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Abstract Over recent decades, the use of player tracking

technology to monitor physical work output has become

established practice in many team sports. Early tracking

systems were manual in nature, relying on subjective

assessments and arbitrary classifications of movement

intensity. Poor spatial and temporal resolution meant that

only gross displacement measures could be used to infer

energy demands. However, the advent and evolution of

automated systems, with higher sampling rates and

improved accuracy, have enabled data collection to occur

on a mass scale, and served as a catalyst for extensive

research into the demands of team sport activity, including

comparisons between different groups of athletes, and the

effects of various interventions on performance. The

inherent assumption with this research is that, based on

steady-state models where energy cost is independent of

speed, total distance and average speed are indicative of the

amount and rate of work done, respectively. This

assumption could be justified if the activity was performed

at a constant speed in a straight line. However, team sport

movement involves continual changes in both speed and

direction, both of which increase energy cost. Accordingly,

new models have emerged that incorporate both speed and

acceleration to determine metabolic power. This provides a

more complete measure of energy expenditure in inter-

mittent activity, and is potentially more suitable than dis-

placement variables for research into the demands of team

sports.

Key Points

Player tracking technology is used extensively in

team sports to quantify physical demands and energy

expenditure.

The underlying assumption that displacement

variables reflect energy cost is applicable only when

activity is performed in a constant speed, straight-

line manner.

Changes in speed and direction increase energy cost

and should be considered when assessing movement

demands in team sport.

1 Introduction

Since as far back as 1931 [1], investigators have tracked

players in competition to quantify movement patterns and

infer the energy demands of team sport activity. Since then,

and particularly in recent times, it has become established

practice to use total distance and average speed as indi-

cators of the amount and rate of work done, respectively.

Moreover, these displacement variables are used as a basis

for making various comparisons of match demands (e.g.

between positions or competition levels) and to assess the

impact of various interventions on performance. It could be

argued that, by default, distance and speed have become

the criterion measures when assessing team sport energy

demands. However, based on metabolic analysis of inter-

mittent activity, it is apparent that the energy demands of

team sport competition (and training) are under-estimated

when it is assumed that movement is executed at a constant
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pace, rather than the perpetually changing series of accel-

erations and decelerations typically seen in team sports.

Accordingly, the energy cost of constantly changing speed

must be considered in order to more comprehensively

understand the energy demands of team sport activity.

The purpose of this review is to describe how dis-

placement variables have been used to infer energy

expenditure in team sports, and to determine whether

energy cost principles based on steady-state, constant

speed exercise are appropriate for intermittent, variable-

speed activity. Whilst it is acknowledged that non-loco-

motor actions, such as jumping and tackling, contribute

substantially to the energy and physical demands in many

team sports, this review focuses on how locomotor

activity has been used to estimate energy demands in

team sport competition. Studies utilising player tracking

techniques to assess the physical demands of team sport

competition were retrieved from numerous sources,

including electronic databases and manual searches.

Throughout this manuscript, displacement variables is

used as a collective term to describe measures of distance,

speed and acceleration, in accordance with previous

research in this area [2, 3].

2 Evolution of Player Tracking Technology

An initial impetus for indirectly determining energy

demands via displacement variables was that direct phys-

iological assessment was neither possible nor practicable,

particularly for official competition. Without the capability

to measure variables such as oxygen consumption, heart

rate or changes in core temperature, alternative methods to

assess physical workload were required. Distance covered

was considered to be a measure of mechanical work output,

and was therefore proposed as a surrogate measure of

energy expenditure, given the direct relationship between

these two variables [4].

2.1 Manual Tracking and Classification Methods

In the absence of the purpose-built player tracking tech-

nology widely available today, early investigations relied

on more primitive methods of assessment, although some

ingenious techniques were devised to track player posi-

tion. In the 1930s, for example, investigators etched a

basketball court to scale onto a small tin sheet, and then

traced the movement of players with a brass wheel

encoder [1], with each half inch rotation of the wheel

corresponding to 2 feet of movement on the court, which

‘‘seemed to measure very accurately’’ (p. 57). Somewhat

less sophisticated was the use of graph paper, drawn to

scale to depict a water polo pool, with player movements

traced using different coloured pens, each signifying a

different speed band [5]. Even cartographers have been

called upon to accurately reproduce scale diagrams of an

Australian Football oval [6]. For the most part, however,

early team sport time–motion analyses relied on manual,

subjective and often paper-based techniques to record and

classify movement in a range of sports, including soccer

[4, 7–9], Australian Football [6, 10], water polo [5, 11],

rugby [12, 13], hockey [14, 15], lacrosse [16], volleyball

[17] and basketball [18].

