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Abstract

Background Analysis of lower limb exercises is tradi-

tionally completed with four distinct methods: (1) 3D

motion capture; (2) depth-camera-based systems; (3) visual

analysis from a qualified exercise professional; and (4)

self-assessment. Each method is associated with a number

of limitations.

Objective The aim of this systematic review is to synthe-

sise and evaluate studies which have investigated the

capacity for inertial measurement unit (IMU) technologies

to assess movement quality in lower limb exercises.

Data Sources A systematic review of studies identified

through the databases of PubMed, ScienceDirect and

Scopus was conducted.

Study Eligibility Criteria Articles written in English and

published in the last 10 years which investigated an IMU

system for the analysis of repetition-based targeted lower

limb exercises were included.

Study Appraisal and Synthesis Methods The quality of

included studies was measured using an adapted version of

the STROBE assessment criteria for cross-sectional stud-

ies. The studies were categorised into three groupings:

exercise detection, movement classification or

measurement validation. Each study was then qualitatively

summarised.

Results From the 2452 articles that were identified with the

search strategies, 47 papers are included in this review.

Twenty-six of the 47 included studies were deemed as

being of high quality.

Conclusions Wearable inertial sensor systems for analys-

ing lower limb exercises is a rapidly growing field of

research. Research over the past 10 years has predomi-

nantly focused on validating measurements that the sys-

tems produce and classifying users’ exercise quality. There

have been very few user evaluation studies and no clinical

trials in this field to date.

Key Points

Inertial measurement unit (IMU) systems have been

extensively validated to successfully measure joint

angle and temporal features during lower limb

exercises.

It is less understood if IMU systems can validly

compute kinetic measures pertaining to lower limb

exercises.

IMU systems, which incorporate machine learning

into their data analysis pathways, have also been

found to be effective in automated exercise detection

and in classifying movement quality across a range

of lower limb exercises.
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1 Introduction

Lower limb exercises are used in rehabilitation, perfor-

mance assessment, injury screening and strength and con-

ditioning (S&C) contexts [1–3]. Movement is deemed

‘optimal’ during these exercises when injury risk is min-

imised and performance is maximised [4]. There are cur-

rently four distinct methods of assessing movement during

lower limb exercise: (1) 3D motion capture; (2) depth-

camera-based systems; (3) visual analysis from a qualified

exercise professional; and (4) self-assessment. Each

method is associated with a number of limitations. For

instance, 3D motion capture systems are expensive and the

application of skin-mounted markers may hinder normal

movement [5, 6]. Furthermore, data processing can be time

intensive and specific expertise is often required to inter-

pret the processed data and to make recommendations on

the observed results. Therefore, these systems are not fre-

quently used to assess exercise technique beyond the

research laboratory [7]. A cheaper and more accessible

alternative is the use of depth-camera systems such as the

Microsoft Kinect. In recent times, such systems have been

increasingly leveraged for both research and commercial

purposes due to their low cost and ease of setup. However,

such systems have several key limitations. Depth-camera

systems often lack accuracy when compared with gold-

standard, marker-based systems. Such systems operate by

tracking specific body locations and re-creating body seg-

ments based on these locations. As such, confusion and

resultant poor accuracy is often caused by crossing over of

body segments, unsuitable lighting (outdoors), movement

of clothing and movement of other people [8]. As a result,

users often must engage in time-intensive manual re-la-

belling of body segments to ensure an accurate system.

Secondly, while these systems are relatively unobtrusive,

they do require the user to set up a camera in an empty

2-m2 area. However, depending on the application space

(clinic or gym), this may not be possible due to the pres-

ence of other people and equipment (squat rack/weight

bench) that may confuse the system, resulting in poor

accuracy. In clinical and gym-based settings, visual

assessment is typically used to assess lower limb exercises.

Visual assessment of human biomechanics is subjective

and unreliable amongst novices and experts alike, as the

need to visually assess numerous constituent components

simultaneously is challenging [9]. This issue is com-

pounded by the fact that athletes/clients may not be able to

afford the supervision of a qualified professional (such as a

physiotherapist, athletic therapist or personal trainer) in

many instances. For this reason, individuals largely rely on

self-assessment of their exercise technique in gym-based

settings. The obvious limitation with this approach is that

the individual may lack the knowledge required to assess

their movement patterns, and simultaneously completing

an exertive movement and assessing it without bias can be

difficult [10].

Due to these limitations, in the past 15 years there has

been an increase in interest in the automated assessment of

lower limb exercises with wearable inertial measurement

units (IMUs). Wearable IMUs are small, inexpensive

sensing units (& €50–1000) that consist of accelerometers,

gyroscopes and/or magnetometers. They are able to acquire

data pertaining to the inertial motion and 3D orientation of

individual limb segments [11, 12]. Self-contained, wireless

IMU devices are easy to set up, and allow for the acqui-

sition of human movement data in unconstrained environ-

ments [13]. IMU systems can robustly track a variety of

postures in the complex environment associated with

training in the ‘real-world’, unlike camera-based systems,

which are hampered by location, occlusion and lighting

issues [14]. IMUs have also been shown to be as effective

as marker-based systems at measuring joint angles

[7, 15, 16]. Therefore, IMUs have been recently employed

for analysing a range of components of lower limb exer-

cises. This includes detecting and quantifying the number

of repetitions that are completed of a given exercise

[17, 18], computing the range of motion (ROM) at key

joints during these repetitions [19, 20], temporal analysis of

exercises [21, 22], classifying one’s performance of an

exercise as acceptable or as a specific deviation from

acceptable [3, 23], or extracting exercise performance

measures such as jump height and reactive strength index

[24].

In the past decade, a number of reviews have assessed

the literature pertaining to exercise analysis with wearable

sensors. Fong and Chan reviewed the use of wearable

IMUs in lower limb biomechanics studies; however, the

focus of this work was broad, and predominantly reviewed

gait-based papers [25]. Another early review covered the

broad scope of health and wellness, rehabilitation and

injury prevention with both wearable and ambient sensor

systems [26]. The field has expanded considerably since

then. Recently, a systematic review was published by

Wang et al. that classified studies involving upper limb

wearable systems for rehabilitation [27]. The ‘wearability’

of such systems and evidence supporting the systems’

effectiveness were also reviewed. Prior to this, this group

published a review of studies on upper limb rehabilitation

systems from 2008 to 2013 [28]. A variety of works have

given an in-depth summary of movement measurement and

analysis technologies; however, these do not focus on

exercise analysis or the lower limb [29–31]. Cuesta-Vargas

et al. reviewed the use of inertial sensors in human motion

analysis and showed their capability for task-specific

analysis [32]. Other studies have investigated how
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feedback affects therapy outcomes; however, these systems

did not necessarily involve wearable IMUs and focused

predominantly on the upper extremities [33–35]. A con-

temporary systematic review investigating the capacity for

IMU technologies to quantify movement quality during

lower limb exercises is not available. Therefore, the aim of

this systematic review is to synthesise and evaluate studies

which have investigated the capacity for IMU technologies

to assess movement quality in lower limb exercises such as

straight-leg raises, squats and countermovement jumps. In

particular, we aim to describe the sensing set-ups used,

inclusive of type (accelerometer and/or gyroscope and/or

magnetometer), number and position of the sensing units.

We also aim to describe the measurements each system

extracted from the sensing units (e.g. ROM, power) and

how they were validated. We will also establish which

exercises were analysed by such systems. This review

serves to summarise a rapidly growing field that has not

been specifically reviewed in over 7 years [25]. It will

identify clear gaps in the literature which are of interest to

the research community and can be used as a resource for

sports-medicine practitioners to build an understanding of

the capabilities of IMU systems in assessing lower limb

exercises. We hypothesise that IMU systems may be an

effective and affordable tool to analyse components of

lower limb exercises objectively and efficiently.

2 Methods

2.1 Literature Search Strategy and Study Selection

Process

The protocol for this review was performed in accordance

with the PRISMA (Preferred Reporting Items for System-

atic Reviews and Meta-Analyses) statement [36]. A liter-

ature search was completed within the following three

databases: PubMed, Scopus and ScienceDirect. Papers

regarding the following were selected: exercise, lower

body, movement monitoring and IMUs. MeSH (Medical

Subject Heading) terms or title/abstract keywords and their

synonyms and spelling variations were used in several

combinations and modified for every database. Articles

published from January 2007 to May 2017 were reviewed.

The 2007 start date was chosen to minimise irrelevant

search results, as it represents the first known paper pub-

lished in the field [17]. The general search strategy,

including the search terms used, is provided in Table 1.

