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Abstract

Background and Objectives Professionals in the domain
of swimming have a strong interest in implementing
research methods in evaluating and improving training
methods to maximize athletic performance and competitive
outcome. Heart rate variability (HRV) has gained attention
in research on sport and exercise to assess autonomic
nervous system activity underlying physical activity and
sports performance. Studies on swimming and HRV are
rare. This review aims to summarize the current evidence
on the application of HRV in swimming research and
draws implications for future research.

Methods A systematic search of databases (PubMed via
MEDLINE, PSYNDEX and Embase) according to the
PRISMA statement was employed. Studies were screened
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for eligibility on inclusion criteria: (a) empirical investi-
gation (HRV) in humans (non-clinical); (b) related to
swimming; (c) peer-reviewed journal; and (d) English
language.

Results The search revealed 194 studies (duplicates
removed), of which the abstract was screened for eligibil-
ity. Fourteen studies meeting the inclusion criteria were
included in the review. Included studies broadly fell into
three classes: (1) control group designs to investigate
between-subject differences (i.e. swimmers vs. non-swim-
mers, swimmers vs. other athletes); (2) repeated measures
designs on within-subject differences of interventional
studies measuring HRV to address different modalities of
training or recovery; and (3) other studies, on the agree-
ment of HRV with other measures.

Conclusions The feasibility and possibilities of HRV
within this particular field of application are well docu-
mented within the existing literature. Future studies,
focusing on translational approaches that transfer current
evidence in general practice (i.e. training of athletes) are
needed.

1 Introduction

Swimming is of the most practiced and most popular forms
of physical activity in the EU [1] and the US [2]. Research
has addressed the beneficial health effects of swimming [3]
(e.g. in the prevention and treatment of cardiovascular-
related diseases [4-7], and in patients with respiratory
impairments such as asthma [8—11]), as well as its psy-
chological (e.g. mood altering) [12—-14] and adverse health
effects [15-22].

Besides these fields of research, professionals in the
domain of swimming have a strong interest in
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implementing research methods in evaluating and
improving training methods to maximize athletic perfor-
mance and competitive outcome. Of particular interest are
methods for the assessment of bio-behavioral (e.g. meta-
bolic and cardioventilatory responses [23]) and endocri-
nological (e.g. cortisol, testosterone, insulin [24-26])
markers to investigate the effects of swim training and their
relation to performance outcome. Traditionally, research
on exercise physiology utilized a brainless model of human
exercise performance [27], solely focusing on mechanisms
of muscle fatigue. In comparison, contemporary research
emphasizes the central neural networks involved in the
regulation of exercise performance [27]. In particular, the
autonomic nervous system (ANS) has gained huge atten-
tion for its vital role in the homeostatic regulation of the
organism to functionally adapt to the demands of the
environment (e.g. exercise and sport) [28, 29].

While the effects of swimming on autonomic outflow
have been studied [30] using blood pressure (BP; e.g. Nu-
alnim et al. [6, 31] and Cox et al. [6, 31]), heart rate (HR;
e.g. Jung and Stolle [32-34], Butler and Woakes [32-34],
and Hauber et al. [32-34]) or similar parameters of car-
diovascular activity, HR variability (HRV) in athletes has
only received attention over the last decade [35, 36]. The
characteristic beat-to-beat variation in HR represents the
continuous interplay between the sympathetic and para-
sympathetic branches of the ANS in regulating HR.
Increases in sympathetic activity are associated with
increases in HR, while relative increases in parasympathetic
activity are associated with decreases in HR. In the resting
condition the heart is under tonic inhibitory control (para-
sympathetic dominance over sympathetic influences) [37].
Sympathetic effects are slow (on the timescale of seconds),
while parasympathetic effects are faster (on the timescale of
milliseconds [ms]) [38]. Thus, the analysis of changes in the
beat-to-beat variation of the heart is therefore a traceable
proxy measure of the ANS, in particular parasympathetic
vagal activity. Exercise training (in particular endurance
training) is associated with increases in parasympathetic
activity, indexed by greater vagally-mediated HRV [39—
44]. The study of HRV in athletes has been considered a
valuable tool to investigate long-term changes related to
exercise training and ANS activity during exercise [32], as
well as to monitor performance, fitness and freshness [45].

