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Abstract Prevention of anterior cruciate ligament

(ACL) injury is likely the most effective strategy to re-

duce undesired health consequences including recon-

struction surgery, long-term rehabilitation, and pre-

mature osteoarthritis occurrence. A thorough under-

standing of mechanisms and risk factors of ACL injury is

crucial to develop effective prevention programs, espe-

cially for biomechanical and neuromuscular modifiable

risk factors. Historically, the available evidence regarding

ACL risk factors has mainly involved female athletes or

has compared male and female athletes without an intra-

group comparison for male athletes. Therefore, the

principal purpose of this article was to review existing

evidence regarding the investigation of biomechanical

and neuromuscular characteristics that may imply aber-

rant knee kinematics and kinetics that would place the

male athlete at risk of ACL injury. Biomechanical evi-

dence related to knee kinematics and kinetics was re-

viewed by different planes (sagittal and frontal/coronal),

tasks (single-leg landing and cutting), situation (an-

ticipated and unanticipated), foot positioning, playing

surface, and fatigued status. Neuromuscular evidence

potentially related to ACL injury was reviewed. Rec-

ommendations for prevention programs for ACL injuries

in male athletes were developed based on the synthesis

of the biomechanical and neuromuscular characteristics.

The recommendations suggest performing exercises with

multi-plane biomechanical components including single-

leg maneuvers in dynamic movements, reaction to and

decision making in unexpected situations, appropriate

foot positioning, and consideration of playing surface

condition, as well as enhancing neuromuscular aspects

such as fatigue, proprioception, muscle activation, and

inter-joint coordination.
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Key Points

Research evidence indicates that specific

biomechanical and neuromuscular characteristics

may underlie increased risk of anterior cruciate

ligament injury in male athletes

In male athletes, differences in lower extremity

biomechanics are observed for anticipated versus

unanticipated tasks, and these differences are

influenced by foot positioning, playing surfaces, and

fatigue status

Neuromuscular status including fatigue,

proprioception, muscle activation, and inter-joint

coordination contribute to different lower extremity

biomechanics

1 Introduction

Anterior cruciate ligament (ACL) injury is one of the most

frequent and severe injuries in sports with significant un-

desirable mid- and long-term health-related consequences

[44, 49, 60, 61]. In addition, the economic costs for

healthcare systems are substantial [64] and the risk of knee

osteoarthritis increases in ACL deficiency and recon-

structed individuals [24, 60]. Therefore, the development

of a prevention program designed to target ACL injury

reduction is likely to be a feasible approach for individuals

participating in sport. A thorough understanding of injury

mechanisms and risk factors is a crucial step towards the

development of effective prevention programs. Risk factors

for ACL injury have been examined in terms of environ-

mental [72–74, 100], anatomical [71, 81, 88, 89], hormonal

[9, 84, 102], genetic [37, 79, 86], and biomechanical/neu-

romuscular components [47, 48, 70, 108, 109]. However,

environmental, anatomical, hormonal, and genetic risk

factors are considered non-modifiable from a practical

standpoint. Conversely, modifiable risk factors are those

that are considered to be subject to change or influence by a

human intervention. Thus, the modifiable ACL injury risk

factors are variables mainly associated with biomechanics

and neuromuscular aspects. Unfortunately, while the in-

vestigation of biomechanical and neuromuscular risk fac-

tors for ACL injuries has been the scope of numerous

studies within the last two decades, available evidence has

mainly involved female athletes or has compared male and

female athletes without an intra-group comparison for male

athletes [3, 4, 22, 23, 45, 78, 82]. Comparing male athletes

as ‘‘control’’ subjects to female athletes does not provide

adequate evidence to investigate risk factors for ACL in-

jury in male athletes [17, 19, 48].

Recent studies that systematically reviewed ACL injury

in male athletes concluded that there is limited evidence in

terms of biomechanical and neuromuscular risk factors and

prevention programs for ACL injury in the male athletes

[3, 4]. Only five studies were found to investigate these risk

factors in the male population [43, 83, 95, 108, 109], and

only three of them were prospective cohort studies [95,

108, 109]. There are studies investigating biomechanical

and/or neuromuscular characteristics in male athletes, but

most of them do not claim to assess these characteristics as

risk factors for ACL injuries, but to show the kinematics

and kinetics of the lower extremity of male athletes while

performing sports actions. Some studies have evaluated

biomechanical and/or neuromuscular characteristics and

associated them with knee laxity or strain on the ACL [35,

36, 68, 77]. Other studies have applied training programs

aimed to modify biomechanical and neuromuscular char-

acteristics in male athletes, but have not evaluated the

modification of ACL injury rates [10, 20, 26, 29, 53].

