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Abstract As major sporting events are often held in hot

environments, increased interest in ways of optimally heat

acclimating athletes to maximise performance has

emerged. Heat acclimation involves repeated exercise

sessions in hot conditions that induce physiological and

thermoregulatory adaptations that attenuate heat-induced

performance impairments. Current evidence-based guide-

lines for heat acclimation are clear, but the application of

these recommendations is not always aligned with the time

commitments and training priorities of elite athletes.

Alternative forms of heat acclimation investigated include

hot water immersion and sauna bathing, yet uncertainty

remains around the efficacy of these methods for reducing

heat-induced performance impairments, as well as how this

form of heat stress may add to an athlete’s overall training

load. An understanding of how to optimally prescribe and

periodise heat acclimation based on the performance

determinants of a given event is limited, as is knowledge of

how heat acclimation may affect the quality of concurrent

training sessions. Finally, differences in individual athlete

responses to heat acclimation need to be considered. This

article addresses alternative methods of heat acclimation

and heat exposure, explores gaps in literature around

understanding the real world application of heat

acclimation for athletes, and highlights specific athlete

considerations for practitioners.

Key Points

Post-exercise sauna bathing and/or hot water

immersion may represent a practical means of

implementing heat acclimation (HA) in athletes

when barriers to traditional exercise-based HA are

present.

To optimise HA, the timing of implementation, sport

specificity and other concurrent training sessions

should all be considered in order to maintain training

quality and maximise performance in the heat.

Several unique athlete considerations, including their

history and physical characteristics, should be

understood by practitioners before implementing HA

protocols, as individual characteristics often elicit

different heat stress and HA responses.

1 Introduction

Several major sporting events are held each year in hot

environments. Some of the largest high profile events,

including most Summer Olympic Games, the Tour de

France, the FIFA World Cup, as well as several annual

World Cups and World Championships are held in the

summer months when high temperatures are often expec-

ted. For athletes and support teams preparing for pinnacle

events, executing performance to their maximum potential

is of the utmost importance. Heat-induced performance

decrements can range from 6 to 16% in trained athletes
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during endurance and team sport events [1–3], while lack

of acclimation is a major risk factor for exertional heat

injury (EHI) [4]. Heat acclimation (HA) or acclimatisation

involves repeated exercise sessions in hot conditions

(typically *30–40 �C, 20–60% relative humidity (RH) for

athletic circumstances) either by artificial means (accli-

mation; heated room or chamber) or outdoors (acclimati-

sation; hot ambient temperature), and is a routine strategy

employed to induce physiological adaptations that will

attenuate heat-induced performance impairments and offer

protection against heat stress and EHI [5–7]. Recent con-

sensus recommendations offer practitioners an under-

standing of the key concepts needed to prescribe HA for

individual and team sport athletes [8, 9]. Briefly, these best

practice guidelines state that HA should be comprised of

daily *60 min training sessions in hot conditions for a

minimum of 1 week, and ideally over 2 weeks to achieve

further thermoregulatory and performance benefits. The

HA protocol should mimic the event demands while

inducing high sweat rates and increased body (skin and

core) temperature [9].

A number of scenarios have been proposed in the litera-

ture to administer HAwithin an athlete’s season tomaximise

performance in hot conditions, including pre- or in-season

training camps to augment the training response, or as a taper

tool when training volume is reduced and high-intensity

quality is to be maintained [8, 9]. While such recommen-

dations are based on decades of evidence, limitations and

barriers to adhering to such guidelines, within the context of

elite athlete training needs, pose frequent conundrums for

coaches and sport scientists. In short, best practice guidelines

are often not entirely attainable within the confines of highly

demanding physical preparation and travel, which are nec-

essary requirements for the elite athlete. The purpose of this

current opinion piece, therefore, is to review alternative

methods of HA and heat exposure, explore the gaps in lit-

erature for understanding how HA might be integrated into

an athlete’s existing training program, and highlight specific

athlete considerations for practitioners.

2 Alternative Heat Acclimation (HA) Methods

Sport-specific HA, simulating competition-like conditions,

is now considered best practice HA for athletes [9]. Unfor-

tunately, several barriers may prevent athletes from

achieving HA in this way, especially for those athletes living

in cold-to-temperate climates. HA protocol design chal-

lenges may include limited access to environmental cham-

bers, constrained training modes not attainable within the

small confines of most environmental chambers, high costs

associated with international travel to conduct heat camps,

and potential interference that HA may have with higher-

prioritised training phase objectives.Alluring alternativeHA

strategies for athletes, such as post-exercise hot water

immersion and sauna bathing, have been shown to elicit the

desired physiological adaptations [10, 11], while overcom-

ing the aforementioned barriers that traditional HA present.