Although detailed methodologies were not reported in

some early papers [19, 20], a common approach was to use

reference points such as field/court markings to estimate,

rather than directly measure, distance covered in each

discrete movement [4, 5, 17]. Even advertising hoardings

and mowing patterns in the grass [4] were used to assist in

making more precise estimates. Grid patterns have also

been super-imposed over an image of the playing area to

more accurately pinpoint the position of players and track

their movements [11, 21]. More contemporary manual

tracking methods include voice-recognition software [22]

and movement tracing onto a scaled computer tablet [23].

Rather than estimate distances, investigators simply

reported the time spent in various locomotor categories

(e.g. walking, jogging, running, sprinting) [12–15, 18],

although others extended this and determined the mean

speed for each particular movement, and then multiplied it

by time spent in that movement to approximate distance

covered [9, 10]. Additionally, investigators have measured

the average stride length for a player in each locomotor

category, counted the number of strides taken in those

categories, and then multiplied these two values to deter-

mine distance [4, 7, 16]. A similar approach was adopted

using stroke length in water polo [24].

Whilst these analyses generally reported acceptable re-

liability [4, 10, 14, 24], the manner in which the data were

collected (i.e. categorical rather than numerical) meant

they had poor spatial and temporal resolution [25], and

were therefore insensitive to anything other than gross

displacement measures such as total distance and average

speed. An ability to detect and measure the continual

changes in speed (including fluctuations within nominated

locomotor categories) was not possible, and speed was

assessed according to subjective classifications of running

mode, rather than by direct measurement. Other limitations

with these methods included only being able to analyse one

player at a time—and only after a match—rather than

analysing all players or positions within a team, the need

for significant training of the observer and, in some cases,

only analysing part of, rather than the entire, match [26].

Consequently, manual player tracking systems were used

mostly for university-based research projects [27], rather

than in applied sport settings.
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2.2 Automated Player Tracking Systems

In recent times, purpose-built automated team sport

player tracking systems (i.e. incorporating hardware and

software) have become commercially available, and are

widely used in elite international competition [28, 29]

and professional sports leagues [27, 30]. They are

available in a variety of technologies across three broad

categories [31]: (1) camera-based visual recognition

systems; (2) local position measurement (LPM); and (3)

satellite signal reception [global positioning system

(GPS)]. Multi-camera systems are non-intrusive [32],

whereas the latter two categories require the player to

wear a device that either transmits their location to an

array of base-stations [33] or scans for signals from

satellites orbiting overhead [2]. Visual systems have the

advantage of being able to track all players, including

the opposition team and referee, and in some cases can

also follow the ball [32]. Signal-based systems are lim-

ited to those players actually wearing a device, although

contemporary studies usually include the whole team,

including bench players [34]. Visual and LPM systems

require permanent or temporary installation of equipment

around the playing area. Conversely, satellite systems

require no additional equipment, and can therefore be

used wherever competition or training occurs, but are

limited to outdoor locations. LPM systems utilise various

signals, including radio frequency [33, 35, 36] and

electro-magnetic wavelength [37] identification.

In addition to the aforementioned factors, the type of

tracking system utilised is partly dependent on the rules of

the sport. Because wearable technology has hitherto been

prohibited in soccer during official competition [38],

camera-based systems, such as Amisco� [39] and

ProZone� [40], are typically employed [41]. In sports

where no restrictions exist (e.g. hockey [28, 42], Australian

Football [30, 43]), GPS technology, in particular, has

become an established player-tracking method. For indoor

sports where GPS signals cannot be accessed, LPM is an

emerging alternative [33]. Other factors, such as the size of

the playing area (and therefore the distance over which

signals must be transmitted), robustness of devices and

player safety, must also be considered when deciding on a

particular tracking method [44].

Visual tracking systems have been shown to be reliable

across a wide range of speeds incorporating both straight-

line and change of direction movements [40], and to be

accurate for both averaged [45] and instantaneous [46]

speed and game-specific movements in real time [47]. LPM

has been shown to be highly accurate in measuring distance

and speed over short agility courses [35] and soccer-

specific circuits [36]. Whilst not reliable for assessing

dynamic movements or instantaneous speeds [29], they

were accurate for measuring mean, but not peak, acceler-

ation and deceleration [48].