Except for the very few studies investigating biome-

chanical and neuromuscular risk factors for ACL injuries in

male athletes [43, 83, 95, 108, 109], the remaining

biomechanical and neuromuscular studies for male athletes

did not compare these characteristics between ACL-injured

and ACL-intact male athletes, thus no conclusions can be

made concerning risk factors for an ACL injury. An ade-

quate understanding of the existing evidence for both fac-

tors may help generate ideas for future research in this field

and elaborate prevention programs in the male population.

The purpose of this project was to review the existing

evidence regarding the investigation of biomechanical and

neuromuscular characteristics that may imply aberrant

knee kinematics and kinetics that would place the male

athlete at risk of ACL injury.

2 Methodological Aspects

2.1 Literature Search

A literature search was performed using the PubMed

(MEDLINE), EMBASE, and Cochrane library databases

from 1980 to September 2012. Then, an updated literature

search was executed using the PubMed and EMBASE

databases until September 2014. Free terms (title, and ab-

stract for PubMed; and title, abstract and keywords for

EMBASE) and MeSH terms (for PubMed and Cochrane)

were used. A combination of the following words was

used: [(neuromuscular OR control OR coordination OR
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anticipated OR unanticipated OR surface OR activation

OR muscle OR muscular OR muscles OR fatigue OR

maneuver OR maneuvers OR action OR actions OR

landing OR land OR position OR positioning OR cutting

OR cut OR jumping OR jump OR running OR run OR

kinematics OR kinematic OR kinetics OR kinetic OR

biomechanical OR biomechanics OR biomechanic OR

sagittal OR coronal OR axial) AND (anterior cruciate

ligament OR ACL OR injury OR injuries OR prevention

OR sports OR sport OR athlete OR athletes OR players OR

player)]. In addition, the output of the literature search

employed in a previous systematic review (involving 1,827

references) was also scrutinized after duplicates were

identified [3, 4]. Furthermore, a manual search was per-

formed in the reference list of reviewed studies. The search

was limited to human studies written in English.

2.2 Inclusion Criteria

All original studies related to any biomechanical and

neuromuscular characteristic in male athletes, whether or

not directly related to ACL injury, were included for the

current review. Studies involving female athletes were only

included in the present article if a specific intra-group

comparison for male athletes was reported. Review articles

were included to help avoid the omission of any reference

and assure a good overall picture of each of the areas

covered. Furthermore, studies dealing with women

athletes, editorial letters, case reports, comments, abstracts,

posters, and unpublished data were excluded.

2.3 Data Extraction and Synthesis

Basic information on the type of study, type of sport/

activity involved (sport, level of sport, whether training or

games), type of subjects involved (ACL injured, healthy

athletes, non-athletes), type of comparison (i.e., injured vs

healthy), outcomes collected, results, and conclusions were

extracted from each reviewed study. The information

extracted from all the studies was then divided into biome-

chanical and neuromuscular evidence. The information on

each section was then summarized according to several

subcategories. The subcategories of biomechanical evi-

dence were: plane of study (sagittal and frontal), type of

movement (single-leg landing and cutting), type of activity

(game vs practice, anticipated vs unanticipated), foot

positioning in dynamic motion, biomechanical effects of

playing surface, and biomechanical effects of fatigue. The

subcategories of neuromuscular evidence were: trained vs

untrained, muscle action, inter-joint muscular coordination,

and prophylactic bracing/taping. The most important find-

ings depending on the type of sport were also summarized

in Table 1.

3 Results

3.1 Biomechanical Evidence

The number of references related to biomechanical aspects

potentially related to ACL injury in male athletes was

considerable. For this reason, information on biomechanical

aspects was classified under several subcategories based on

the principal purpose of the study. The investigation of

biomechanical characteristics in male athletes can be first

classified into joint kinetics and kinematics. There is more

information available for the causes of movement rather

than the movement itself. In this section, the most com-

monly investigated joint is the knee. The sports involved

include soccer, basketball, hockey, American Football,

Australian Rules Football, and rugby. Table 1 summarizes

the available evidence with regard to biomechanical char-

acteristics related to knee mechanics in male athletes.