Furthermore, a rationale to study HRV in sport research
is given by findings that emphasize anatomical and func-
tional differences of the cardiovascular system between
competitive athletes and untrained individuals [46]. While
athletes, independent of their sporting activity, have lower
resting HR, recent research on exercise-induced cardiac
remodeling [47] supports the existence of an endurance-
trained and a strength-trained heart in athletes performing
dynamic and static sports [48], leading to training-specific
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changes in cardiac structure and function [49]. Swimming
differs from other popular exercise modalities in many
aspects (i.e. posture, water immersion, upper and lower
body involvement, temperature). The cardiac adaptations
to swim training are characterized by left ventricular
dilatation, normal wall thickness to dimension ratio, and
increased stroke volume with normal diastolic filling [30].
Furthermore, evidence supports differences between long-
and short-distance swimmers [50]. However, studies on the
effect of swimming on HRV and the usefulness of HRV
methods within the professional application are rare.
Within this systematic review, we attempt to summarize
current findings on the influence of swimming on HRV and
the potential usefulness of HRV as a tool in evaluating
swim training and maximizing performance.

2 Methods
2.1 Search Strategy

This review uses a systematic approach, according to the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement [51], to synthesize
research on HRV and swimming. The following comput-
erized databases were searched from 1 January 1996 to 31
July 2013: PubMed via MEDLINE, PSYNDEX and Em-
base (see Electronic Supplementary Material [ESM]
Appendix for search terms and strategies applied, by
database). The search was restricted to publications pub-
lished within that timeframe, since the first guidelines on
standards of measurements, physiological interpretation
and clinical use of HRV were published in 1996 [52].
Articles were considered for inclusion if they measured
HRYV (search term keyword: ‘heart rate variability’ OR
‘HRV’) and (AND) had a focus on swimming or swimmers
(search term keywords: ‘swim*’; see ESM Appendix for
detailed search strategy). Details were recorded regarding
the number of studies found by database and search term,
as depicted within the flowchart (see Fig. 1).

The abstracts of the manuscripts were then indepen-
dently screened for eligibility by two authors (JK and
MNIJ). Differences in initial study identification and
selection for review were compared and deviations were
discussed until consensus on the disposition of each study
under question could be reached. Screening was based on
the following criteria: (a) empirical investigation with
HRYV measures taken in humans from non-clinical samples;
(b) specifically related to swimming (i.e. reported training
effects in swimmers); (c) published in a peer-reviewed
journal; and (d) published in English. Included papers were
reviewed in full text for information on (1) study design
and subjects; (2) swimming variables (i.e. elite swimmers,



Heart Rate Variability and Swimming

1379

Fig. 1 Search flow diagram.
HRYV heart rate variabilit; PubMed Embase PSYNDEX
y n=77 n =60 n=92
v v v
n = 229 total
n = 194 after removing duplicates
n = 24 possibly eligible P Screening of the abstracts for eligibility

for inclusion based on abstract

.

Excluded (n = 170)
= Clearly not related to the topic (n = 81)

Excluded (n = 10)

= Editorial comment (n = 1)

= No full-text available (n = 1)

Screening of the full texts for eligibility

= Poster / conference abstract (n = 2)

= Not exclusively swimming/swimmers (n =2)
= No HRV measure taken (n = 4)

= Animal studies (n = 23)

= Clinical samples (n = 35)

= Different (water) sport activity (n = 19)
= Published before 1996 (n = 9)

= Not English language (n = 3)

n = 14 included in the review

training frequency); (3) method of HRV measurement; (4)
data on HRV time domain measures; and (5) data on fre-
quency domain measures. The few differences in evalua-
tion were addressed, producing the consensus presented in
Fig. 1. The number of studies meeting the pre-specified
inclusion criteria, number of studies excluded, and reasons
for exclusion were recorded.

2.2 Data Extraction

Study information on author, country, study population,
sample size, sex ratio, age of participants, and main study
focus were extracted from the papers retrieved in full text.
Furthermore, details regarding the HRV measures obtained
from data sets were extracted and main findings or reported
effects were derived from the papers retrieved in full text
and summarized within a comprehensive table (Table 1).
Studies were classified and summarized by their study
design (i.e. control group, crossover, other).

3 Results

The search of the selected databases revealed 229 articles
(Fig. 1). A total of 194 articles were considered for
inclusion in the review after removing duplicates. The
abstracts of all articles were retrieved for further screening
of eligibility, leaving 24 articles for further consideration.
These were retrieved in full text if possible. A total of 14
studies [53—-66] were finally included in the systematic
review (Fig. 1; Table 1).

3.1 Heart Rate Variability Measures
Besides basic measures of HR (i.e. beats per minute

[BPM]), variations in HR or HRV can be evaluated by
many different methods and measures. Overall, measures

of HRV can be divided into three classes: the time domain,
frequency domain and non-linear. The most commonly
used measures of HRV are summarized in Table 2.