These HA alternatives and their reported effects are sum-

marised in Table 1 and described briefly below.

2.1 Hot Water Immersion

Hot water immersion applied in untrained men as a form of

passive HA has been shown to enhance thermoregulation

[12–14] and improve exercise performance in the heat [11].

In one study, seven 45-min hot water baths (44 �C) com-

pleted over a 2-week period were shown to reduce thermal

and cardiovascular strain, through reductions in core tem-

perature (0.30 �C) and heart rate (12 beats/min (bpm)) [13];

an effect comparable to what is typically shown after con-

ventional short-termHA[15]. Likewise, Zurawlew et al. [11]

showed reductions in both resting (0.27 �C) and end-exer-

cise (0.28 �C) core temperature, as well as a 4.9%

improvement in 5-km run time trial (TT) performance in hot

conditions (33 �C) following six consecutive post-exercise

hot water baths (40 min running at 65% maximal oxygen

consumption ( _VO2max) in 18 �C; 40 min bath in 40 �C
water). This performance improvement seems meaningful

given that the coefficient of variation (CV) for a 5-km TT

performance is 2% [16]. Given many training facilities have

hot baths available to athletes for hydrotherapy purposes, hot

water immersion holds potential as an accessible and time-

efficient means of inducing HA. Further research with

trained individuals is needed to understand the effects of hot

water immersion compared with best practice HA methods.

2.2 Post-Exercise Sauna

The high thermal load (80–100 �C, 10–20%RH) imposed by

sauna bathing presents its use as a potentially practical HA

approach. Sauna bathing in a rested state has been shown to

impose considerable heat stress, resulting in increased core

and skin temperature, sweat rate and heart rate [17]. Consec-

utive days of sauna bathing in healthy untrainedmen has been

shown to increase heat tolerance after only3-day exposures, as

evidenced by reductions in core temperature [18]. Sauna

exposure immediately following a training session may

enhance the thermoregulatory-adaptive response, as core

temperature, considered a key contributor to HA-induced

adaptations [19], has been shown to rise to a greater extent

compared with sauna bathing without exercise [20]. Further-

more, post-exercise heat stress may additively enhance

endurance training-induced mitochondrial function through

increased citrate synthase enzyme activity [21]. To date, only

two studies have reported on the use of post-exercise sauna
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bathing in trained athletes; however, neither study examined

the typical spectrumofHA-induced adaptations [10, 22].Both

studies used *10–15 post-exercise sauna sessions and

reported significant plasma volume expansion (7–17%)

[10, 22]. Only one study showed a possible improvement in

running performance, equivalent to a *2% improvement in

5-kmTT performance in temperate conditions [10], and equal

to the performance test CV [16]. Similar to hot water

immersion, post-exercise sauna bathing may be more acces-

sible than heat chambers for some athletes, and can be con-

veniently added to a training schedule with minimal

disruption. While post-exercise sauna bathing is currently

recommended by specialists as an HA alternative [9], no

studies have reported its efficacy to induce thermoregulatory

adaptations and enhance performance in hot conditions.

3 Integration with Training

3.1 Prescription and Periodization

The majority of HA-induced adaptations (reduced body

temperature, cardiovascular strain, perceived effort and

discomfort) are actualised following short-term HA

(4–7 days) [23], with further thermoregulatory (increased

sweat rate) [24] and exercise capacity enhancement [25]

requiring moderate-term HA (8–14 days) or even long-

term HA (C15 days). Long-term HA, though often over-

looked as an HA strategy for athletes, may have merit for

athletes preparing to perform ultra-endurance events in the

heat, as longer-term HA has been shown to enhance

molecular and cellular adaptations leading to improved

cardiac contractile efficiency during exercise in the heat,

and a greater accumulation of heat shock proteins, albeit in

untrained animal models [26]. Direct comparisons of dif-

fering HA intervention length on performance outcomes

would aid the development of HA dose recommendations

based on competition length, thus providing an evidence-

based menu that practitioners could refer to. For instance,

long-term HA may be more optimal for endurance events

over 2 h, where larger heat performance decrements are

often evident (*3%) compared with middle-distance

events (1%) [25], in which short- to moderate-term HA

may be sufficient.