For GPS tracking systems, initial validation studies

demonstrated some suitability for quantifying total distance

and average speed [49, 50], but reliability was reduced

when measuring distance covered at high speed [51], rapid

changes in speed over a short distance [52] and speed on a

non-linear path [53]. Furthermore, devices with a low

sampling rate (1 Hz) were reliable when reporting total

movements over extended periods, but not accurate in

measuring brief, discrete efforts, especially at high speed

[52] or in a confined space [54]. It must be noted, however,

that some validation methods used in early studies, such as

timing gates or trundle wheels, are questionable [2]. Newer

devices with a higher sampling rate (10 Hz) demonstrated

improved reliability for measuring speed [50, 55]—par-

ticularly at high speed [56]—and acceleration [57],

although instantaneous speed measures became less reli-

able when acceleration rose above 4 m/s2 [58]. Measure-

ment of high-speed activity over short distances and/or

brief periods has also improved [59], but is compromised in

the event of rapid directional changes [60]. The accuracy

and reliability of 10 Hz GPS devices to detect instanta-

neous displacement measures have been established

against criterion measures of 32 Hz radar [56] and 2000 Hz

laser [58].

Although the reliability and accuracy of GPS tracking

systems have improved, limitations remain, particularly

with respect to identifying and measuring rapid changes in

speed [61]. Furthermore, many validation studies utilise

pre-planned movement patterns, which do not necessarily

replicate the reactive changes in motion typical of team

sports. In addition, whilst validation studies are often

conducted in open environments, many sports are played in

large stadia, which may interfere with signal reception and

compromise accuracy.

Some investigators have explored the comparability and

interchangeability of various automated player tracking

methods and brands. An early comparison found large

differences between systems for total distance and also

across various speed bands, but good agreement with

respect to detecting relative changes over the course of a

soccer match [62]. Similar results were found in a direct

comparison between visual and GPS systems, in which the

camera-based system reported lower total distance but

greater high-intensity distance in a competitive (reserve

grade) soccer match [63]. More recently, trivial to small

differences for total distance between a visual, LPM and

two separate GPS systems were incorporated into a

regression equation to allow integration of data obtained

from the various systems [64].

Irrespective of the actual measurement technique,

automated player tracking systems directly measure player
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location with comparatively high resolution and at a high

sampling rate. In contrast to manual systems, they can

provide instantaneous displacement measures (i.e. distance,

speed, acceleration), and are therefore more sensitive to the

continually changing movement patterns typical of team

sport activity. Unlike manual systems, they are also able to

process multiple players simultaneously, usually in real

time.

3 Extent of Player Tracking Technology Use
in Team Sport Research

The ability to quantify and classify team sport movement

patterns on a mass scale and within a short timeframe has

seen a concomitant rise in the amount of published match

analysis research [65]. The expression of ‘work rate’ via

distance covered, based on the notion that total distance

determines energy expenditure irrespective of movement

speed [66], has enabled researchers to assess competition

demands and evaluate the impact of a range of variables on

physical performance [67]. By extension, in situations

where playing time is not equal, the expression of distance

covered per minute of playing time (i.e. speed) is an

appropriate alternative [27] which provides a ‘‘more

accurate reflection of match intensity than total distance

covered’’ (p. 1031) [68]. In recent team sport research,

displacement variables have been used as the criterion

measure to (1) describe the physical demands of competi-

tion; (2) compare physical demands between certain groups

or conditions; and (3) determine the effect of various

interventions or circumstances on physical demands. Dis-

placement variables have also been used as independent

variables, where their association with other performance-

related variables was assessed, and also in the design or

validation of various physical fitness tests or simulation

circuits.

3.1 Descriptive Studies—Typical Demands

of Competition

The total distance covered in a match has been used

extensively to indicate the overall physical demands of

competition in numerous sports. Unsurprisingly, given its

global reach, a large proportion of this research has been in

soccer [25, 69, 70], but analyses in hockey [42], rugby [71],

Australian Football [43] and basketball [72], for example,

have also been conducted. Many of these investigations

have focussed on a single team, although some studies have

described typical activity profiles across an entire league in

soccer [25, 73] and Australian Football [30]. In sports with

frequent player interchange (e.g. hockey, Australian Foot-

ball, basketball, lacrosse), distance covered has also been

reported per minute of playing time to allow for differences

in on-field duration between individual players [42, 43, 72,

74]. In addition to total distance and/or average speed, most

researchers usually report the distribution of movement

across various locomotor categories or intensity bands

(Barros et al. [25], Lythe and Kilding [42], and Coutts et al.