3.1.1 Time Domain Measures

Time domain measures can be derived from direct mea-
surements of the normal-to-normal intervals (NN intervals)
of instantaneous HR, or from the differences between NN
intervals. Within the included studies, reported time
domain measures include the mean NN interval in milli-
seconds (ms) [53, 61, 65], the mean standard deviation
(SD) of all NN intervals (SDRR or SDNN in ms [54-56,
59, 61, 65, 66]), the square root of the mean of the sum of
the squares of differences between adjacent NN intervals
(RMSSD) in ms [53-56, 59, 63, 65, 66], or the number of
pairs of adjacent NN intervals differing by more than
50 ms divided by the total number of all NN intervals
(pNN50 in % [54-56, 65, 66]) or simple NN50 count [55].
Aside from these frequently used measures, authors
reported the SD of the mean of all NN intervals for 5-min
segments (SDANN [56, 59, 66]) and the mean of the SD of
all normal NN intervals for all 5-min segments (SDNNIDX
[53, 56, 59]). Furthermore, the study by Cervantes Blas-
quez et al. [55] used the triangular interpolation of NN
interval histogram (TINN), as described elsewhere [62].

3.1.2 Frequency Domains

Parametric and non-parametric methods to analyze the
power spectral density (PSD) of HRV allow the calculation
of different spectral components of short- and long-term
recordings of HRV. From short-term recordings, three
different main spectral components are distinguished: very-
low frequency (VLF; <0.04 Hz), low frequency (LF;
usually 0.04-0.15 Hz) and high frequency (HF; usually
0.15-0.4 Hz) components. Furthermore, an ultra-low
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frequency component (ULF) can be derived from spectral
analysis in long-term recordings (e.g. 24 h). Depending on
the length of the recording, different frequency domain
measures with different frequency bands (see Table 1) are
reported within the included studies, including the power in
HF [54-58, 60, 61, 63-66], the power in LF [54-56, 58, 60,
61, 63-66], the power in VLF [55, 60], or total power (TP)
[54, 56, 58, 63, 64, 66]. Additionally, the ratio between LF
and HF (LF/HF ratio) serves as another measure of HRV
and is frequently included within the reviewed studies [54—
56, 58, 60, 61, 63-66]. Respiratory sinus arrhythmia
(RSA), the square root of the mean squared difference of
successive NNs (RMSSD) and the high-frequency com-
ponent of the power spectrum (HFpow) are closely related
and are strongly associated with cardiac vagal influence
and thus represent parasympathetic activity (Table 2). On
the other hand, and contrary to conventional wisdom, low-
frequency HRV (LF) reflects baroreflex activity rather than
sympathetic activity [67-69].

Besides these frequently used measures (Table 2), one
study [57] reported a different method to analyze the HF
component. The authors separated the HFpow (spectral
power in the HF range [0.15-2 Hz]) of each spectrum into
two components. The first component included the spectral
power relative to the respiratory modulation of HR
(HFpow.rsa), Whereas the second component included the
spectral power relative to the stroking (locomotor) modu-
lation of HR (HFpow.sTr). Details on this approach are
described elsewhere [57]. Furthermore, one study [59]
reported wavelet-transformed frequency domain measures
of HFwaveletv LFwavelet’ VLFwaveleb LFwavelet/HFwavelet’ and
TPyaveler- In case of HRV analysis, the wavelet transform
analysis is devoted to the extraction of characteristic fre-
quencies, contained along a signal of consecutive NN
intervals. The analysis amounts to sliding a window of
different weights (corresponding to different levels) con-
taining the wavelet function, all along the signal, as further
described by the authors [59].

3.1.3 Non-Linear Measures

Two of the included studies [55, 60] used non-linear Po-
incaré analysis to calculate indices of HRV. The Poincaré
method consists of plotting the length of each NN interval
against the length of the previous NN interval. Both studies
[55, 60] used two standard Poincaré plot descriptors: the
SD1 is a measure of instantaneous variability (successive
beats) and is taken as an indicator of parasympathetic
activity, whereas the SD2 represents long-term variability
and indicates both parasympathetic and sympathetic
activities.

@ Springer

3.2 Nature of Included Studies

The included studies broadly fell into three classes: (1) studies
using a control group design to compare HRV in swimmers
with subjects allocated to a control group (e.g. non-swimmers,
runners); (2) interventional studies measuring HRV over
training progress (e.g. relating HRV to performance measures
in swimmers), measuring HRV to address different modalities
of training (e.g. differences in altitude, intense vs. reduced
training) or recovery (i.e. cold-water immersion [CWI])
within a repeated measures design; and (3) other studies using
HRYV to address a specific problem (e.g. association of HRV
and risk of infection in swimmers, pre-competitive anxiety in
swimmers, HRV to estimate anaerobic threshold (AT)—
mostly correlation studies).