The appeal and ease of implementing short-term HA

within an athlete’s training schedule has driven research to

determine the minimal dose of HA required to elicit ther-

mal adaptations and enhance performance in the heat.

Table 1 Passive heat acclimation strategies using hot water immersion (HWI) and post-exercise sauna bathing (PES)

Study Participants Intervention Protocol Conditions Physiological
responses

Performance test

Bonner
et al.
[12]

n = 5

Male;
untrained

HWI
(whole
body)

13 9 60 min controlled
hyperthermic HWI

HWI
*41 �C;
Ta = 40 �C

; Tc, ; HR, : sweat rate, :
PV (6.7%)

None

Brazaitis
et al.
[13]

(Exp)
n = 13;
(Con)
n = 12

Female and
male;
untrained

HWI (lower
limb)

7 9 45 min HWI sessions over
2 week; alternate days

HWI
*44 �C;
Ta = 23 �C

0.30 �C ; Tc, 12 bpm ;
HR, 0.3 L�h-1 : sweat
rate, 1.0 AU ; PSI

; Central and peripheral
fatigue w/hyperthermia;
no D post HA

Shin et al.
[14]

n = 9

Male;
untrained

HWI (lower
limb)

10 x 30 min HWI sessions over
3 week; alternate days

HWI
*42 �C;
Ta = 26 �C

0.13 �C ; Tc, 0.2 L�h-1 :
sweat rate

None

Zurawlew
et al.
[11]

(Exp)
n = 10;
(Con)
n = 7

Male; active

HWI
(whole
body)

6 x 40 min HWI sessions over
3 week; randomised between-
subjects control trial

*40 �C 0.36 �C ; Tc, 6 bpm ; HR,
$ sweat rate, 0.5 AU ;
PSI

4.9% ; 5-km TT in 33 �C

Scoon
et al.
[10]

n = 6

Male; mod-
trained

PES *13 x 30 min PES sessions over
3 week; randomised crossover
control trial

*90 �C 7.1% : PV, unclear 3.5% :
RCV

32% : TTE (*2% ;
5-km TT)

Stanley
et al.
[22]

n = 7

Male; well-
trained

PES 10 x 30 min PES sessions;
consecutive days

87 �C 11%
RH

17.8% : PV, 15.6% ;
HRR60s

None reported

All reported increases (:) or decreases (;) were significant changes

AU Arbitrary unit, Con control group, Exp experimental group, HA heat acclimation, HR heart rate, HRR60s heart rate recovery at 60 s, mod moderately,
HWI hot water immerson, PES post-exercise sauna, PSI physiological strain index, PV plasma volume, RCV red cell volume, RH relative humidity, Ta
ambient temperature, Tc core temperature, Tsk skin temperature, TT time trial
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Rapid HA with just 2 days of twice-daily HA was recently

shown to improve 3-km TT running performance (3.5%) in

hot conditions (30 �C, 60% RH) in moderately-trained

males [27]. Five sessions of short-duration (27 min) high-

intensity intermittent HA, over a 9-day normal training

period, in Australian Rules Football players reduced RPE,

thermal discomfort and blood lactate during a submaximal

heat stress test in hot conditions (*38 �C, 30% RH) [28].

Core temperature, sweat rate and heart rate were unaffected

by these low-volume short-term HA protocols, supporting

the notion that HA strategies should include a minimal

duration at which an athlete’s core temperature is elevated

[29]. However, caution is warranted when attempting

‘rapid’ short-term HA strategies, as the protective effects

(reduced core temperature and heart rate; increased sweat

rate) that longer-term HA elicit appear to be lacking, and

therefore these strategies may not sufficiently eliminate

heat-induced performance impairments nor reduce an ath-

lete’s risk of EHI [4, 25].

The periodisation of HA poses complex questions

around how best to schedule HA into an athlete’s training

and competition calendar, where multiple events held in

hot environments are likely throughout a competitive sea-

son. While more evidence is needed around its application

in highly-trained populations, current literature has shown

that adaptations following HA appear to decay after

2–4 weeks depending on HA length [30], while re-accli-

mation may occur with fewer sessions [31, 32]. As highly-

trained individuals may have slower rates of HA decay

[33], and because periodic exposure to heat following HA

can allow for the retention of HA over several weeks [34],

it may be worth periodising HA intermittently throughout a

competitive season. Furthermore, a ‘thermal memory’ or

‘thermal plasticity’ concept may exist, where rapid re-ac-

climation is possible in those who have used HA routinely

[19]. These concepts were recently applied in a case study

where HA decay was perhaps lessened following 2 weeks

of HA in an elite sailor [35]. Indeed, 2 days of consecutive

re-acclimation provided further thermoregulatory

enhancement [35], and is supported by similar findings in

occupational settings [31, 32]. Figure 1 offers an example

of how HA might be implemented in the build-up phase for

athletes departing for a competition in hot conditions.