[43]), and also how that distribution changes over the

course of a match (e.g. between the first and second half).

The amount of high-speed running has been proposed as a

key marker of competition demands [75], although the

definition of high speed is not standardised, and often uses

arbitrary, generic values rather than individualised thresh-

olds based on physiological criteria [76].

Importantly, some studies have also reported the fre-

quency of a change in motion (i.e. mode and/or intensity),

which demonstrates the intermittent (or non-steady-state)

nature of team sport activity. For example, changes in

motion occur every 4.0 s in soccer [77], 5.5 s in hockey

[14], 2.0 s in basketball [18] and 6.2 s in water polo [24].

Given the capability of automated tracking systems to

measure instantaneous speed, more recent investigations

have also been able to assess acceleration characteristics in

competition, including their frequency, magnitude and

distribution [78, 79], as well as changes in them over the

course of a match [74, 80].

3.2 Comparative Studies—Differences

between Playing Groups or Conditions

In addition to describing the physical demands of compe-

tition, displacement variables have been used as the basis

for comparing those demands between and amongst groups

for a multitude of factors. The most common comparison

has been across player positions [74, 81–84]. Although

there are obviously differences in positional groups

between sports, and positional classifications within sports

are not standardised [67], a consistent finding seems to be

that midfield or roaming players tend to cover more dis-

tance than players with a more condensed playing area [30,

34, 81], whilst attacking players tend to cover a higher

proportion of their distance at high intensities [73, 85].

Besides positional comparisons, studies have also investi-

gated differences in displacement variables between sub-

stitutes and starters [86], and according to age [87], sex

[88], playing experience [89] and player calibre [29, 84].

The level and type of competition has been another

common theme for comparison. This has included different

level leagues within the same country [90], similar-level

leagues in different countries [91] and the same players

playing in different levels of competition [84]. Likewise,

comparisons have been made between domestic and

international matches [92], including evaluation of the

same player(s) competing in each of those competition
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levels [93]. Differences between league and tournament

play in basketball have also been evaluated [94].

Studies have also compared the accumulated distance

and average speed over the course of a match [74, 95,

96], across a tournament [28], at different stages within a

season [97], across multiple seasons [30, 98], and between

regular season and finals matches [99]. Numerous other

comparisons have been made, including when a team

[100] or individual [101] has possession of the ball

(compared to not having possession), zone versus man-

on-man defence [102], playing at home versus away [89,

103], winning versus losing teams [104] and higher-

versus lower-ranked teams [105]. Total distance and

average speed have also been used as a way of comparing

physical demands amongst multiple sports [106, 107].

With all of the comparisons outlined in this section, the

underlying assertion or inference is that higher distance

and speed represent higher match volumes and intensities,

respectively. The efficacy of this approach is discussed

below.

3.3 Displacement as the Dependent Variable—the

Effect of ‘X’ on Physical Performance

It has been proposed that ‘‘Motion analysis may be

employed to determine the effects of a training intervention

on competition work rate’’ (p. 858) [27]. In other words,

competition displacement variables can be used as the basis

for assessing the effect of a particular treatment, or sce-

nario, on physical performance. Consequently, the impact

of a vast array of factors has been investigated in recent

times [41], with displacement variables used as the

dependent variable. In addition to total distance and aver-

age speed, the amount and proportion of high-intensity

running is often used to indicate match workloads, in

particular to demonstrate a reduction in work rate over the

duration of a match [43, 108].

Direct game-related variables that have been evaluated

include the quality [45] and work rate [97] of the opposi-

tion team, prevailing score margin [109] and match status

(i.e. winning, drawing or losing) [110], playing formation

of the observed [111] and opposition [112] team, dismissal

of a player [113] and substitution frequency [114, 115].

Researchers have also examined the interaction between

various situational or contextual factors [103, 116]. Cir-

cumstantial variables such as ambient temperature [117,

118], altitude [119], prior air travel [120], time of day [89]

and a congested fixture period [121, 122] have also been

investigated. The influence of physical fitness on the

competition work rate has been established in soccer [123],

Australian Football [124] and basketball [125]. Variations

in distance or speed have been used as evidence of fatigue

and/or pacing [95, 108].