This search includes refereed journal papers and peer-re-

viewed articles published in conference proceedings. Only

articles written in the English language were included. The

article selection process consisted of the following steps

using the PRISMA [36] guidelines (Fig. 1): (1) a

computerised search strategy was performed for the period

January 2007 until September 2017; (2) after removal of

duplicates, titles and abstracts of the remaining articles

were screened; (3) the reviewer read the full texts and

selected articles based on the inclusion/exclusion criteria

(Table 2). In cases where a journal paper covered the

contents reported in the earlier conference publications, the

journal paper was preferred over the conference paper. In

cases where the overlap was only partial, multiple publi-

cations were used as sources. Due to the relative novelty of

IMU technologies, the grey literature was not searched;

only peer-reviewed scientific articles were eligible for

inclusion. We deemed this appropriate due to the non-in-

terventional nature of studies in this field.

2.2 Data Extraction Process

Data extraction was completed by two authors (MOR and

CD). Where discrepancies occurred, these were discussed

and the associated papers were reassessed. A standardised

data extraction form was utilised. Details about the study

design, the exercises investigated, the sensor systems (e.g.

accelerometer-only vs accelerometer? gyroscope) and the

set-ups (e.g. multi-site vs single-site) used were ascer-

tained. The studies were divided into three categories based

on the aims/objectives of this review: exercise detection

(ED); movement classification (MC); measurement vali-

dation (MV). Each study was then qualitatively sum-

marised (aims, findings and conclusions based on these

findings).

2.3 Assessment of Study Quality

Two authors (MOR and CD) evaluated the quality of the

studies deemed eligible for inclusion using an adapted

version of the STROBE assessment criteria for cross-sec-

tional studies [37], which was devised by author consensus.

Specifically, each study was rated on 10 specific criteria

which were derived from items 1, 3, 6, 8, 11, 14, 18, 19, 20

and 22 of the original checklist. In cases where the authors

completing paper rating (MOR or CD) were an author of a

paper included in this review, the paper was instead rated

by a different author of this paper (WJ) to minimise the risk

of bias. Final study ratings for each reviewer were collated

and examined for discrepancies. Any inter-rater disagree-

ment was resolved by consensus decision. Once consensus

was reached for all study ratings, overall quality scores

were collated by summing those criteria, providing a score

out of 10.

Studies were considered to be of high quality when more

than seven domains were scored as high (1). If more than

three domains were scored as low (0), the study was con-

sidered of low quality.
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3 Results

3.1 Database Search and Paper Lists

An overview of the results in the different stages of the

article selection process is shown in Fig. 1. From the 2452

articles that were identified with the search strategies, 47

papers are included in this review following the selection

process.

The quality of the included reviews is displayed in

Table 3. Based on our pre-defined criteria, 26 of the 47

included studies were deemed as being of high quality.

Briefly, most studies adequately reported the methods of

data acquisition (42/47), the outcome variables of interest

and the method of statistical analysis employed (43/47). In

contrast, many authors did not adequately discuss the

limitations of the study (24/47), detail the eligibility criteria

of the included sample (19/47) or cite relevant literature

when discussing their results (27/47).

3.2 Sensor Set-Ups

Table 4 categorises the included articles based on whether

the systems they adopted used multiple/single sensor units,

compared sensor units at a variety of anatomical locations,

and/or compared multiple sensor set-ups to single sensor

set-ups for each application.

There was a large degree of heterogeneity in the inclu-

ded studies’ sensor set-ups. In particular, the types of

sensors on board each sensing unit (accelerometer and/or

gyroscope and/or magnetometer) and the number of sens-

ing units required to be worn by system users varied.

Table 5 demonstrates the distribution of sensors used in the

included studies.

3.3 Exercises Investigated Versus Study Design

In the included studies, a total of fifty-three exercises were

evaluated using a wearable inertial sensor system

(Table 6). The most commonly investigated single-joint,

uni-planar exercise was the lying straight leg-raise. There

were three single-joint multi-planar exercises investigated.

There were also two multi-joint, uni-planar exercises and

26 multi-joint, multi-planar exercises investigated. The

most investigated of these were the sit-to-stand and squat

exercises.

3.4 Qualitative Review

3.4.1 Measurement Validation

Twenty-eight studies identified for inclusion in this review

attempted to validate wearable motion sensor systems

[7, 20–22, 24, 38–61]. These 28 studies were categorised as

evaluating either concurrent validity (Table 7) or construct

validity (Table 8). For the purposes of this review, con-

current validity was defined as when a newly developed

tool such as a wearable sensor system is compared with

another test which is considered to be the ‘gold standard’ to

measure the construct in question [62]. Construct validity

compares a new wearable system’s output with another test

that measures a similar construct but that is not a ‘gold

standard’ (convergent validity), or evaluates the system’s

capacity to discriminate between known groups in a cross-

sectional (discriminative validity; known groups) or lon-

gitudinal (discriminative validity; responsiveness) manner

[62].

Concurrent Validity Seventeen of the studies included in

this review sought to compare a wearable sensor system’s

output with a tool used in current clinical practice (e.g.

goniometer for joint angle measurement) or gold standard

biomechanical measurement tools (e.g. optoelectronic

Table 1 Literature search strategy

Exercise ‘exercise’ OR ‘rehab*’ OR ‘weight training’ OR ‘motor activity’ OR ‘personal’ OR ‘strength’ OR ‘conditioning’ OR

‘hypertrophy’ OR ‘gym’ OR ‘weight lifting’ OR ‘resistance’ OR ‘training’

AND

Lower body ‘lower body’ OR ‘lower extremity’ OR ‘leg’ OR ‘thigh’ OR ‘shank’ OR ‘ankle’ OR ‘foot’ OR ‘joint’

AND

Movement

monitoring

‘monitor’ OR ‘motion’ OR ‘classif*’ OR ‘recogn*’ OR ‘evaluat*’ OR ‘posture’ OR ‘sensing’ OR ‘assess*’ OR

‘quantification’ OR ‘biomech*’ OR ‘tracking’ OR ‘quality’ OR ‘kinematics’ OR ‘biofeedback’

AND

Inertial measurement

units

‘inertial sensor’ OR’gyroscop*’ OR ‘IMU’ OR ‘inertial measurement units’ OR ‘wearable’ OR ‘acceleromet*’ OR ‘

sensor system’ OR ‘sensor network’ OR ‘magnetometer’ OR ‘MEMS’ OR ‘smartphone’ OR ‘mobile’ OR ‘wireless’

AND NOT

‘robot’ OR ‘exoskeleton’
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motion capture systems and force plates)

[7, 20, 21, 24, 38–50]. These studies are summarised in

Table 7.

Construct Validity Eleven studies investigated the con-

struct validity of wearable motion systems for specific

applications in tracking lower limb exercises. Of these,

four assessed convergent validity [51–54]. Five studies

pertained to known-groups validity [22, 55–58]. Two

studies evaluated the longitudinal validity of a lower limb

wearable sensor system in assessing joint ROM throughout

a rehabilitation programme [60, 61]. All 11 studies which

predominantly evaluated construct validity are summarised

in Table 8.

3.4.2 Exercise Detection

Ten studies were identified for which automated detection

of the exercise being completed was a key objective

[14, 17–19, 63–68]. These studies are summarised in

Table 9. It is difficult to directly compare the exercise

detection sensitivity, specificity and accuracy across dif-

ferent studies. This is due to the vastly different data sets

Fig. 1 PRISMA flowchart of the results from the literature search. IMU inertial measurement unit, HAR human activity recognition
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and cross-validation methods used to compute system

accuracy.

3.4.3 Movement Classification

Eleven studies investigated the utilisation of wearable IMU

systems for quantifying exercise technique

[3, 19, 23, 64, 69–75]. Table 10 summarises the sensing

set-ups, movement measure which was classified,

methodology and performance metrics for each system

identified in this area.

4 Discussion

4.1 Sensor Set-Ups

Various approaches have been employed when considering

sensor set-ups for analysing lower limb exercises. As

shown in Table 6, some studies opted solely for using one

sensor type (accelerometer, gyroscope or magnetometer),

whereas others opted for combinations of these in IMUs.

The use of additional on-board sensors will reduce a

sensing unit’s battery life, but allows for a greater variety

of motion data to be captured from a user [12]. Combining

accelerometer, gyroscope and magnetometer data also

allows for improved accuracy in computing each unit’s 3D

orientation [11]. The authors of this review believe that

collecting data with all three inertial sensor types and then

comparing system quality (i.e. accuracy or agreement with

gold standard measurement) with individual sensor types or

reduced combinations is the best approach. This enables a

systematic approach to assess the cost–benefit of using

additional sensors on board each IMU.

Similarly, the cost–benefit of using wearable sensing

set-ups that use multiple sensing units can be compared

with reduced sensor sets or single sensing unit set-ups by

initially completing data collection with comprehensive

set-ups. System efficacy can then be assessed when using

data from multiple sensing units and each reduced com-

bination of sensing units. This approach has been applied in

movement classification and has shown promising results

for single sensor systems in analysing early-stage and late-

stage lower limb rehabilitation exercises [3, 70, 71]. Using

reduced sensing set-ups potentially reduces the total cost of

systems and increases their practicality for end users.