Introducing HA 2–3 weeks prior to travel, combined with

re-acclimation sessions before departure, poses an attrac-

tive strategy to ‘top up’ heat tolerance adaptations fol-

lowing a period of HA decay, and may alleviate training

disruptions caused by repeating subsequent HA periods.

More work is needed to understand how to optimise the

periodisation of HA within an athlete’s annual training

plan.

3.2 Concurrent Training Considerations

The training programme structure of an elite athlete is

often complex and multifaceted, with multiple layers of

stress applied at various times, altogether aiming to

develop the physical and mental resiliency needed for peak

performance. When heat stress is added to training, coa-

ches and sport scientists must consider the impact that HA

will have on the athlete’s overall state of stress. For

example, heat stress on top of normal training stress is

likely to impact upon an athlete’s overall sympathovagal

balance [36–39] and resulting hypothalamic-pituitary-

adrenal axis response [40]. While recommendations have

been made to adjust overall training intensity, volume and

recovery practices during periods of HA [25], detail is

lacking on exactly how practitioners should do so.

Horowitz [19] explains that heat stress is a potent stimulus

affecting every cell of the body, translating to heat-induced

augmentations in sympathetic nervous system activity [41],

cardiac strain [42] and rate of fuel utilisation [43, 44], thus

resulting in an increased energy cost for a given exercise

intensity [45]. Such added stress has been shown to not

Fig. 1 Overview of the periodised heat acclimation (HA) protocol

used for two elite Laser sailors preparing for the world championships

in Oman. A 4-week mesocycle included three heavy-build weeks and

one recovery week (TSS = training stress score). HA [35 �C, 65%
relative humidity (RH)] occurred during the first week with a heat

response test (HRT) on day 1 and day 5 of HA. HRTs were repeated

during the two following weeks of decay, and 3 days post re-

acclimation (RA). Reproduced from Casadio et al. [35], with

permission
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only amplify internal training load [46], but could poten-

tially impair an athlete’s ability to recover for subsequent

training sessions [47]. This scenario provokes questions as

to how concurrent training should be structured around

HA, which sessions heat should be added to, and how

subsequent routine training sessions should be adjusted

based on prior heat stress.

It seems logical to use sport-specific exercise modes for

HA sessions that provide opportunities for athletes to

simulate competition in hot conditions to fine tune pacing

and cooling strategies prior to competition [48]. However,

a number of authors speculate that low- to moderate-in-

tensity sessions may be performed best in the heat during

HA periods, and that so-called ‘key’ training sessions of

higher-intensity might be performed in cool conditions, to

avoid reduced training quality that could potentially lead to

a diminished high-intensity stimulus and associated

peripheral adaptations over an extended HA period

[25, 48]. Conversely, key sessions may warrant their place

in the heat chamber in sports where there is an anaerobic or

power component. For example, a recent comparison of

low- [90 min at 40% maximal aerobic power output

(Pmax)] versus high-intensity (5 9 3 min at 70% Pmax,

3 min at 30% Pmax) HA resulted in performance

enhancement that was somewhat specific to the type of HA

undertaken [49]. Specifically, low-intensity HA resulted in

improved 20-km TT endurance performance (5.9%), while

high-intensity HA showed improvements in anaerobic

performance (early sprint peak power output, vertical

jump, counter-movement jump), without performance

changes in the 20-km TT [49]. As with normal variations in

training intensity, perhaps a combination of high- and low-

to-moderate-intensity training in the heat would elicit a

wider range of performance benefits in the heat for sports

with multiple performance determinants. In addition,

introducing high-intensity HA sessions may be best placed

following 2–3 days of HA once initial adaptations to the

heat have occurred, thus supporting the maintenance of

intensity in hot conditions.