From an experimental perspective, several treatments or

interventions have been evaluated, with changes in total

distance and/or average speed during matches used to

demonstrate their efficacy. These include specific aerobic

conditioning [126], pre-cooling [127], half-time re-warm-

up [128] and recovery protocols [129, 130]. Nutritional

factors that have been assessed include hydration status

[131], carbohydrate intake [132], caffeine consumption

[133, 134] and multi-nutrient supplementation [135].

3.4 Displacement as an Independent Variable,

and Miscellaneous Uses

As well as determining the effect of various factors on

competition work rate, investigators have reversed the sit-

uation and assessed the influence of displacement variables

on other performance-related parameters or outcomes.

These include individual technical performance [96], team

positioning and tactical approach [136], team selection

[137] and final ladder position [138]. Displacement vari-

ables have also been used to identify the risk of soft-tissue

injury [139, 140] and muscle damage [141]. Finally, com-

petition displacement information has been used to validate

a range of field tests [142, 143], create match-specific

repeated sprint test protocols [144, 145] and design labo-

ratory-based simulation circuits [146, 147], where the

demands of intermittent activity appropriate to the sport can

be imposed in a controlled and consistent manner.

3.5 Summary

Whilst it has been stated that ‘‘no current method has been

accepted as the ‘gold’ standard approach to work rate

analysis’’ (p. 860) [27], it would seem that, in the supposed

absence of any alternative for measuring energy expendi-

ture in team sport activity, total distance and average speed

have assumed the role by convention—or default—and

continue to be used in this way in team sport research.

Whilst alternative approaches are continually evolving, the

sheer volume and scope of research demonstrates that

displacement variables are entrenched as indicators of

workload in team sports.

4 Issues and Limitations of Established Player
Tracking Analysis Techniques

The inherent assumption that distance and speed represent

the amount and rate of work, respectively, could be justi-

fied if the activity being assessed was performed at con-

stant speed in a straight-line, steady-state manner, where

the energy cost is known [148]. However, team sport

movement rarely occurs at constant speed, and instead

Estimation of Workload in Team Sports 661

123



typically involves a chaotic, unpredictable and perpetually

changing series of accelerations and decelerations, of

varying magnitude, duration and starting speed. This is

compounded by the fact that movement often entails

changes in direction and/or orientation, as well as numer-

ous static, vertical and skill-based actions. In any case,

according to the definition for work (mass 9 accelera-

tion 9 distance), the determination of energy expenditure

requires consideration not only of time and distance, but

also the absolute speed and the rate of change of speed

[149]. Therefore, the assumption that displacement vari-

ables are indicative of energy demands in team sport

activity is both dubious and erroneous, and it is time to

reconsider their use for this purpose.

Whilst automated tracking systems have made data

collection a relatively simple and expedient process, as

well as offering improved accuracy and reliability,

methods of data analysis have not evolved to the same

extent. Manual systems were restricted to gross measures

of displacement across chunks of time where, in effect,

data collected over a certain period were smoothed. This

approach persists despite the possibilities offered by cur-

rent technology, where a higher sampling rate provides

the ability to measure speed and acceleration instanta-

neously, and subsequently analyse the variability of

movement speed observed in team sport activity. In fact,

the more sensitive measurement techniques available

today have not been fully exploited. Whereas manual

tracking systems were not able to detect continual changes

in speed, modern analysis techniques mostly ignore these

variations. However, evidence of the energy cost of

intermittent, non-steady-state exercise suggests this vari-

ability must be considered when determining energy

expenditure in team sport activity. Accounting for the

energy cost of acceleration could potentially provide valid

estimates of energy expenditure during team sport activity

[150].

5 Energy Cost of Locomotion

The energy cost of human locomotion has been thoroughly

investigated [148, 151]. Unlike walking, where the energy

cost increases with speed, the energy cost of running is

independent of speed [152, 153]. In other words—and in

line with the assumptions outlined earlier—the amount of

energy required to run a given distance is the same, irre-

spective of the speed at which it is undertaken. Importantly,

however, the fixed relationship between energy cost and

running speed was established using (mostly) steady-state

responses to a series of constant speed efforts. Numerous

factors determine the actual energetic demands of loco-

motion, and the manner in which those factors contribute

and interact is most likely altered when speed is variable

and metabolic response unsettled.