A criticism of the approach to sensor set-up employed

by all the included studies in this review is that none

reported evidence of engaging target end users when

selecting their set-up. As previously mentioned, sensor set-

up can influence a system’s cost, usability, battery life,

accuracy and functionality. It is likely that the importance

of each of these factors would vary across differing types

of end users. For instance, a recreational gym goer may

prioritise cost, usability and battery life, which may favour

a minimal sensor set-up, whereas an elite sports team may

prioritise accuracy and functionality, which could favour a

comprehensive set-up. It is the authors’ contention that

completing relevant qualitative research regarding sensor

set-up with the target end users of a system, in advance of

Table 2 Inclusion and exclusion criteria for studies

Inclusion criteria

The articles contain a system for exercise analysis using IMUs

The system is intended for monitoring repetition-based targeted exercises for the lower limbs (e.g. squats, deadlifts, single-leg squats, lunges,

straight-leg raises and jumps), or analysing rehabilitation, workplace or strength and conditioning exercises

The system included detection of exercises and/or quantification of exercise volume and/or analysis of exercise technique or performance

measures

Articles were published in the last 10 years

Articles were written in the English language

Exclusion criteria

Systematic reviews and literature reviews

Books and other non-peer-reviewed literature

Studies evaluating robotic systems or exoskeletons

Studies investigating human activity recognition in non-rehabilitative or strength and conditioning settings (i.e. in the ‘real world’)

Studies evaluating pathological groups only

Sensing modality used was not a wearable accelerometer, gyroscope, magnetometer or combination of those (IMU)

Study only concerns non-repetition-based targeted exercises e.g. running, walking, gait, balance

Study concerns non-human, animal subjects

Study only evaluates ‘user experience’ with the system or the effect of the system’s feedback on users

IMU inertial measurement unit
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Table 3 Risk of bias

assessment of the included

studies based on the modified

STROBE criteria [37]

Study 1 2 3 4 5 6 7 8 9 10 Quality

Ahmadi et al. (2015) [65] 1 1 0 1 1 0 0 0 0 1 Low

Ai et al. (2014) [57] 0 0 0 1 1 1 0 0 0 1 Low

Arai et al. (2012) [54] 1 0 1 1 1 1 0 0 1 1 Low

Bo et al. (2011) [51] 0 0 0 1 1 0 1 0 0 0 Low

Bolink et al. (2016) [39] 1 1 1 1 1 1 1 1 1 1 High

Bonnet et al. (2011) [7] 1 1 0 1 1 1 0 0 0 1 Low

Bonnet et al. (2013) [43] 1 1 1 1 1 1 1 1 1 1 High

Chakraborty et al. (2013) [55] 0 0 0 0 0 0 0 0 0 0 Low

Chang et al. (2007) [17] 1 0 0 0 1 0 1 0 0 0 Low

Charlton et al. (2015) [50] 1 1 1 1 1 1 1 1 1 1 High

Chen et al. (2013) [64] 1 0 0 1 1 0 1 0 0 0 Low

Chen et al. (2015) [61] 0 0 0 0 0 0 0 0 0 0 Low

Conger et al. (2016) [66] 1 1 1 1 1 1 1 1 1 1 High

Dominguez Veiga et al. (2017) [68] 1 1 0 1 1 1 1 1 1 1 High

Faber et al. (2013) [40] 1 1 0 1 1 1 1 1 1 1 High

Fitzgerald et al. (2007) [56] 0 0 0 0 0 0 0 0 0 1 Low

Giggins et al. (2014) [18] 0 1 1 1 1 1 1 0 0 1 Low

Giggins et al. (2014) [3] 1 1 1 1 1 1 1 1 1 1 High

Giggins et al. (2013) [58] 1 1 1 1 1 1 1 1 1 0 High

Gleadhill et al. (2016) [21] 1 1 1 1 1 1 1 0 1 1 High

Gordon et al. (2012) [45] 0 1 0 1 1 0 1 0 0 0 Low

Haladjian et al. (2015) [38] 0 0 0 0 0 1 0 0 0 1 Low

Houmanfar et al. (2016) [60] 1 1 0 1 1 1 1 0 1 0 Low

Kianifar et al. (2016) [69] 1 1 1 1 1 1 1 0 0 0 Low

Lin and Kulić (2012) [20] 1 1 1 1 1 1 1 0 1 0 High

Mehta et al. (2016) [41] 1 1 1 1 1 1 1 1 1 0 High

Romero Morales et al. (2017) [42] 1 1 1 1 1 1 1 1 1 1 High

Morris et al. (2014) [14] 1 1 0 1 1 1 1 1 0 0 Low

O’Reilly et al. (2017) [67] 1 1 0 1 1 1 1 1 1 1 High

O’Reilly et al. (2017) [71] 1 1 0 1 1 1 1 1 1 1 High

O’Reilly et al. (2017) [72] 1 1 0 1 1 1 1 1 1 1 High

O’Reilly et al. (2017) [73] 1 1 1 1 1 1 1 1 1 0 High

O’Reilly et al. (2017) [74] 0 1 0 1 1 1 1 1 1 1 High

O’Reilly et al. (2017) [75] 1 1 1 1 1 1 1 1 1 1 High

Omkar et al. (2011) [53] 1 1 0 1 1 1 1 0 0 1 Low

Papi et al. (2015) [48] 1 1 0 1 1 1 1 1 1 1 High

Patterson and Caulfield (2010) [24] 1 1 0 1 1 1 1 1 0 1 High

Pernek et al. (2012) [52] 1 1 0 1 1 1 1 0 0 1 Low

Quagliarella et al. (2010) [44] 1 1 1 1 1 1 1 1 0 1 High

Rawson and Walsh (2010) [47] 1 1 1 1 1 1 1 0 0 1 High

Setuain et al. (2016) [46] 1 1 1 1 1 1 1 0 1 0 High

Setuain et al. (2015) [22] 1 1 0 1 1 1 1 1 1 1 High

Taylor et al. (2010) [23] 0 1 0 1 1 0 1 1 0 0 Low

Tunçel et al. (2009) [63] 0 1 0 1 1 0 1 0 1 1 Low

Whelan et al. (2016) [70] 1 1 0 1 1 1 1 1 1 1 High

Yurtman and Barshan (2014) [19] 1 1 0 1 1 1 0 1 1 0 Low
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its development, could be of great benefit. It could also

streamline the process of transferring systems from a

research environment into a real-world offering.

4.2 Measurement Validation Studies

The concurrent validity of wearable motion-sensor-based

systems to extract useful measures in lower limb exercises

has been well investigated. The articles included in this

review demonstrate these systems’ validity in measuring

joint angle and ROM, in a broad variety of exercises

ranging from sit-to-stands [48, 49] to lunges [42]. It is

notable that a large proportion of these studies have high

paper quality ratings (Table 3). They also used optoelec-

tronic motion capture, a biomechanical research gold-s-

tandard measurement tool [20, 39, 50], or goniometry, a

clinical gold standard [41–43], as the measurement com-

parator, which adds to the strength of this literature.

Therefore, the evidence that IMU systems can validly

measure joint angle and ROM is strong. However, for

applications requiring maximal accuracy in these measures,

an interesting area of further research may be identifying

the sensing-unit placement position, for various body

segments and exercises, which optimally agrees with an

optoelectronic motion capture system. With the exception

of Faber et al. [40], this is a widely under-investigated

field. Research has also demonstrated the concurrent

validity of wearable motion-sensor-based system measures,

with force plate and optoelectronic motion capture data, to

compute temporal features of exercises. A number of these

studies have high quality ratings (Table 3) and analyse

exercises ranging from five-times sit-to-stand tests [48], to

deadlifts [21] to drop jumps [24, 44]. It is less understood if

wearable motion sensor systems are useful in estimating

kinetic measures such as peak vertical force and power

during exercises. With the exception of Zijlstra et al.’s

study on vertical power during the sit-to-stand exercise

[49], the ‘high’ quality work to date in this area has shown

these measures have a lower agreement with gold-standard

biomechanical measurement systems than joint angle or

temporal features [44, 46, 48]. Further research is required

to investigate if the results are unique to different types of

exercises or if they can be improved through employing

different signal processing techniques.

The construct validity of wearable motion systems for a

range of applications has also been well demonstrated at

Table 3 continued

Study 1 2 3 4 5 6 7 8 9 10 Quality

Zijlstra et al. (2010) [49] 1 1 1 1 1 1 1 0 1 0 High

Items legend: 1. Provide in the abstract an informative and balanced summary of what was done and what

was found. 2. State specific objectives, including any prespecified hypotheses. 3. Give the eligibility

criteria, and the sources and methods of selection of participants. 4. For each variable of interest, give

sources of data and details of methods of assessment (measurement). Describe comparability of assessment

methods if there is more than one group. 5. Explain how quantitative variables were handled in the

analyses. If applicable, describe which groupings were chosen and why. 6. Give characteristics of study

participants (e.g. demographic, clinical, social) and information on exposures and potential confounders. 7.