3.1.1 Biomechanics: Sagittal Plane

The ACL is obliquely tilted approximately at 26.6 ± 6�
vertically and runs from the posterior part of the medial

side of the lateral condyle to the anterior intercondylar area

between a transverse meniscal ligament and medial side of

medial meniscus [75]. The ACL consists of three func-

tional bundles: antero-medial bundle (AMB), intermediate

bundle, and postero-lateral bundle (PLB) [7, 31–33, 90]. In

knee flexion motion, the AMB tightens, and the PLB

loosens [107]. In knee extension motion, the AMB mod-

erately loosens, and PLB is tight [107]. However, both

AMB and PLB elongate in the final 30� of knee extension

[7]. Utturkar et al. [99] found that the ACL length of

healthy male athletes shortened from extension to 30� of

knee flexion to knee valgus collapse; therefore, the authors

concluded that landing with an extended knee would be a

more significant risk factor for ACL rupture than knee

valgus collapse owing to greater elongation of the ACL.

To find an association between ACL elongation and

knee flexion and extension mechanism, Ali et al. [5]

evaluated the effects of varying height and horizontal

distance on landing kinematic and kinetics in young male

recreational athletes. The authors found that increased

vertical height produced higher knee flexion angle, trunk

flexion angle, and knee power and work at landing [5].

Additionally, the authors observed that an increase in

vertical height produced a significant increase in peak

vertical and posterior ground reaction force (GRF). The

increase in horizontal height produced an increase in pos-

terior GRF, ankle plantar flexion, hip flexion angle, and

trunk flexion angle. At increasing vertical height, the

authors found a positive correlation with peak posterior

GRF. At increasing horizontal height, the authors found a
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positive correlation with peak vertical GRF, and knee

power and work, and a negative correlation with ankle

plantar flexion. These results suggest that sports with

higher and longer jumps may have greater risk of ACL

injury.

The effects of knee flexion angle on muscle co-

contraction in lower extremity muscles during a deceleration

phase of landing was quantified in another study [76]. This

study reported that the lower extremity muscle co-con-

traction significantly differs with different knee flexion

angles during landing. More precisely, increasing the knee

flexion angle at landing elicited a lower peak vertical and

peak posterior shear GRF. In contrast, landing with greater

knee flexion angle induced greater peak quadriceps

moments, and the hamstring moments decreased [76].

These findings suggest that the ability of muscles to act as

dynamic stabilizers changes with joint position. In short,

landing with an extended knee may increase the risk of

non-contact ACL injury because increased GRF and

quadriceps moments may promote knee extension

mechanism, which elongates the ACL.

3.1.2 Biomechanics: Frontal/Coronal Plane

To further understand ACL injury risk, knee abduction

moments and landing mechanics of pubertal and post-

pubertal female and male basketball and soccer players were

compared [40]. Although increased knee abduction

moment was observed in post-pubertal female athletes

compared with pubertal female athletes, no change in peak

knee abduction moments was noted in either pubertal or

post-pubertal male athletes during drop-jump maneuver.

One study evaluated the effects of maturation on stiffness,

kinematics, and kinetics of ankle, knee, and hip joints by

examining pubertal and post-pubertal male and female

basketball and soccer players [39]. Unlike female athletes,

male athletes demonstrated increased stiffness in ankle,

knee, and hip joints with maturation. Authors of this study

discussed that joint stiffness and biomechanical changes

may be related to hormonal and neuromuscular changes

during growth spurt differences between sexes [39].

To examine the effect of sex on neuromuscular devel-

opment during maturation, a relationship between sex and

maturation through isokinetic hip abductor strength in

adolescent soccer and basketball players was investigated

[14]. The researchers found that, in male athletes, hip

abductor torque increased with age; however, this was not

observed in female athletes. This study highlights the

potential association of hip strength and ACL injury.