Athletes undergoing HA could be training up to 2–3

times per day, yet an understanding of how previous and

subsequent routine training sessions surrounding HA may

affect an athlete’s response is largely unexplored and

possibly overlooked by practitioners. Exercise-induced

muscle damage, through high-volume eccentric training,

has been shown to increase core temperature (0.2–0.3 �C)
during a subsequent exercise bout and may be explained by

an augmented inflammatory response [50, 51]. However,

this eccentric training-induced increase in heat strain is

diminished with repeated bouts of eccentric training (re-

peated bout effect) [52]. Practically speaking, if eccentric

training is introduced during a period of HA, heat strain

may be elevated during the initial days. Interestingly, heat

strain itself imparts a prophylactic effect against muscle

damage [53], so it might be used as a tool in endurance

athletes, i.e. heat applied in the period before introduction

to eccentric resistance training to reduce muscle soreness.

In addition, low-intensity short-term HA (5 days; 90 min

of cycling at 40% of power) has been shown to reduce

mean and peak torque during a maximal voluntary con-

traction [49]. This finding supports the concept that

endurance-based HA might impair training quality and

adaptive responses during routine concurrent resistance

training. In contrast, some have shown that applying heat to

skeletal muscle, with or without resistance training, can

augment maximal force and muscle cross-sectional area

over a 10-week period in untrained men [54, 55]. Mecha-

nistic studies have shown that heat stimulates the

Akt/mammalian target of rapamycin (mTOR) signalling

pathway, a key regulator of protein synthesis and hyper-

trophy [56, 57]. Thus heat, applied in various ways, could

provide an ergogenic effect when combined with resistance

training. In summary, practitioners should consider the

effects of HA on concurrent resistance training sessions.

Introducing eccentric training during a period of HA

should be avoided when the maintenance of a specific heat

strain level during HA is required. Long-duration endur-

ance sessions in the heat may impair the quality of con-

current resistance training. Finally, heat may be used as a

training tool to incur protection against muscle damage or

to augment muscle strength and hypertrophy adaptations.

4 Athlete Considerations

As no two athletes are the same, the high variation in

individual responses to training [58–60] and environmental

stress [3, 61] is unsurprising. Understanding how each

athlete responds to added heat stress and acclimation

through repeat heat response testing is therefore key and

should be conducted well before any critical event in hot

conditions [3, 62]. Heat response tests can be sport-speci-

fic, be comprised of a steady-state effort, and/or include a

performance measure. The protocol should complement

normal training so it can be easily repeated, possibly

multiple times a season, to assess an athlete’s level of

acclimation. Simple measures, such as heart rate, sweat

rate, thermal perception and rating of perceived exertion

can be easily employed without specialised equipment,

while core temperature and plasma volume (or at least their

change) can add further valuable information if available.

High inter-individual variability in responses to heat

response testing can be expected, even within similar ath-

lete cohorts, which may be explained by several factors,

summarised in Table 2. These include sex differences

[24, 63, 64], differences in ethnicity [6, 65–68], athlete
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type [69], training status [33, 70–72], anthropometric

characteristics [73–77], previous HA [31–33, 35], history

of EHI [78, 79], and sleep quality and duration [78]. For

female athletes, thermoregulatory changes due to men-

strual cycle phase [80–83] and oral contraceptive use

[84–86] could cause false-negative or -positive responses

to heat response testing following HA, and should be

noted prior to any thermoregulatory assessment. In addi-

tion, practitioners working with female athletes should

consider that HA induction may require moderate-term

HA [81, 87], as short-term HA may be less effective in

females [88] compared with males [24]. Paralympic ath-

letes require special considerations when training and

competing in the heat, especially those with spinal cord

injuries whose sudomotor cooling capacity is limited

[89–91]. Finally, there is merit in discerning the immune

status of an athlete prior to HA commencement. Indi-

viduals presenting with a fever or upper respiratory tract

infection are predisposed to EHI [92, 93] and should not

perform HA sessions for risk of further harm to

themselves and their fellow athletes. Although HA does

not appear to alter the immune response in healthy indi-

viduals [25, 94], athletes with suspected immune sup-

pression may avoid further inflammatory exacerbation by

avoiding HA sessions.

5 Perspectives

The purpose of this current opinion piece was to address

practical considerations for integrating HA within an ath-

lete’s programme and stimulate new research. When con-

sidering an HA approach several factors need to be

reviewed in order to determine the appropriate heat load

(temperature and humidity), mode, intensity, duration,

frequency and periodization of adding heat to the existing

training plan (Fig. 2). Often the priorities of training and

the confines of an athlete or team’s schedule and location

outweigh the ability to implement best-practice HA.