Summarise key results with reference to study objectives. 8. Discuss limitations of the study, considering

sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias. 9. Give

a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses,

results from similar studies, and other relevant evidence. 10. Give the source of funding and the role of the

funders for the present study and, if applicable, for the original study on which the present article is based

STROBE STrengthening the Reporting of OBservational studies in Epidemiology

Table 4 Sensing set-ups evaluated

Sensor set-up References

Multiple sensor units (n = 17) [17], [19], [63], [65], [44], [20], [45], [51], [55], [64], [61], [23], [40], [48], [38], [69],

[60]

Single sensor units (n = 17) [14], [52], [58], [24], [53], [7], [43], [57], [39], [41], [46], [54], [42], [50], [22], [75],

[68]

Comparison of multiple and single sensor units

(n = 13)

[18], [47], [3], [49], [21], [40], [67], [70], [71], [72], [73], [74], [66]
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Table 5 Sensors used in each

study included in this review
Study Accelerometer Gyroscope Magnetometer Other

Ahmadi et al. (2015) [65] X X

Ai et al. (2014) [57] X X X

Arai et al. (2012) [54] X

Bo et al. (2011) [51] X X X

Bolink et al. (2016) [39] X X X

Bonnet et al. (2011) [7] X X

Bonnet et al. (2013) [43] X X

Chakraborty et al. (2013) [55] X X

Chang et al. (2007) [17] X

Charlton et al. (2015) [50] X X X

Chen et al. (2013) [64] X

Chen et al. (2015) [61] X X

Conger et al. (2016) [66] X

Dominguez Veiga et al. (2017) [68] X X

Faber et al. (2013) [40] X X

Fitzgerald et al. (2007) [56] X X X

Giggins et al. (2014) [18] X X

Giggins et al. (2014) [3] X X

Giggins et al. (2013) [58] X X

Gleadhill et al. (2016) [21] X X

Gordon et al. (2012) [45] X X

Haladjian et al. (2015) [38] X X

Houmanfar et al. (2016) [60] X X X

Kianifar et al. (2016) [69] X X X

Lin and Kulić (2012) [20] X X

Mehta et al. (2016) [41] X X

Romero Morales et al. (2017) [42] X X X

Morris et al. (2014) [14] X X

O’Reilly et al. (2017) [67] X X X

O’Reilly et al. (2017) [71] X X X

O’Reilly et al. (2017) [72] X X X

O’Reilly et al. (2017) [73] X X X

O’Reilly et al. (2017) [74] X X X

O’Reilly et al. (2017) [75] X X X

Omkar et al. (2011) [53] X X

Papi et al. (2015) [48] X X X

Patterson and Caulfield (2010) [24] X

Pernek et al. (2012) [52] X

Quagliarella et al. (2010) [44] X

Rawson and Walsh (2010) [47] X

Setuain et al. (2016) [46] X X X

Setuain et al. (2015) [22] X X X

Taylor et al. (2010) [23] X

Tunçel et al. (2009) [63] X

Whelan et al. (2016) [70] X X X

Yurtman and Barshan (2014) [19] X X X

Zijlstra et al. (2010) [49] X X X
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Table 6 Exercises which have been investigated during the studies included in this review and the study type which they were included in

Exercise Measurement validation Exercise detection Movement classification

SJ-UP

Lying hip abduction [58], [50] [18], [19] [3], [19]

Lying hip extension [58], [50] [18], [19] [3], [19]

Lying knee flexion (supine) [41]

Inner range quads [58] [18], [59] [3], [59]

Seated knee extension [58], [52], [54] [18], [63] [3]

Seated knee flexion [20]

Lying straight leg raise [58], [20] [18], [19], [59] [3], [19], [59], [23]

Standing calf raise [52] [17], [66]

Seated straight leg raise [60] [19] [19]

Standing straight leg raise [20] [63]

Standing knee flexion/extension [38] [63] [23]

Standing hip extension [63]

Standing hip abduction [63] [23]

Standing leg curl [52]

Seated calf raises [52]

Lying leg curl [52], [47]

Seated resisted knee extension [52], [47]

Ankle dorsi/plantarflexion [57]

Ankle internal/external rotation [57]

Ankle inversion/eversion [57]

Seated hip internal/external rotation [50]

Supine hip internal/external rotation [50]

SJ-MP

Lying straight diagonal leg raise [20]

Standing circle trace (hip) [20]

Lying circle trace (hip) [20]

MJ-UP

Heel slides [58], [61] [18] [3]

Lying hip and knee flexion [58], [20], [60] [18] [3]

MJ-MP

Sit to stand [49], [20], [51], [48], [39]

Leg press [52]

Lunge [56], [42] [66], [67], [68] [71], [75]

Kicking [65]

Deadlift [21] [17] [75]

Mini-squats [59] [59]

Squats [52], [47], [7], [43], [20], [51], [38], [60] [14], [63], [66], [67], [68] [72], [73], [75]

Barbell deadlifts [67], [68] [74], [75]

Overhead squats [55]

Kettlebell swing [14]

Sun salutation [53]

Hang clean [45]

Block step up [39]

Single leg squats [67], [68] [69], [70]

Box lift [40]

Stoop box lift [40]

Squat box lift [40]
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this point. Longitudinal validity has been shown via pro-

gress tracking in ROM through a rehabilitation programme

[59, 60]. Known-groups validity has been demonstrated

through capturing different movement profiles in specific

exercises between injured and non-injured individuals

[56, 57]. However, it should be noted these studies

involved very small samples. Fitzgerald et al. [56] com-

pared just a single injured and non-injured participant, and

Ai et al. [57] compared three non-injured participants with

one participant with polymyositis and one participant with

lower back pain. Both papers also received a low paper

quality rating (Table 3). Therefore, it is currently difficult

to conclude that IMU systems can differentiate movement

profiles from injured and non-injured groups and that the

presented results are not just due to chance. Future vali-

dation studies of this fashion would benefit from employing

larger participant groups of both injured and non-injured

individuals. This would allow for statistical analyses

comparing the groups. The results could be further

strengthened by demonstrating concurrent validity of the

reported measurements with an existing gold-standard

measurement tool.

Whilst measurement validation studies are the most

researched category in this field, there is still scope for

more investigation. It is the authors’ contention that studies

which validate temporal feature, joint angle and ROM

measurements, computed from multiple sensing units, in

lower limb exercises are likely to produce favourable

results, but produce little new knowledge for the field.

However, creating predictive algorithms for kinetic mea-

surements, such as that in Setuain et al. [46] and Zijlstra

et al. [49], or joint angle estimations with a single IMU in

[7, 43], are still widely under-investigated areas with much

room for advancement. Research that employs larger

samples and assesses known-groups validity between

injured and non-injured participants could also progress

this area of the field.

4.3 Exercise Detection Systems

Ten studies included in this survey have demonstrated the

efficacy of wearable inertial sensor systems to automati-

cally identify the exercises being completed by users

[14, 17–19, 63–68]. Exercise classification may serve as a

useful input to an automated exercise tracking system or

automated exercise logbook system. All studies demon-

strated that a machine-learning-based classification

approach is an effective data analysis approach for this

task. With this in mind, it is interesting to note that only

four studies in this area involved[20 participants

[18, 66–68]. As with many classification problems, exer-

cise detection results may be improved by collecting larger

data sets from more participants [76]. Future work in this

area could also consider the practicality of the system for

end users. Utilising a single IMU system for exercise

detection [14, 18, 66–68] may be most desirable for end

users. This will also reduce the cost of the exercise

detection system. A potential methodological flaw in some

of the reviewed studies is the inclusion of repetitions of

exercises from the same participant in both training and test

data. This can produce unrealistically high accuracy scores

following cross-validation on a data set. This may have

happened in a number of studies which used cross-vali-

dation methods such as leave-one-out-cross-validation

(LOOCV), repeated random sub-sampling (RRSS) and

K-fold cross-validation where each fold did not represent

all of one participant’s data [14, 19, 63, 64]. Future work

may also benefit from utilising deep learning techniques for

classification such as the convolutional neural networks

approach demonstrated by Dominguez Veiga et al. [68].

Such classification methodologies have recently been

shown to have many benefits when compared with tradi-

tional machine learning classification techniques when

analysing time-series data, including reducing the risk of

overfitting and improving system accuracy [77, 78]. The

Table 6 continued

Exercise Measurement validation Exercise detection Movement classification

One leg hops [38]

Side hops [38]

Box jump [65]

Bilateral squat jumps [44]

Bilateral countermovement jumps [45], [44]

Drop jumps [24], [46], [22],

Unilateral drop jump [44], [22]

Unilateral countermovement jumps [44], [22]

Tuck jumps [67], [68]

SJ-UP single-joint, uni-planar, SJ-MP single-joint, multi-plane, MJ-UP multi-joint, uni-planar, MJ-MP multi-joint, multi-plane
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Table 7 Summary of studies assessing concurrent validity of wearable sensor based system to standard clinical measure or biomechanical gold

standard

Study Sensor set-up and

placement

Sample Outcomes Gold

standard/comparator

Findings

Lin and

Kulić

(2012) [20]

3 9 tri-axial

accel? gyro (trunk,

thigh, shank)

20 (8 females,

12 females),

injury-free

Joint angles during 9 lower

limb rehabilitation

exercises

Optoelectronic

motion capture

The average RMSE between

a motion capture system

and their wearable system

was 6.5� across all
exercises

Haladjian

et al.