5.1 Energy Cost of Constant Speed Locomotion

At low movement speeds on flat terrain, the energy cost of

walking is less than running, but that cost rises with

increasing speed so that at approximately 8 km/h it

becomes more economical to switch to a running action

[154], although the transition speed is lower when decel-

erating than when accelerating [155]. Given the propensity

of humans to seek the most efficient method of propulsion

[156], it makes sense that there are numerous transitions

between walking and running in team sport activity—and

consequent variations in energy demand per unit of dis-

tance covered.

Whilst researchers have found both increasing [157] and

decreasing [158] energy cost with higher running speed, it

is generally accepted—and demonstrated by research—that

‘‘the metabolic cost to run a given distance is not influ-

enced by running speed’’ (p. 28) [153] when running at a

constant speed on flat terrain. However, even at a constant

speed, it has been shown that the energy cost of running

increases with the distance covered, and that this increase

cannot be fully attributed to fatigue [159].

Although the energy cost per metre for high-speed

running is the same as for lower speeds, the attainment of

steady state is not possible, and consequently the duration

for which it can be maintained decreases rapidly as speed

approaches an individual’s maximum [160]. Whereas the

metabolic cost of running does not increase with speed, the

mechanical cost decreases [153]. This suggests a reduction

in metabolic efficiency (i.e. less mechanical work done per

unit of metabolic energy consumed) as speed increases,

particularly given the increased contribution of elastic

energy (with no metabolic outlay) at higher speeds [161].

With respect to the rate of energy expenditure, metabolic

power output can be determined as the product of energy

cost and speed [148].

5.2 Energy Cost of Variable Speed Locomotion

Because humans rarely travel at a constant speed in normal

activity—let alone whilst playing team sports—the energy

cost of walking and running at an oscillating speed has

been investigated [162]. Whereas the energy cost of

walking increased with the degree of oscillation, there was

no increase in energy cost for running at a mean speed of

11 km/h, with continual oscillations ranging from 0 to

±4 km/h over a 6 s period (i.e. 3 s excursion above mean,

3 s below). Whilst this was unexpected, the investigators

postulated that the elastic energy stored during each stride

at that speed was sufficient to meet the additional energy
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demands of the accelerations without impacting on meta-

bolic output. Although these findings suggest that fluctu-

ating speed does not increase energy cost, this was a

comparatively narrow oscillation range, with brief fluctu-

ations evenly and consistently distributed either side of the

average speed. Furthermore, only steady-state responses to

sub-maximal workloads were assessed. Hence, it is unclear

whether these findings would apply to the stochastic and

wide-ranging speed traces typically seen in team sport

activity.

5.3 Energy Cost of Acceleration and Deceleration

Compared with constant speed running, acceleration has

greater neural activation and a higher metabolic cost,

which is partly explained by a larger contribution of

Type II muscle fibres and a smaller contribution from

elastic energy [163]. It is difficult to directly measure the

energy cost of acceleration, which by its very nature is not

steady state and occurs over a brief period. Therefore,

investigators have had to devise ways to estimate the

energy cost of acceleration and other brief, intense actions

[164]. Mathematical models have been devised to deter-

mine the energy cost of elite 100 m sprinting performance

[165, 166]. Typically, these models include two compo-

nents of energy supply (aerobic and anaerobic) and three

components of energy demand (that required to move

forward, overcome air resistance and change kinetic

energy). However, models that use average speed over a

given distance will under- and over-estimate different

components of energy demand, and therefore instantaneous

speed measures should be used [167].

A novel approach to determining the energy cost of

acceleration has been proposed [168], whereby increasing

(or decreasing) speed on level ground was equated with

running uphill (or downhill) at constant speed. Theoreti-

cally, the angle of driving force of the runner whilst

accelerating on flat terrain corresponds to the gradient of

the slope whilst maintaining speed uphill, such that the

vectorial sum of propulsive and gravitational accelerations

are equal. Given that the energy cost of running uphill at a

constant speed is known [152], by converting acceleration

on flat terrain to constant speed on the equivalent slope, the

energy cost and metabolic power output of acceleration

could be determined. Testing of this model on well-trained

sprinters completing a maximal effort 30 m sprint from a

stationary start revealed excellent agreement between

measured and modelled speed (r2 = 0.99). Importantly, the

highest energy costs occurred immediately after the start of

the effort (i.e. during maximal acceleration with minimal

speed) and progressively decreased until reaching a plateau

that matched the energy cost of running at a constant speed

on a level gradient. Furthermore, the energy cost of

accelerating maximally over the 30 m distance was three

times greater than covering that same distance in the same

time at constant speed [168]. Unlike steady-state models,

this model considers both speed and acceleration on an

instantaneous basis, and is therefore a potentially more

suitable method for assessing the energy cost of the per-

petually and erratically changing speed typical of team

sport movement [150].

