoming the norm. 
Similarly, new technology that analyses an athlete’s blood 
without the need for traditional venepuncture is in existence 
and could eventually become commonplace in sport.

Blood biomarker science in elite and professional sports 
is rapidly evolving and can provide objective data for an 
interdisciplinary sports science and medicine team to sup-
port athlete health, nutrition and performance across a 
broad spectrum of physiological systems. Some nutritional 
biomarkers are well established (e.g. vitamin D and iron), 
whereas others need further research (e.g. fatty acids) to 
demonstrate their utility in sport. A range of biomarkers can 
provide information relating to athlete readiness to train, 
including biomarkers of OS, inflammation, protein turno-
ver and hormones. New methods to estimate plasma volume 
using groups of biochemical markers show promise and may 
provide a new method for monitoring changes in an athlete’s 
aerobic fitness.

The success of a blood-biomarker profiling or monitoring 
programme in sport is dependent not only on the selection of 
appropriate biomarkers, but also upon the timing of the test-
ing, successful interdisciplinary collaboration, appropriate 
longitudinal statistical methods and pre-analytic protocols.
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