(2015) [38]

2 9 tri-axial

accel? gyro (thigh

and shank)

4 (2 females, 2

males),

following

ACL surgery

Sagittal plane knee joint

angle

Goniometer There was a 5� difference in

agreement between the

‘KneeHapp’ system and

the goniometer

Bolink et al.

(2016) [39]

1 9 tri-axial

accel? gyro?mag

(lumbar)

17 (8 females, 9

males), injury-

free

Pelvic orientation angles

during the sit to stand and

block step-up exercises

Optoelectronic

motion capture

Frontal plane pelvic angle

estimations achieved a

RMSE in the range of 2.7�
to 4.5� and sagittal plane

measurements achieved a

RMSE in the range of 2.7�
to 8.9� when compared

with optoelectronic motion

capture

Faber et al.

(2013) [40]

1 9 accel? gyro

(multiple locations

from C7-MPSIS)

20 (10 females,

10 males),

injury-free

Which location optimally

agreed with an

optoelectronic motion

capture system’s

calculation for trunk

inclination? The data used

was from a variety of box

lifting exercises

Optoelectronic

motion capture

They concluded that

regardless of participant’s

sex or lifting style, the

optimal sensing unit

location for the

measurement of trunk

inclination is at about 25%

of the distance from the

sacrum to C7

Mehta et al.

(2016) [41]

1 9 iPhone (tri-axial

accel? gyro)

60 (sex not

reported),

following total

knee

replacement or

with knee

osteoarthritis

Knee flexion and extension

ROM

Standard

goniometry

They showed the mobile

application allowed for a

smaller minimal

detectable change than

goniometry

Romero

Morales

et al.

(2017) [42]

1 9 smartphone

(accel? gyro?mag)

33 (sex not

reported),

injury-free

Inclination of the tibia

during the weight-bearing

lunge exercise

Tape measure test,

goniometry and

the leg motion

system

They found no significant

differences between any of

the measurement

techniques

Bonnet et al.

(2011,

2013)

[7, 43]

1 9 tri-axial

accel? gyro

(lumbar)

10 (4 females, 6

males), injury-

free

Sagittal hip, knee and joint

angles during a

bodyweight squat exercise

Optoelectronic

motion capture

Their most recent predictive

algorithm had a root mean

square difference of 3.2�,
2� and 3.1� for ankle, knee
and hip angles respectively

when compared with both

a robot model and with 8

healthy human participants

[43]

Patterson

and

Caulfield

(2010) [24]

1 9 tri-axial accel

(ankle)

20 (14 females,

6 males),

injury-free

Reactive strength index

during the drop jump

exercise

Force plate data Pearson’s product

correlation of 0.9816 in

computing reactive

strength index during the

drop jump exercise
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Table 7 continued

Study Sensor set-up and

placement

Sample Outcomes Gold

standard/comparator

Findings

Quaglieralla

et al.

(2010) [44]

2 9 tri-axial accel (left

and right ankle)

51, (26 injury-

free, 25

following

surgery for

Achilles

tendon

rupture; 51

males)

Flight time during

countermovement jumps

and squat jumps

Force plate Spearman’s coefficient was

found to be[0.95 in this

case

Gordon et al.

(2012) [45]

2 9 tri-axial

accel? gyro (trunk

and barbell)

1 (male), injury-

free

Mean percentage error for

the following

measurements: peak

velocity, time to peak

velocity, peak power, time

to peak power and force at

peak power

Optoelectronic

motion capture

system and force

plates

The temporal measures had

the lowest mean

percentage error with time

to peak velocity and time

to peak power having an

error of just 0.034 and

1.01% respectively. The

kinetic measures had a

larger error with peak

power and peak force both

resulting in a 12.5% error

versus the force plates and

motion capture system

Setuain et al.

(2016) [46]

1 9 tri-axial

accel? gyro?mag

(lumbar)

17 (8 females, 9

males), injury-

free

Vertical force derived from

IMU

Force plates Several biomechanical

variables such as the

resultant force–time curve

patterns in drop jumps,

unilateral drop jumps and

unilateral

countermovement jumps

can be reliably measured

with a lumbar worn IMU

Rawson and

Walsh

(2010) [47]

3 9 uni-axial accel

(wrist, waist and

ankle)

30 (15 females,

15 males),

injury-free

Activity counts during the

squat, leg extension and

leg curl exercises

CosmedTM system

(COSMED,

Rome, Italy)

Activity counts were

correlated with energy

expenditure as computed

by a cosmedTM system

(COSMED, Rome, Italy).

Thirty healthy participants

were recruited and a

primary finding of the

study was that a regression

equation which inputs

included sex, fat-free mass,

and counts of activity from

the waist accelerometer

explained 90%

(R2 = 0.90) of the variance

in energy expenditure as

measured by the cosmedTM

system

Papi et al.

(2015) [48]

1 9 tri-axial

accel? gyro (waist),

1 9 tri-axial accel

(waist)? bend

sensor also used

(knee)

14 (7 females, 7

males), injury-

free

Total time taken to complete

a five-time-sit-to-stand test

Optoelectronic

motion capture

The waist-worn sensing unit

was found to have a 0.86

RMSE versus the measure

from a motion capture

system
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method of Dominguez Veiga et al., which uses a machine

vision approach within a deep learning context, also has the

advantage of allowing interpretability of classification

based on the visual appearance of the time series [68].

4.4 Movement Classification Systems

Despite first being investigated in 2010 [23], lower limb

wearable movement classification systems are still a rela-

tively under-investigated area. Five of the eleven published

papers are relatively small-scale, with ten or fewer partic-

ipants [19, 23, 64, 69, 75]. Movement classification sys-

tems have the potential to augment current clinical

practice, providing users with feedback relating to their

exercise technique in an unsupervised setting [79]. Most of

the published work on movement classification pertains to

a limited number of rehabilitation and S&C exercises

(Table 10) [3, 19, 23, 64, 70–72, 74]. There is therefore

potential to investigate movement classification with larger

data sets and across a range of other exercises. This work

could also compare binary and multi-label classification

techniques and comprehensive and minimal sensing set-ups

for such exercises, as in the work conducted by Giggins

and colleagues [3]. Such work could also compare a variety

of classification strategies (e.g. random forests [80], sup-

port vector machines [81], k nearest neighbours [82]) and

should use appropriate cross-validation techniques to esti-

mate system efficacy (accuracy, sensitivity and specificity).

The studies which used leave-one-subject-out-cross-vali-

dation (LOSOCV) to validate their global movement

classification system report that this is the most appropriate

cross-validation method to estimate the efficacy of the

system for a new user who is not included in the classifier’s

training data [3, 23]. They also warn that including exercise

repetitions from the same participant in both training and

test data, as in Yurtman and Barshan [19] and Whelan et al.

[70], can produce artificially high efficacy scores which do

not transfer to real-world systems. Only one study experi-

mentally evaluated the real-world accuracy of a movement

classification system [75], which is recommended for

future studies where possible as it negates the limitations of

cross-validation techniques in assessing system efficacy.

Table 7 continued

Study Sensor set-up and

placement

Sample Outcomes Gold

standard/comparator

Findings

Ziljstra et al.

(2010) [49]

3 9 tri-axial

accel? gyro?mag

(sternum, pelvis,

SIPS)

17 (10 females,

7 males),

injury-free

Vertical power during the sit

to stand test

Optoelectronic

motion

capture? force

plates

They used Pearson’s

correlation to compare

each sensor position’s

power output to force plate

data and found an R2 of

0.984 at the body’s

estimated centre of mass

Gleadhill

et al.

(2016) [21]

3 9 tri-axial

accel? gyro on

spine (C7, T12 and

S1)

11 (1 female, 10

males), injury-

free

Temporal features from

accelerometers during 15

variations of the deadlift

exercise

Optoelectronic

motion capture

The average Pearson’s

correlation with a motion

capture system was

R2 = 0.9997 for sagittal

plane accelerometer peaks

Charlton

et al.

(2015) [50]

1 9 smartphone

(accel? gyro?mag)

20 (males),

injury-free

Hip ROM (flexion,

abduction, adduction,

supine internal and

external rotation and sitting

internal and external

rotation)

Optoelectronic

motion capture

The smartphone

demonstrated good to

excellent reliability

(ICCs[0.75) for four out

of the seven movements,

and moderate to good

reliability for the

remaining three

movements

(ICC = 0.63–0.68)

Accel accelerometer, ACL anterior cruciate ligament, C7 cervical vertebrae 7, gyro gyroscope, ICC intra-class correlation, IMU inertial mea-

surement unit, mag magnetometer, MPSIS midpoint between the posterior superior iliac spines, RMSE root mean square error, ROM range of

motion, S1 sacral vertebrae 1, SIPS posterior superior iliac spine, T12 thoracic vertebrae 12
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Table 8 Summary of studies assessing construct validity of wearable sensor based systems

Study Sensor set-up and

placement

Sample Outcomes Construct

validity type

Comparator Findings

Bo et al.