Advancing research offers potential solutions to overcome

Table 2 Possible factors contributing to individual athlete responses to heat response testing and acclimation

Factor Influence on heat response testing Influence on HA

Sex Females have a higher threshold for sweating onset and reduced

sweating output compared to males [63, 64]

Females may require MTHA to achieve reductions in Tc and

HR seen in males with STHA [24]

Ethnicity Individuals from hot climates may have greater HSP content

and enhanced sudomotor function [6, 65–68]

Faster HA kinetics in individuals from hot climates [59]

Athlete type Enhanced evaporative cooling in endurance versus sprint

athletes [69]

Specific athlete type differences unknown, however, can

relate to _VO2max (see below)

Training status Higher _VO2max relates to greater HSP content and exercise heat

tolerance [33, 70, 72]

Higher _VO2max relates to faster rates of HA induction and

greater heat tolerance following HA [33, 70]

Body size Larger body size results in lower body surface area to body

mass ratio, and higher heat strain in body mass dependent

exercise [73, 74]

Not specified in literature

Body

composition

Higher adiposity and mesomorphy results in a faster rise in Tc
[75–77]

Higher adiposity is directly related to _VO2max (see Athlete

type) [70]

HA history Reduced heat strain in subsequent HRT with *2–4 week of

prior HA [30–33, 35]

HA may occur more rapidly with 2–4 sessions [31, 32, 35]

EHI history Possible early test termination and higher end Tc [78] HA is possible; some may require repeated HA

interventions until enhanced heat tolerance is shown

[78, 79]

Menstrual cycle Tc reduction (0.1–0.2 �C) and increase (0.2–0.5 �C) prior to
and following ovulation, respectively [82–84]

Females can heat acclimate, regardless of menstrual cycle

phase, following MTHA [24, 81, 87] STHA may be less

effective [24, 88]

Oral

contraceptives

Combined pill use causes higher Tc (0.5 �C) and cyclical

fluctuations may be dampened Progesterone-only pills reduce

Tc (0.6–0.7 �C) [84, 85]

Oral contraceptive users can acclimate similarly to non-

users [86]

Spinal cord

injury

Inability to sweat below the site of injury [90]; reduced exercise

intensity for a given rise in Tc with greater lower body heat

storage [91]

Partial HA through reduced Tc and PV expansion, without

changes in sweat rate [89]

Immune status Fever or URTIs may increase EHI risk [92, 93] HA may not change immune markers but increases

protection from EHI [94]

EHI Exertional heat injury, HA heat acclimation, HR heart rate, HRT heat response test, HSP heat shock protein, MTHA moderate-term HA,

STHA short-term HA, Tc core temperature, URTI upper respiratory tract infection, _VO2max maximal oxygen consumption, w week
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common barriers to HA. Alternatives to conventional HA

through post-exercise hot water immersion and sauna

bathing add little disruption to normal training and may be

used to induce HA adaptations if sport-specific training

cannot be performed in a hot environment. While some

form of heat exposure prior to competition in the heat

would be better than none at all, caution is nevertheless

warranted when using alternative forms of HA, and ther-

moregulatory markers should be monitored to measure heat

adaptation progress. Before the length and intensity of HA

are chosen, practitioners should consider the event duration

and demands, and be aware that short-term HA may not

induce the thermoregulatory and performance enhance-

ment that longer-term HA provides. Implementing a re-

acclimation strategy prior to an event in hot conditions may

offer flexibility for athletes and their schedules when other

key elements of training are more crucial. When adjusting

routine training, the added stress imposed by HA should be

considered, and the volume and intensity of other routine

training in normal conditions may need to be reduced based

on physiological and subjective athlete feedback during a

heat camp. Finally, understanding individual athlete

responses to heat stress and HA will assist practitioners to

tailor protocols to their individual needs.

6 Conclusion

Heat strain associated with exercise in hot conditions has a

negative impact on exercise performance. HA improves

thermoregulation and cardiovascular stability, and attenu-

ates heat-induced performance impairments. While the

present HA guidelines provide a sound starting point for

practitioners working with athletes, new research aimed at

reducing the limitations and barriers of translating evi-

dence-based guidelines to the real world of elite sport is

needed. Alternative HA methods may be beneficial and

easier to apply with athletes. An understanding of how HA

may affect established training load would assist practi-

tioners towards optimising the implementation of HA

within the complex intricacies of an athlete’s training

programme. Finally, the unique individual athlete response

to HA should be considered when attempting to achieve

optimal performance outcomes in hot condition events.
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