Whilst there is scant research into the energy cost of

deceleration [169], it can be determined using the same

method outlined above [168]. According to this model, the

energy cost of deceleration—or downhill running—is

much less than for acceleration at the same rate. This can

be explained by the increasing contribution of negative

work, which has a lower energy cost than positive work

[170], and the removal of the requirement to raise (or

propel) the centre of mass [152]. Furthermore, eccentric

muscle contractions are more efficient [171] and induce

less fatigue [172] than concentric contractions.

If the energy costs of acceleration and deceleration were

equal and opposite, it would seem reasonable to propose

that they cancel each other out over a given time period,

and therefore the application of constant speed models for

team sport energy expenditure would be acceptable.

However, because the effect of deceleration on energy cost

is much less than that of acceleration [168], it is clear that

change in speed must be accounted for when assessing the

demands of intermittent activity.

5.4 Energy Cost of Changing Direction

Changing the direction of movement during locomotion

involves a deceleration followed by an acceleration, as well

as additional force application to re-direct the initial

momentum of the body [173]. The energy cost of shuttle

running with 180� changes of direction is higher than

constant speed running at the same average speed, and this

difference increases with speed [174, 175] and turning

frequency [176] and with decreasing shuttle distance [174].

The additional cost of changing direction is dependent on

both the magnitude and duration of acceleration [177].

Compared to discontinuous in-line running (i.e. stop–

start but no change of direction) with the same distance,

speed and acceleration characteristics, shuttle running with

180� changes of direction elicited a higher heart rate, blood

lactate concentration and rating of perceived exertion

[178], indicating that the change of direction itself invokes

an additional energy cost beyond that attributable to

changes in speed. This additional energy cost is partly due

to the requirement for greater postural stability of the upper

body [177]. Interestingly, the angle of direction change

does not influence energy cost [179], suggesting that it is

the mere act of changing direction, rather than the degree
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of change, which increases energy demands. Effectively,

then, a change in direction invokes two additional and

separate demands on energy supply—that required to

change speed, and that required to re-direct the trajectory

of the body.

Just as team sport activity is rarely performed at a

constant speed, it is also not performed purely in a straight-

line, forward-facing manner. Direction changes occur fre-

quently in team sports [180, 181], and are therefore likely

to contribute significantly to the energy demands of team

sport activity.

5.5 Energy Cost of Unconventional Locomotion

Numerous variations on the conventional locomotor

actions of walking and running are not only utilised

throughout team sport activity, they in fact make up a

considerable proportion of overall movement patterns

[180]. These include different gait patterns such as shuf-

fling and skipping [180]; different movement orientation,

including backward, lateral, diagonal and arcing [180]; and

unorthodox postures or stances, particularly whilst in pos-

session of the ball (i.e. dribbling). Some, but not all, of

these actions have been assessed with respect to energy

cost. For humans, skipping is approximately 150 % more

metabolically demanding than running at the same speed

[182]. Backwards and lateral running (in either direction)

have similar energy costs to each other at any given speed,

but are significantly higher than forward running at the

same speed [183, 184], and this difference increases with

speed—to the point where it becomes necessary to switch

to a forward running motion. The energy cost of dribbling

is significantly higher than running at the same speed for

both soccer [185] and hockey [186]. Current team sport

research does not incorporate the additional energy cost of

these unconventional movement patterns.

5.6 Summary

Changes in gait, speed, direction and orientation all lead to

a different—and in most cases, higher—energy cost than

constant-speed, straight-line, forward running. Given that

these actions represent typical team sport movement

characteristics, it is clear that applying steady-state models

of energy expenditure will lead to a substantial under-es-

timation of the demands of team sport activity. Although

player tracking technology may not be able to detect and

classify all of these movement characteristics, the inte-

gration of both speed and change in speed on an instanta-

neous basis will, at the very least, provide a more complete

and appropriate measure of energy expenditure for team

sport activity [149].