(2011) [51]

2 9 tri-axial accel

2 9 dual-axial

gyro?Microsoft

Kinect (thigh and

shank)

Not described Knee angles during

sit-to-stand and

squat

Convergent Microsoft Kinect High potential for

fusion of Kinect and

inertial sensors for

more accurate joint

angle measurement

Pernek et al.

(2012) [52]

1 9 smartphone w/ tri-

axial accel (on weights

stack or ankle)

10 (4 females, 6

males), injury-

free

Detection of

exercise

repetitions and

the start/end of

repetitions

Convergent Manual

extraction of

repetitions by

authors

99% Accuracy in

repetition detection,

89% accuracy in

detecting start and

end points of

repetitions

Omkar et al.

(2011) [53]

1 9 tri-axial

accel? gyro (lumbar)

11 (4 females, 7

males), injury-

free

Grace and

consistency

during rhythmic

exercise

Convergent Visual analysis

of each

participant’s

sequence by

yoga expert

Found performance of

two participants to be

significantly worse

than the others (more

jerks and halts)

Arai et al.

(2012) [54]

1 9 tri-axial gyro

(shank)

105 (55 females,

50 males),

elderly,

injury-free

Physical function

and self-efficacy

Convergent Functional

performance

measurements,

a self-efficacy

scale and

HRQOL

Gyroscope peaks

correlated with some

physical functions

such as muscle

strength (r = 0.304,

p\0.01), and

walking velocity
(r = 0.543,

p\0.001). In

addition, the joint

angular velocity was

significantly

correlated with self-

efficacy

(r = 0.219–0.329,

p\0.01–0.05) and

HRQOL

(r = 0.207–0.359,

p\0.01–0.05)

Chakraborty

et al.

(2013) [55]

XsensTM moCap suit 6 (sex not

reported),

undergoing

rehab of lower

limb

Body posture

during overhead

squat task

Known-

groups

Individual’s

measures pre-

and post-injury

Not described

Fitzgerald

et al.

(2007) [56]

XsensTM moCap suit 2 (sex not

reported), one

injury-free,

one 15 weeks

post-MCL tear

Body posture

during straight-

line lunge

Known-

groups

Comparison of

injured and

uninjured

individuals

Greater range of trunk

flexion/extension,

thigh internal/external

rotation and trunk

flexion/extension for

injured athletes

Ai et al.

(2014) [57]

1 9 tri-axial

accel? gyro?mag

(instep of foot OR

shank)

3 (males;1

healthy, 1

polymyotosis,

1 chronic

lower back

pain)

ROM, movement

smoothness,

trajectory error

Known-

groups

Comparison of

each group’s

results

Proof of concept for

tracking ankle

exercises with IMUs

shown via each

participant’s differing

trajectories

Giggins et al.

(2013) [58]

1 9 tri-axial

accel? gyro (shin)

9 (5 females, 4

males), injury-

free

Signal features

when exercises

completed with

correct technique

and aberrant

technique

Known-

groups

Comparison of

features when

exercises

completed with

acceptable and

aberrant

technique

A number of

significantly different

features found across

all exercises and all

deviations/known

groups
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The efficacy scores presented by authors included accu-

racy, sensitivity/precision/true positive rate and specificity/

recall/true negative rate. It is best to provide as many

metrics as possible to allow a reader to understand a

classification system’s strengths and weaknesses.

The general data analysis approach for all studies

appears to be first completing signal pre-processing, signal

segmentation, computing features from the signals and

placing them in feature vectors, which will be used to train

and evaluate different classification algorithms [79]. Some

recent studies also compared the effectiveness of global

and personalised classification systems [73, 74], whereby a

personalised classification system is one which is trained

from data from an individual and developed specifically for

this individual, and a global classification system is trained

with data from many individuals and can be used by

individuals not included in the training data. Analysis has

shown that the personalised systems are more computa-

tionally efficient and accurate than global ones [73–75],

which has enabled movement classification systems to be

developed with a single sensing unit rather than multiple

sensing units. However, the time required to collect data

from and train a classification system for every individual

who requires a movement classification system is a sig-

nificant practical limitation which may hinder the uptake of

movement classification systems in clinical practice.

Creating tools that streamline this process, as in O’Reilly

et al. [75], could be an important avenue of research.

Table 8 continued

Study Sensor set-up and

placement

Sample Outcomes Construct

validity type

Comparator Findings

Setuain et al.

(2015) [22]

1 9 accel? gyro?mag

(lumbar)

22, (sex not

reported; 6

ACL

reconstructed

and 16 injury-

free)

Signal features

during a battery

of vertical

jumping tests

Known-

groups

Comparison of

features when

exercises

completed by

ACL

reconstructed

and injury-free

group

The ACL-reconstructed

male athletes did not

show any significant

(p\0.05) residual

jumping

biomechanical

deficits regarding the

measured variables

compared with

players who had not

suffered this knee

injury. A dominance

effect was observed

among non-ACL

reconstructed controls

but not among their

ACL-reconstructed

counterparts

(p\0.05)

Chen et al.

(2015) [59]

2 9 tri-axial

accel? gyro (thigh and

shank)

10, (5 females, 5

males; 5

injury-

free? 5, rehab

after total

knee

arthroplasty)

Knee ROM during

heel slides tested

1 day pre-, 1 day

post-, 2 weeks

post- and 6 weeks

post-total knee

arthroplasty

Longitudinal Individual’s

known

improvement

in ROM during

rehab

Knee ROM return to

baseline after 6 weeks

effectively measured

with inertial sensors

Houmanfar

et al.

(2016) [60]

2 9 tri-axial

accel? gyro?mag

(thigh and shank)

28, (sex not

reported; 18,

rehab

following

knee/hip

replacement,

10, injury-

free)

Difference between

patient’s data

(joint angle,

velocity,

acceleration) and

healthy norms

throughout

rehabilitation

Longitudinal Individual’s

known

improvement

in ROM during

rehabilitation

The results show that

the IMU measures are

able to capture the

trend of patient

improvement over the

course of

rehabilitation

accel accelerometer, ACL anterior cruciate ligament, gyro gyroscope, HRQOL health-related quality of life, IMU inertial measurement unit, mag

magnetometer, MCL medial collateral ligament, rehab rehabilitation, ROM range of motion
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Table 9 Summary of wearable inertial sensor exercise detection systems for lower limb exercises

Study Sensing set-up Participants Relevant

exercises

Methods:

classification

Methods:

cross-

validation

Results

Chen et al.

(2013)

[64]

3 9 accel (trunk, thigh,

shank)

10 (5 females,

5 males),

injury-free,

10 reps per

exercise

Inner-range

quads

Straight-leg

raise

Quadriceps

mini-

squats

Feature-based

classification

Decision tree

10-CV 10-CV acc = 99.29%

Chang et al.

(2007)

[17]

2 9 accel (right-hand

glove and hip-worn

posture clip)

10 (2 females,

8 males),

healthy, 15

reps per

exercise

Deadlift

Standing

calf raise

Feature-based

classification:

hidden

Markov

models, naı̈ve

Bayes

User

specific

CV and

LOSOCV

User specific: acc = 95%

LOSOCV acc = 85%

Giggins

et al.

(2014)

[18]

3 9 tri-axial accel? gyro

(foot, shank and thigh)

58 (39

females, 19

males),

rehab, 10

reps per

exercise

Heel slides

Hip

abduction

Hip

extension

Hip flexion

Inner-range

quads

Knee

extension

Straight-leg

raise

Feature-based

classification

Logistical

regression

LOSOCV

Multi and

single

sensor

set-ups

LOSOCV all 3 sensors:

acc = 94% shank sensor:

acc = 95%

Yurtman

and

Barshan

(2014)

[19]

5 9 tri-axial

accel? gyro?mag

(trunk, thighs, shanks

OR thigh, upper arm,

lower arm, trunk,

shoulder)

5 (2 females, 3

males),

rehab, 30

reps per

exercise

Lying leg

raise

Lying hip

abduction

Lying hip

extension

Seated

straight-

leg raise

Dynamic time

warping

LOEOCV LOEOCV: acc = 93%

Morris et al.

(2014)

[14]

1 9 tri-axial accel? gyro

(wrist)

20 (8 females,

12 males),

healthy, 20

reps per

exercise

Jumping

jack

Kettlebell

swing

Squat

Feature-based

classification

Support vector

machine

LOOCV LOOCV: acc = 96%
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Table 9 continued

Study Sensing set-up Participants Relevant

exercises

Methods:

classification

Methods:

cross-

validation

Results

Tuncel et al.