Other studies report an association between decreased hip

abductor strength and increased knee valgus/abductor

angles [28, 46]. The knee valgus/abductor moment was

considered as the most sensitive and specific risk factor

for the female population [47]. To examine the connection

between knee frontal and sagittal planes, knee kinematics

during drop landing in male recreational athletes was

assessed [92]. This study reported that knee valgus angles

are directly associated with anterior and lateral tibial

translations as well as knee internal rotation angles in

male athletes at landing. In addition, the study found that

the peak anterior tibial translation occurred within 50 ms

of initial ground contact at landing. This study suggests

how knee kinematics may be interrelated and potentially

important contributors to ACL injury risk; specifically,

increased knee valgus could contribute to increased risk in

male athletes.

3.1.3 Biomechanics: Single-Leg Landing Movement

Because many athletic movements such as kicking a soccer

ball occur with a single leg, knee joint kinematics and

energetics in response to different landing techniques was

assessed in 10 healthy male recreational athletes [105].

Landing with both legs would be more protective against a

non-contact ACL injury because of a better energy dissi-

pation mechanism, compared with higher peak GRF during

single-leg landing. The same research group published an

investigation on the lower extremity energy dissipation

strategies during landing with one or two legs based on

sagittal and frontal plane knee kinematics and kinetics

[106]. Ten healthy male recreational athletes performed a

single-leg or double-leg landing task from a height of

60 cm. The authors found that the hip and knee dissipated

major energy during double-leg landing and the hip and

ankle during a single-leg landing in the sagittal plane. In

this plane, the hip and ankle were the major energy dissi-

paters in the single-leg landing. In the frontal plane, the hip

and knee acted as the primary energy dissipaters during

double-leg and single-leg landing, respectively. The knee

also exhibited a greater frontal plane knee range of motion,

moment, and energy dissipation in the single-leg landing

compared with double-leg landing. These results point

towards the same suggestion; single-leg landing may be more

harmful for the knee compared with double-leg landing, and

different muscle groups play a role in absorbing energy based

on different planes.

3.1.4 Biomechanics: Cutting Movement

Cutting is another commonly performed maneuver in

athletic events. A few studies focused on analyzing cutting

mechanics in relation to ACL. A cross-sectional study with

10 healthy male soccer players to assess the external knee

loads in running compared with cutting maneuvers found

no differences with regard to flexion-extension knee mo-

ments across tasks, but varus-valgus and internal-external

814 D. Sugimoto et al.
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knee moments were significantly higher in cutting com-

pared with running [13]. More precisely, a side-step cutting

maneuver elicited loads of flexion, valgus, and internal

rotation [13]. Additionally, Cross et al. [21] analyzed the

side-step cutting maneuver of young male athletes to

evaluate what stress was placed on the ACL. The mean

(standard deviation) total tibial rotation was 19.8� (5.6�)
during the side-step cutting. The authors concluded that

although internal tibial rotation did occur at the knee, it was

not maximal as greater values would occur during the

swing phase in association with a greater knee flexion

angle [21]. This movement would not, therefore, place the

ACL at a greater risk of rupture in male athletes. They

hypothesized that if the ACL ruptures during this action, it

may be related to an inability to control for internal tibial

rotation of the knee [21].

Male athletes participating in pivoting sports appeared

to have significantly less induced internal rotation during

maximal muscle activation (4.4� at 30� of knee flexion)

than participants in non-pivoting sports (7.3� at 30� of knee
flexion) [103]. Together with the reduced internal rotation,

male athletes who engaged in pivoting sports demonstrated

greater muscle activation and knee joint stiffness. This may

demonstrate differences among sports on how muscles

function as protective stabilizers to possibly prevent liga-

ment injuries.

McLean et al. [66] also conducted a biomechanical study

examining the relationship between lower extremity pos-

tures and peak knee valgus/abduction moment at impact

during a side-step cutting task in male and female basketball

players. Male players demonstrated that higher normalized

(weight by height) peak stance phase knee valgus moment

was associated with higher initial contact hip flexion, hip

internal rotation, and knee valgus positions during side-step

cutting maneuvers. Assuming that increased knee valgus

loading is a risk factor for ACL injury in male athletes as

well, the interesting aspect and practical implication of the

findings by McLean et al. [66] is that neuromuscular control

of the hip joint should also be considered in ACL injury

prevention programs in addition to the knee joint.