6 Alternative Models for Assessing Energy
Expenditure in Team Sports

As previously discussed, modern player tracking methods

allow for the determination of instantaneous speed and

acceleration. Given that the cost of changing speed is dif-

ferent to the cost of maintaining speed, and that the addi-

tional cost of changing speed varies according to the

magnitude of change and the actual speed at that point

[150], a model incorporating both speed and acceleration

will provide a more valid measure of energy cost when

speed is continually changing. Such a model has been

developed and was used to calculate instantaneous meta-

bolic power and accumulated energy demands in elite

soccer players [150]. Unsurprisingly, high power outputs

(and therefore energy demands) occurred not only when

speed was high, but also when acceleration was elevated.

In fact, a wide array of speed and acceleration combina-

tions yielded high power outputs, including at velocities

that would have been considered moderate or even low

intensity.

This model has also been used to report energy demands

in Australian Football [187] and rugby league [188]. In

both sports, distance covered under-estimated the overall

demands of competition, as demonstrated by the equivalent

distance index (EDI), which is the ratio of distance covered

if total energy is expended at a constant speed to the actual

distance covered. The higher this figure, the more inter-

mittent the activity. Interestingly, the degree of under-es-

timation was low for Australian Football (EDI 1.10),

reflective of its sustained running nature, but considerably

higher for rugby league (EDI 1.28), which involves more

stop–start running. In conjunction with this, speed-based

classification of intensity under-estimated the energy

demands of rugby league, but not Australian Football. This

bias is supported by analysis of soccer training, which

showed that as the proportion of high-speed running

decreased, differences in classification of high-intensity

activity via displacement and energetic criteria magnified

[189]. Therefore, it would appear that power, as opposed to

distance and speed, may be a more suitable variable for

assessing the energy demands of team sport activity.

The above model assumes that stride frequency and

metabolic efficiency do not vary for either acceleration or

constant-speed running, and ignores the (likely negligible)

effect of air resistance [190]. It incorporates the metabolic

cost of speed and acceleration, but does not consider the

mechanical work of locomotion [191]. If speed is known,

total mechanical work can be determined, and can also be

apportioned between that done to propel (horizontal) and

raise (vertical) the centre of mass, to swing the limbs and

to overcome air resistance [191]. Speed-dependent
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efficiency factors can then be assigned to calculate

metabolic power. This model has been used to determine

the energy cost of Australian Football [169] and demon-

strated that energy expenditure is sensitive to variations in

running speed.

As with interpretation of displacement variables, these

models assume that all motion is in a forward orientation,

and that loads do not vary (which would not be the case

with respect to physical contact/tackling, etc.). Although

metabolic power models do not consider all of the factors

that influence the energy cost of locomotion outlined

previously, they nevertheless provide a more complete

estimate of energy expenditure in situations where speed

is continually changing. Whilst further research is nec-

essary, metabolic power is potentially a more appropriate

indicator of workload for team sports, and may be suit-

able for investigating the exercise dose–response rela-

tionship [192] and identifying the occurrence of fatigue

during competition [193]. Future research should validate

metabolic power against direct measures of energy

expenditure and internal load, and determine its rela-

tionship with measures of physical fitness and

performance.

7 Conclusion

Early player tracking systems were not sensitive to the

continual changes in speed evident in team sport. Conse-

quently, gross measures of total distance and average speed

were used as indicators of work done and energy expended.

This would be acceptable if the activity was performed at a

constant speed in a straight line. However, because the

activity entails continual changes in speed and direction,

the energy cost is under-estimated. Modern player tracking

technology is more accurate and sensitive than previous

methods, and can determine instantaneous speed and

acceleration with high resolution. Integration of these two

variables satisfies the definition for work and provides a

more complete estimate of the energy cost of intermittent

team sport activity, and should therefore be the standard for

future team sport movement analysis.
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118. Özgünen K, Kurdak S, Maughan R, et al. Effect of hot envi-

ronmental conditions on physical activity patterns and temper-

ature response of football players. Scand J Med Sci Sports.

2010;20(s3):140–7.

119. Garvican LA, Hammond K, Varley MC, et al. Lower running

performance and exacerbated fatigue in soccer played at

1600 m. Int J Sports Physiol Perform. 2014;9(3):397–404.

120. Fowler P, Duffield R, Vaile J. Effects of domestic air travel on

technical and tactical performance and recovery in soccer. Int J

Sports Physiol Perform. 2014;9(3):378–86.
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