(2009)

[63]

2 9 uni-axial gyro (right

thigh and shank)

1 (male),

healthy, 8

reps per

exercise

Standing

knee

flexion

Standing

flexed leg

raise

Standing

straight-

leg raise

Standing

R&L

straight leg

Hip

extension

Standing hip

abduction

Bodyweight

exercises

Seated knee

extension

Feature-based

classification

Support vector

machine

Dynamic time

warping

Artificial neural

network

Radial basis

function

Bayesian

decision

making

Least squares

method

K-nearest-

neighbours

RRSS

P-fold -CV

and

LOOCV

RRSS: BDM acc: 98%

P-fold-CV: BDM acc: 99.1%

LOOCV: BDM acc: 99.1%

Ahmadi

et al.

(2015)

[65]

2 9 tri-axial gyro (right

thigh and shank)

10 (sex not

reported), 9

healthy, 1

injured, 30 s

per exercise

Box jump

Kicking

Feature-based

classification

Random forests

10-CV Average F1 score of 97% in

detecting each exercise

Conger

et al.

(2016)

[66]

1 9 tri-axial accel (non-

dominant wrist)

60 (sex not

reported),

healthy, 10

reps per

exercise

Squats

Lunges

Calf raises

Cosine

similarity and

feature-based

classification

Support vector

machine

LOSOCV SVM method detected the lower-

limb exercises with 81% acc.

The cosine similarity method

produced 85% acc

O’Reilly

et al.

(2017)

[67]

5 9 tri-axial

accel? gyro?mag

(lumbar, thigh L&R,

shank L&R)

82 (23

females, 59

males)

healthy, 10

reps per

exercise

Squats

Lunges

Single leg

squats

Deadlifts

Tuck jumps

Feature-based

classification

Random forests

LOSOCV

Multi and

single

sensor

set-ups

The exercises were detected with

99% acc when using signals from

all five IMUs, 98% when using

signals from the thigh and

lumbar IMUs and 98% with just

a single IMU on the shank

Dominguez

Veiga

et al.

(2017)

[68]

5 9 tri-axial

accel? gyro?mag

(lumbar, thigh L&R,

shank L&R)

82 (23

females, 59

males),

healthy, 10

reps per

exercise

Squats

Lunges

Single leg

squats

Deadlifts

Tuck jumps

Feature-free

classification

Convolutional

neural

network

Batch

output

training

CV

acc: 95.89%

acc accuracy, accel accelerometer, ACL anterior cruciate ligament, BDM Bayesian decision making, CV cross-validation, gyro gyroscope, IMU

inertial measurement unit, L left, LOEOCV leave-one-exercise-out-cross-validation, LOOCV leave-one-out-cross-validation, LOSOCV leave-

one-subject-out-cross-validation, mag magnetometer, R right, rehab rehabilitation, reps repetitions, ROM range of motion, RRSS repeated

random sub-sampling, SVM support vector machine
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4.5 Review Limitations

Despite the strengths of this systematic review, it is

important to consider several limitations when interpreting

the results. Studies were not included if they were not

published in the English language, which may influence the

outcomes of our analyses, despite the probability that

authors of high-quality surveys would aim for publication

in high-impact journals published in the English language

in the pursuit of superior dissemination of output data.

Additionally, while the data extraction and paper rating

were both completed by two authors (MOR and CD), the

initial search, title and abstract screening was only com-

pleted by one author (MOR). Therefore, the possibility of

erroneous exclusion of a valid study from this review

exists. Finally, the protocol for this review was not regis-

tered prior to its completion. We deemed pre-registration

inappropriate due to the expected heterogeneity in the

evidence base. The scientific field of movement detection,

classification and feedback using IMU is a burgeoning area

that spans a multitude of disciplines, making systematic

review and curation using a predefined protocol difficult.

4.6 Practical Implications

The practical implications of these findings deserve con-

sideration. For members of the public or sports-medicine

practitioners considering purchase of a commercially

available sensing system to support lower-limb exercise

completion for themselves or their patient/client, we would

recommend a three-step appraisal process to determine the

utility of the system under consideration. First, for what

purpose is the system designed? Whether the system in

question is for exercise detection (e.g. repetition (rep)

counting during a deadlift) or classification (e.g. aberrant

form during a squat) should be determined. Second, the

system’s validity for the stated purpose in the same pop-

ulation should be confirmed. A system that is valid for

detection is not commensurate with a system that is valid

for classification. Similarly, the validity of a system tested

on a healthy population does not necessarily extend to a

pathological population. Finally, at what cost does the

feature-set come? More expensive systems that incorporate

a greater number of sensing units are likely to be more

accurate, but the benefit of this increased accuracy should

be identified. For instance, sports-medicine practitioners

may seek higher accuracies for a system they plan to

Table 11 Summary of recommendations for future studies

Area of

consideration

Recommendations

Sensor set-up Study design will benefit from collecting data with comprehensive set-ups (multiple IMUs at a variety of relevant

anatomical locations). Analysis can then compare system efficacy when employing all data from the comprehensive set-

up and a variety of subsets of these data

Engage target system users in advance of data collection to develop an understanding of their preferences regarding

factors relating to sensor set-up (e.g. cost, accuracy, usability and functionality)

Measurement

validation

Studies assessing known-groups validity (e.g. to assess IMU systems’ capacity to differentiate injured and non-injured

individuals) should recruit larger samples to allow for formal statistical analyses

There exists a need for predictive algorithms from IMU data to estimate kinetic exercise parameters and to assess their

concurrent validity with force plate and optoelectronic motion capture data

An under-investigated field is using a single IMU set-up to predict lower limb joint angles

Exercise detection Exercise detection systems’ accuracies may be increased by collecting larger data sets from a greater number of

participants

When assessing system efficacy via cross-validation techniques, data from the same participant should not be included in

both the training and test sets

Deep learning techniques such as convolutional neural networks and long-short-term memory networks may improve

exercise detection efficacy

Movement

classification

Larger data sets, collected from more participants and inclusive of more exercise types and their associated technique

deviations, are necessary to further develop this area

If developing a global classification system, when assessing system efficacy via cross-validation techniques, data from the

same participant should not be included in both the training and test sets. Experimentally evaluating a system’s real-

world accuracy would also strengthen the literature

Deep learning techniques such as convolutional neural networks and long-short-term memory networks may improve

movement classification efficacy

The accuracy and efficiency of personalised classification systems outperform global classification systems but these

require time and expertise to develop. Tools that streamline this development process should be investigated

IMU inertial measurement unit
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deploy in a cohort who are at a higher risk of injury, or to

detect aberrant exercise technique, than for a cohort in

whom they are seeking to quantify exercise load through

rep-counting. As such, it may be more appropriate to

leverage a more accurate and expensive multi-sensor sys-

tem in the aberrant exercise cohort than in the rep counting

cohort.

The number of commercially available sensing systems

for exercise detection, classification and feedback will

likely increase in the coming years, and the methods

underlying these systems will evolve as the field of

research progresses. We believe the appraisal process

outlined above will accommodate new developments in the

field.

This systematic review has also led to a number of

recommendations for researchers developing wearable

motion sensor systems for analysing lower limb exercises.

A summary of such recommendations can be found in

Table 11.

5 Conclusion

Wearable inertial sensor systems for analysing lower limb

exercises is a rapidly growing technology. Research over

the past 10 years has involved both the development and

evaluation of such systems. The research to date has pre-

dominantly focused on validating measurements that the

systems produce and classifying technique quality in the

exercises (Tables 7, 8 and 10). A smaller number of studies

have evaluated the ability of the systems to detect exercise

type. Table 6 shows the 53 exercises that have currently

been incorporated into such systems and highlights gaps in

the literature which warrant further research. One such gap

is that there are a limited number of studies that classify

movement quality in jumping exercises. There exist a vast

number of considerations for future research in this field, as

outlined in Table 11. Moreover, there have been very few

user evaluation studies and no clinical trials evaluating

wearable inertial sensor systems for lower limb exercises.

Such studies will be essential in producing knowledge that

will catalyse the movement of these systems from labora-

tory-based studies into real-world applications for sports-

medicine practitioners and people completing lower limb

exercises.
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Corbalán I, Ruiz Ruiz B, López López D. The concurrent validity

and reliability of the Leg Motion system for measuring ankle

dorsiflexion range of motion in older adults. PeerJ [Internet]. San

Francisco, USA: PeerJ Inc.; 2017;5:e2820. http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC5214953/.

43. Bonnet V, Mazza C, Fraisse P, Cappozzo A. Real-time estimate

of body kinematics during a planar squat task using a single

inertial measurement unit. IEEE Trans Biomed Eng IEEE.

2013;60:1920–6.

44. Quagliarella L, Sasanelli N, Belgiovine G, Moretti L, Moretti B.

Evaluation of standing vertical jump by ankles acceleration

measurement. J Strength Cond Res LWW. 2010;24:1229–36.