Another study that examined knee kinematics during

side-step cutting maneuvers using male rugby and soccer

players found that side-step cutting induced significantly

larger maximum knee flexion, abduction, and external

rotation values during foot contact compared with straight

running [67]. This study concluded that the kinematic

differences for side-step cutting compared with running

were not of sufficient magnitude to alone elicit a

non-contact ACL injury. As noted by the authors, these

findings may be in line with those reviewed above reported

by Cross et al. [21] From a theoretical point of view, the risk

of non-contact ACL injury may be increased while actions

are performed with greater knee abduction [67]; thus, care

must be taken when training athletes in side-step cutting so

that subjects at greater risk are identified and technique

modification is implemented.

3.1.5 Injury Rate in Game vs Practice Conditions

In reviewing epidemiological studies, athletic injury rates

are higher in game situations compared with practices

[1, 101]. More specifically, the injury rate ratio of college

men’s soccer players was approximately four times greater

in game situations compared with practices (18.8 vs 4.3

injuries per 1,000 athlete exposures) [1, 49]. During a game

situation, nearly 30 % of the injuries occurred around or in

the knee joint, which was recorded as the most frequently

injured body part. In addition, approximately 35 % of all

ACL injury during a game were non-contact in nature [1].

These epidemiological data suggest factors associated with

‘‘game’’-like situations may attribute ACL injury in the

male population. Thus, various aspects of game-like

situations such as unanticipated movement patterns need to

be examined.

3.1.6 Knee Kinematics in Anticipated vs Unanticipated

Situations

Based on the conclusion that injury rates in game situations

are nearly four times higher relative to practice injury rates,

and that over one-third of ACL injuries occurs with a non-

contact mechanism, decision making may play an impor-

tant role in the risk of non-contact ACL injury in male

athletes. A recent study performed by Mache et al. [63]

compared landing kinetics and kinematics between

anticipated and unanticipated conditions. In this study,

anticipated condition at initial contact produced lower hip

and knee flexion, lower knee abduction and higher ankle

plantar flexion in the drop jump, and lower hip abduction

and higher ankle plantar flexion in drop landing compared

with preplanned condition. Peak joint angles during land-

ing in decision-making conditions were lower for knee

abduction and ankle inversion, and higher for knee external

rotation and ankle dorsiflexion in the drop jump, and lower

for hip adduction and knee internal rotation, and higher for

knee external rotation and ankle dorsiflexion and eversion

for drop landing, compared with preplanned conditions.

Peak joint moments during landing in decision-making

conditions were lower for knee extension, knee external

rotation, and ankle plantar flexion, and higher for hip

adduction in the drop jump, and lower for hip extension, hip

adduction, and knee extension for drop landing, compared

with preplanned conditions. Thus, prevention programs

should incorporate unanticipated conditions.

Knee kinematics and kinetics during anticipated and

unanticipated side-step maneuvers in male soccer players
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were also compared between anticipated and unanticipated

situations [59]. This study noted that male soccer players

elicited smaller hip external rotation at the initial foot

contact during anticipated conditions compared with

unanticipated conditions. Additionally, the unanticipated

conditions produced a peak knee valgus/abduction moment

70 and 25 % greater compared with anticipated conditions.

Furthermore, the knee valgus/abduction moments were

even greater in low skill level players compared with high

skill level players in more complex unanticipated condi-

tions. Additionally, a recent study also reported an 80 %

greater peak valgus knee moment in unanticipated side

stepping activities compared with anticipated side stepping

movements [30].

The knee kinematic differences between anticipated and

unanticipated conditions were also investigated by Besier

et al. [11] who assessed the muscle activation strategies

during running and cutting maneuvers in young healthy

male soccer players. Under the anticipated condition,

muscular activation was specific and selective to stabilize

lower extremity joints. However, unlike the anticipated

condition, the muscular contraction was no longer selective

under the unanticipated condition. Instead, the muscular

contraction was generalized during the unanticipated con-

dition. Another study performed by the same authors

documented increased varus-valgus and internal-external

knee moments in unanticipated side-step and crossover

tasks compared with the anticipated conditions [12]. The

increased frontal/coronal and horizontal plane torques may

increase the potential for non-contact ACL injuries during

unanticipated movements. The authors attributed these

results to the small amount of time to make appropriate

postural adjustments before performance of the task, such

as the position of the foot on the ground relative to the

body center of mass. Reviewed studies reported increased

knee joint kinematics under unanticipated conditions

compared with anticipated conditions.

3.1.7 Foot Positioning in Dynamic Motion

The effects of foot positioning technique on knee loads

during side-step cutting was assessed using healthy male

athletes [27]. This study reported that imposed techniques

consisting of foot placement away from midline and lateral

trunk flexion opposite to the cutting direction resulted in

increased peak knee valgus moments in the weight-

acceptance phase [27]. Higher peak knee internal rotation

moments were also found in the same maneuver (foot

placement away from midline and lateral trunk flexion in

opposite to the cutting direction) [27]. When the technique

of side-step cutting was performed with the foot internally

rotated, there were lower mean flexion-extension moments,

whereas the wide foot condition resulted in higher mean

flexion-extension moments of the knee joint. Thus, foot

rotation in either direction can influence ACL loading.

More recently, Dempsey et al. [25] investigated both

kinematics and kinetics of the hip, knee, and ankle joints in

male team athletes performing overhead catch and landing

tasks. The interesting aspect of this study was the demon-

stration of the differences in knee kinetics depending on the

type of catch before landing. If the ball moves towards the

preferred landing leg, knee valgus moments are increased

during landing. They also found that landing with the foot

and knee in external rotation, hip abduction and internal

rotation, and trunk lateral flexion were associated with both

higher knee valgus and internal rotation loads. Thus, these

loads and postures during landing were suggested to

increase the risk of non-contact ACL injuries.

3.1.8 Effect of Playing Surface

To effectively position foot during dynamic movements,

the influence of surfaces needs to be examined. A total of

11 studies were found to investigate the effects of playing

surfaces on the risk of ACL injury in male athletes [3]. The

findings of these studies suggest that artificial turf increases

the risk of ACL injury in male athletes compared with

natural grass [3], which is more prevalent in American

Football. To investigate the effect of playing surfaces, Ford

et al. [38] recruited a sample of male football players and

compared the effects of natural grass and new generation

turf. The authors found that turf surface had higher peak

pressures within the central forefoot and lesser toes com-

pared with natural grass, but the latter had higher relative

load within the medial forefoot and lateral mid-foot com-

pared with the turf surface. The higher peak pressure on

turf likely generates greater GRF and contributes to risk of

ACL injury.

An association between playing surfaces and foot

loading patterns was investigated using different types of

maneuvers [34]. In a controlled laboratory study where

in-shoe pressure measurements were obtained, a total of 21

male soccer players performed normal runs, cutting ma-

neuvers, sprints, and goal shots on both grass and red

cinder surfaces. The authors found no effect of playing

surfaces on foot loading, but higher foot loading was ob-

served in the medial part of the foot for cutting maneuvers,

in the first and second metatarsals for sprinting, and in the

lateral part of the foot for kicking action.

3.1.9 Effect of Fatigue

A few studies focused on investigating the effect of fatigue

on knee mechanics. To study the effects of fatigue on knee

kinetics and kinematics, a set of exercises that induce a

volitional exhaustion was administrated, and subsequently,
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stop-jump tasks was performed by male and female

recreational athletes [18]. In this study, the authors reported

that male athletes had significantly increased peak prox-

imal tibial anterior shear forces, increased valgus moments,

and decreased knee flexion angles during landing of stop-

jump tasks when fatigued [18]. However, fatigue did not

show similar effects on the peak knee extension moment in

male athletes.

McLean et al. [65] conducted a study that examined the

effects of muscular fatigue on lower extremity kinematics

and kinetics during landing in male and female athletes.

Fatigue condition was induced by a 4-min step-up

maneuver and measured by heart rate. In male athletes, no

significant fatigue differences were found between pre- and

post-fatigue conditions for contact time (stance phase)

during jump landing in either the dominant or non-domi-

nant lower extremity. However, male athletes had greater

knee abduction and internal rotation displacement in

fatigue conditions compared with non-fatigue conditions

during the stance phase of jump landing tasks.

Lower extremity landing mechanics caused by neuro-

muscular fatigue was examined among male athletes who

play recreational soccer, tennis, basketball, and volleyball

[54]. This study found that neuromuscular fatigue was

related to in the male sample an increased in maximum hip

flexion, maximum knee flexion, and maximum ankle dor-

siflexion angles during landing. Fatigue caused male ath-

letes to land with less hip compression, anterior hip shear

force, and lower peak knee compression and shear forces.