1244 M. O’Reilly et al.

123

http://dl.acm.org/citation.cfm?id=2557116
http://dl.acm.org/citation.cfm?id=2557116
http://www.sciencedirect.com/science/article/pii/S0169260714002910
http://www.sciencedirect.com/science/article/pii/S0169260714002910
http://www.ncbi.nlm.nih.gov/pubmed/23174667
http://www.sciencedirect.com/science/article/pii/S0021929016302937
http://www.sciencedirect.com/science/article/pii/S0021929016302937
http://www.sciencedirect.com/science/article/pii/S1934148215002567
http://www.sciencedirect.com/science/article/pii/S1934148215002567
http://dx.doi.org/10.1016/j.proeng.2010.04.120
http://dx.doi.org/10.1016/j.proeng.2010.04.120
http://www.jneuroengrehab.com/content/9/1/21
http://www.jneuroengrehab.com/content/9/1/21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346195/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346195/
http://dx.doi.org/10.1080/03093640600983949
http://dx.doi.org/10.1080/03093640600983949
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197318/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197318/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751184/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751184/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566464/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566464/
http://dx.doi.org/10.1016/j.math.2010.12.001
http://dx.doi.org/10.1016/j.math.2010.12.001
http://dx.doi.org/10.1177/1545968309349941
http://dx.doi.org/10.1177/1545968309349941
http://stroke.ahajournals.org/content/42/5/1380.abstract
http://stroke.ahajournals.org/content/42/5/1380.abstract
http://www.sciencedirect.com/science/article/pii/S1350453315002672
http://www.sciencedirect.com/science/article/pii/S1350453315002672
http://dx.doi.org/10.1016/j.jbiomech.2012.12.007
http://dx.doi.org/10.1016/j.jbiomech.2012.12.007
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214953/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5214953/


45. Gordon D, Mullane SL, Conway PP, West AA. Development of a

novel system for monitoring strength and conditioning in elite ath-

letes. Proced Eng. [Internet]. 2012;34:496–501. http://www.

sciencedirect.com/science/article/pii/S1877705812016980. Acces-

sed 2 June 2017.

46. Setuain I, Martinikorena J, Gonzalez-Izal M, Martinez-Ramirez
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quality with inertial measurement units in the single leg squat

mobility test. In: 38th Annu Int Conf IEEE Eng Med Biol Soc.

2016. p. 6273–6.

70. Whelan DF, O’Reilly MA, Ward TE, Delahunt E, Caulfield B.

Technology in rehabilitation: Evaluating the single leg squat

exercise with wearable inertial measurement units. Methods Inf

Med. [Internet]. Schattauer Publishers; 2016;55:[Epub ahead of

print]. http://dx.doi.org/10.3414/ME16-02-0002.

71. O’Reilly MA, Whelan DF, Ward TE, Delahunt E, Caulfield B.

Classification of lunge biomechanics with multiple and individual

inertial measurement units. Sport Biomech. 2017;16:342–60.

72. O’Reilly MA, Whelan DF, Ward TE, Delahunt E, Caulfield BM.

Technology in S&C: Assessing bodyweight squat technique with

wearable sensors. J Strength Cond Res. 2017.

73. O’Reilly MA, Whelan DF, Ward TE, Delahunt E, Caulfield B.

Technology in rehabilitation: comparing personalised and global

classification methodologies in evaluating the squat exercise with

wearable imus. Methods Inf Med. 2017;56:1–9.

74. O’Reilly MA, Whelan DF, Ward TE, Delahunt E, Caulfield BM.

Classification of deadlift biomechanics with wearable inertial

measurement units. J Biomech. 2017;58:155–61.

75. O’Reilly M, Duffin J, Ward T, Caulfield B. Mobile app to

streamline the development of wearable sensor-based exercise

biofeedback systems: system development and evaluation. JMIR

Rehabil Assist Technol [Internet]. 2017;4:e9. http://rehab.jmir.

org/2017/2/e9/. Accessed 13 Sept 2017.

76. Kotsiantis SB. Supervised machine learning: a review of classifi-

cation techniques. Informatica [Internet]. 2007. http://books.google.

com/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3&dq=

survey?machine?learning&ots=CVsyuwYHjo&sig=

Wearable Inertial Sensor Systems for Lower Limb Exercises 1245

123

http://www.sciencedirect.com/science/article/pii/S1877705812016980
http://www.sciencedirect.com/science/article/pii/S1877705812016980
http://dx.doi.org/10.1080/02640414.2015.1075057
http://dx.doi.org/10.1080/02640414.2015.1075057
http://www.ncbi.nlm.nih.gov/pubmed/19952824
http://www.ncbi.nlm.nih.gov/pubmed/19952824
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510317/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510317/
http://www.sciencedirect.com/science/article/pii/S0966636209006559
http://www.sciencedirect.com/science/article/pii/S0966636209006559
http://dx.doi.org/10.1016/j.jsams.2014.04.008
http://dx.doi.org/10.1016/j.archger.2011.10.012
http://eudl.eu/doi/10.4108/pervasivehealth.2013.252061
http://eudl.eu/doi/10.4108/pervasivehealth.2013.252061
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367405/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367405/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260598/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260598/
http://europepmc.org/abstract/MED/27054678
http://europepmc.org/abstract/MED/27054678
http://insights.ovid.com/crossref%3fan%3d00124278-900000000-96098
http://insights.ovid.com/crossref%3fan%3d00124278-900000000-96098
http://mhealth.jmir.org/2017/8/e115/
http://mhealth.jmir.org/2017/8/e115/
http://dx.doi.org/10.3414/ME16-02-0002
http://rehab.jmir.org/2017/2/e9/
http://rehab.jmir.org/2017/2/e9/
http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis
http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis
http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis


A6wYWvywU8XTc7Dzp8ZdKJaW7rc%5Cnpapers://5e3e5e59-48a

2-47c1-b6b1-a778137d3ec1/Paper/p800%5Cnhttp://www.informatica.

si/PDF/31-3/11_Kotsiantis. Accessed 7 July 2017.

77. Zeng M, Nguyen LT, Yu B, Mengshoel OJ, Zhu J, Wu P. Con-

volutional neural networks for human activity recognition using

mobile sensors. In: Pro 6th Int Conf Mob Comput Appl Serv.

[Internet]. 2014. p. 197–205. https://www.computer.org/csdl/

proceedings/mobicase/2014/024/00/07026300-abs.html. Acces-

sed 15 June 2017.

78. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R.

Caffe: convolutional architecture for fast feature embedding.

ACM Int Conf Multimed. 2014;675–8.

79. Whelan DF, O’Reilly MA, Huang B, Giggins OM, Kechadi T,

Caulfield B. Leveraging IMU data for accurate exercise perfor-

mance classification and musculoskeletal injury risk screening.

In: 38th Annu Int Conf IEEE Eng Med Biol Soc 2016 [Internet].

IEEE; 2016. p. 1–6. http://dx.doi.org/10.3414/ME16-02-0002.

80. Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://

doi.org/10.1023/A:1010933404324.

81. Hearst MA, Dumais ST, Osman E, Platt J, Scholkopf B. Support

vector machines. IEEE Intell Syst. 1998;13:18–28.

82. Dudani SA. The distance-weighted k-nearest-neighbor rule. IEEE

Trans Syst Man Cybern. 1976;6:325–7.

1246 M. O’Reilly et al.

123

http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis
http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis
http://books.google.com/books%3fhl%3den%26lr%3d%26id%3dvLiTXDHr_sYC%26oi%3dfnd%26pg%3dPA3%26dq%3dsurvey%2bmachine%2blearning%26ots%3dCVsyuwYHjo%26sig%3dA6wYWvywU8XTc7Dzp8ZdKJaW7rc%255Cnpapers://5e3e5e59-48a2-47c1-b6b1-a778137d3ec1/Paper/p800%255Cnwww.informatica.si/PDF/31-3/11_Kotsiantis
https://www.computer.org/csdl/proceedings/mobicase/2014/024/00/07026300-abs.html
https://www.computer.org/csdl/proceedings/mobicase/2014/024/00/07026300-abs.html
http://dx.doi.org/10.3414/ME16-02-0002
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324

	Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review
	Abstract
	Background
	Objective
	Data Sources
	Study Eligibility Criteria
	Study Appraisal and Synthesis Methods
	Results
	Conclusions

	Introduction
	Methods
	Literature Search Strategy and Study Selection Process
	Data Extraction Process
	Assessment of Study Quality

	Results
	Database Search and Paper Lists
	Sensor Set-Ups
	Exercises Investigated Versus Study Design
	Qualitative Review
	Measurement Validation
	Exercise Detection
	Movement Classification


	Discussion
	Sensor Set-Ups
	Measurement Validation Studies
	Exercise Detection Systems
	Movement Classification Systems
	Review Limitations
	Practical Implications

	Conclusion
	References