Regarding joint kinetics, neuromuscular fatigue caused

male athletes to land with less hip and knee extensor

moment and peak knee adduction/valgus moment, but more

peak ankle dorsiflexion moment. Therefore, neuromuscular

fatigue may cause kinematic and kinetic changes that may

be related to risk factors for ACL injury.

3.2 Neuromuscular Evidence

The investigation of neuromuscular characteristics in male

athletes consisted of training status, inter-joint coordina-

tion, proprioception, muscle strength and activation,

anticipation vs unanticipated actions, and muscular fatigue.

Most evidence refers to muscle strength and activation, and

muscular fatigue, and the sports involved include soccer,

weight lifting, basketball, American football, running, and

a combination of sports. Table 1 summarizes the available

evidence in terms of neuromuscular characteristics poten-

tially related to knee mechanics in male athletes. Other

studies providing information potentially related to risk

factors for ACL injury in male athletes that was not

categorized in biomechanical and neuromuscular sub-

categories were summarized in Table 1 [2, 8, 15, 35, 36,

50, 51, 57, 58, 68, 77].

3.2.1 Neuromuscular Parameter Differences

Between Trained vs Untrained

Because the studies in Sect. 3.2 reported altered mechanics

of lower extremity in fatigued conditions, several studies

investigated neuromuscular parameters between trained

and untrained male population. Muaidi et al. [69] compared

proprioception between Olympic-level male soccer players

and sex-matched non-athletes. In this study, the top-level

players demonstrated significantly better proprioception

than non-athletes. The authors commented that training

likely plays a major role in the enhancement of pro-

prioception, thus emphasizing how important it would be in

prevention programs to improve ligament protection

through proprioception.

The same finding was reported by another study in

which endurance of knee musculature between male

American Football players and average healthy male

individuals was compared and concluded that American

Football players demonstrated better muscle endurance in

knee extension and flexion compared with healthy male

controls. Knee rotatory strength was compared between

soccer players and non-athletes [69]. This study reported

that soccer players had greater isometric muscle strength

compared with the control group. These findings may have

practical implications, as specific programs aimed at im-

proving knee dynamic stabilization by strengthening the

musculature around the knee joints could result in im-

proved protection of static (ligament) stabilizers.

3.2.2 Muscle Activation and Inter-joint Muscular

Coordination

Wojtys et al. [103] evaluated muscular protection of the

knee in torsion in size-matched athletes. The authors pro-

vided comparative data between male athletes participating

in pivoting sports (basketball, volleyball, and soccer play-

ers) and male athletes not participating in pivoting sports

(bicycling, crew, and running). They found that male ath-

letes from pivoting sports demonstrated significantly

greater joint stiffness with muscle contraction (275 % at

30� of knee flexion) compared with male athletes in non-

pivoting sports (170 % at 30� of knee flexion). This finding
can be interpreted as a potential benefit because athletes

may respond to specific training with adaptations

theoretically protective against ACL damage. Furthermore,

this study found that male athletes participating in pivoting

sports exhibited significantly larger knee flexor and

extensor peak torques compared with male athletes from

non-pivoting sports [103]. This finding suggests that some

neuromuscular adaptations may develop, depending on the

type of sport that may modify forces acting over a specific

joint. The authors summarized the factors that determine
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tensile stiffness of muscles [103]: level of muscle activa-

tion; cross-sectional area of the muscle fibers; imposed

change in muscle length; velocity of the imposed change in

muscle length; and the tendon length and stiffness. Neu-

romuscular preventive programs may improve these factors

to help protect the ACL during playing actions.

The term inter-joint coordination refers to the rela-

tionships of the angular positions and velocities between

two or more joints [16]. In a cross-sectional study that

compared inter-joint lower limb coordination between

chronic ACL-deficient and healthy male subjects [85], the

subjects performed eight movements; forward squats,

backward squats, sideways squats, squats on one leg,

going up a step, going down a step, walking three steps,

and stepping in place. Essentially, the authors found that

different synergies were employed for going up a step,

walking three steps, squatting sideways, and squatting

forward for both legs in the injured subjects compared

with the healthy group. The authors found no increased

asymmetry in the ACL-deficient group, but this was

attributed to a small sample size (six injured, nine unin-

jured). The asymmetry index for squatting on one leg,

squatting forward, and walking three steps was associated

with pain, symptoms, activities of daily living, sport and

recreational function, and knee-related quality of life

assessed through the knee injury and osteoarthritis out-

come score. The authors concluded that the analysis of

inter-joint coordination may be efficient in characterizing

motor deficits in people with knee injuries. All biome-

chanical changes during landing attributed to muscular

fatigue and potential lack of inter-joint muscular coordi-

nation may be related to ACL injury, but this hypothesis

still needs to be tested in the male athlete with an

appropriate study design [3].

3.2.3 Prophylactic Bracing/Taping Evidence

The effect of ankle taping was compared through ankle and

knee biomechanics during planned and unplanned running

and side-step maneuvers [87]. This study reported that

ankle tape reduced peak knee internal rotation and varus

moments during all running and side-step tasks in both

planned and unplanned situations.

Rishiraj et al. [80] evaluated the effects of a functional

knee brace on peak GRF during drop-jump landing in male

basketball and field hockey athletes. Players wearing pro-

phylactic knee braces landed with significantly lower peak

vertical GRF compared with players with no knee brace.

The authors suggested the benefit of knee braces to protect

the ACL at the beginning of landing while neuromuscular

restraints are still not activated.

Knee kinematics and GRF was also compared during a

landing task between healthy male athletes with and

without a knee brace [104]. This study documented that the

knee brace decreased the knee range of motion and angular

velocity compared with unbraced conditions, but had no

effect in peak vertical and anterior-posterior GRF. The use

of knee brace reduced the anterior tibial translation and

axial tibial rotation compared with unbraced subjects.

Therefore, wearing a prophylactic brace may confer

beneficial effects to the knee joint.

3.3 Neuromuscular Consequences of ACL injury

Ingersoll et al. [52] documented a review paper based on the

existing literature regarding the neuromuscular conse-

quences of ACL injury and reconstruction. Most of the

reviewed studies focused on the female population, and the

evidence regarding male athletes was limited. However,

variables that potentially affect ACL injury in male athletes

include: muscle activation, muscle strength, hypotrophy,

joint coordination, and prophylactic brace and taping in

dynamic movements. Table 2 summarizes the existing evi-

dence related to biomechanical and neuromuscular conse-

quences of ACL injury in male athletes. Several ideas for

further research in the field of risk factors for ACL injury in

males have been developed based onwhat is knownabout the

effects of ACL injury (Table 2). However, it should be noted

that the presence of biomechanical and neuromuscular

modifications after ACL injury in male athletes is not

equivalent to the presence of risk factors for injury.

4 Conclusions

While more research evidence of risk factors for ACL

injury in the male population may be documented in the

near future, the following recommendations will serve as a

guide to elaborate prevention programs, which should

incorporate:

– Prevention programs should include multiple-plane

biomechanical components.

– Compared with double-leg maneuvers, single-leg

movements including cutting demonstrate more risk

on ACL so that prevention training programs need to

incorporate aspect of single-leg training.

– Because ACL injury occurs at a higher rate in games

compared with practice settings, reaction and decision

making to unanticipated conditions should be a focus of

the prevention programs.

– A correct foot positioning in dynamic movements

needs to be a part of the prevention programs.
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– Playing surface needs to be considered to reduce ACL

injury.

– Fatigue likely attributes risk movements of ACL injury

so that prevention programs need to stress the quality of

dynamic movements.

– Neuromuscular aspects including proprioception, mus-

cle activation, and inter-joint coordination need to be

focused in the prevention programs.

– Protecting knee joint by bracing or taping may bring

prophylactic benefit.

The design of best prevention programs is based on

adequate evidence in terms of risk factors of ACL injury.

Modifiable risk factors such as biomechanical and neuro-

muscular factors are among the most important for de-

signing prevention programs. Despite inadequate evidence

for male athletes at this point, the recommendations for

prevention programs may have to come from own clinical

experience and research evidence of biomechanical and

neuromuscular characteristics associated with aberrant

knee mechanics that may potentially increase the risk of

ACL injury. Future studies are warranted to investigate

male specific ACL injury risk factors in prospective design.

Based on the evidence, a male-specific prevention program

needs to be developed.
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