3.2.1 Control Group Designs: Differences
in the Autonomic Nervous System Function

Three studies investigated differences in ANS function
indexed by HRV in swimmers compared with a control
group (control group design). Of these, two studies inves-
tigated differences in HRV in highly trained pre-pubertal
swimmers compared with untrained counterparts. The
earlier study by Triposkiadis et al. [65] found a predomi-
nance of vagal tone in prepubertal swimmers. All param-
eters of HRV that are strongly dependent on
parasympathetic activity—both in the time domain and the
frequency domain measures (Table 2)—were significantly
increased in prepubertal swimmers compared with controls
(Table 1). The later study by Vinet et al. [66] reported no
significant differences between groups (swimmers Vvs.
untrained boys) for all frequency domain measures inde-
pendent of the mode of expression (absolute in ms?, rela-
tive in In or %) and time domain measures. The authors
mentioned that their results demonstrated that participating
intensively in swimming training does not induce changes
in HRV indices. Regarding the controversial nature of their
results compared with Triposkiadis et al. [65], Vinet et al.
[66] argue that differences between the two studies could
be explained by the population studied (boys and girls vs.
boys; training volume: 12—-14 h per week vs. 8—10 h per
week) and different methods of quantifying HRV.

The study by Franke et al. [58] also focused on differ-
ences in ANS function by determining whether highly fit
swimmers have greater orthostatic tolerance in comparison
to equally fit runners, and whether there are group differ-
ences in the autonomic responses to central hypovolemia.
However, the authors summarized that neither orthostatic
tolerance nor HRV responses to graded lower body nega-
tive pressure (LBNP) within a testing chamber differed
between the runners and swimmers, suggesting that
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differences between run and swim training do not affect
these responses.

Lakin et al. [61] compared the effects of intensity- and
duration-matched cycling and swimming exercise on the
post-exertional early-, mid- and late-recovery response in
young, healthy, triathlon trained (TT) and untrained (UT)
individuals. In the UT group, there were no significant
differences in indices of ANS function between the cycling
and swimming exercise group. However, the TT group
demonstrated a significant increase in LF and decrease in
HF at early- and mid-recovery compared with pre-exercise
following swimming, and increase in the LF/HF compared
with baseline and cycling exercise after swimming, indi-
cating a slower recovery of these indices following
swimming [61]. No differences between the groups were
observed following cycling exercise. Following swimming,
significant group differences during early- and mid-recov-
ery were present. The authors suggested that HRV response
to exercise is dependent on both training status and exer-
cise modality [61].

Of these higher class (i.e. better-designed, controlled)
studies, two showed significant differences between the
groups studied, while two other studies did not reveal any
difference in ANS function or reactivity, as indexed by
HRYV, between groups. One study revealed a predominance
of vagal tone in highly trained pre-pubertal swimmers
compared with untrained counterparts [65], while a later
study with a similar research question and design [66]
failed to replicate these findings. One study [61] found
differences in the post-exertional recovery response in tri-
athlon-trained subjects compared with untrained individu-
als after swimming, while another study [58] was not able
to report differences in highly fit swimmers compared with
equally fit runners in the autonomic responses to central
hypovolemia.

3.2.2 Crossover Designs: Variations in Training, Task
or Recovery Modalities

The majority of studies used a repeated measures design
for the evaluation of variations within the experimental
protocol and their comparative effects on HRV. These
variations addressed different training intensities (intense
training vs. reduced training, Atlaoui et al. [55]), different
conditions (training condition vs. competition condition,
Cervantes Blasquez et al. [55]; intensive training vs. taper
recovery periods, Chalencon et al. [56]; resting period vs.
training period, Garet et al. [59]), different times of the
season (before vs. at the end of the competitive season,
Perini et al. [63]), different training locations (altitude:
1,200 vs. 1,850 m, Schmitt et al. [64]), or different
recovery modalities (CWI, Al Haddad et al. [53, 63] and
Perini et al. [53, 63]).

Three studies [54, 56, 59] showed that HR was signifi-
cantly related to swimming performance. In particular,
greater HF power—representing parasympathetic activ-
ity—was significantly associated with greater performance
[54]. However, one study [59] assessed measurements of
HRV and autonomic function while participants were
asleep, which is not comparable with the other two studies
[54, 56].

The study by Atlaoui et al. [54] measured HRV in
competing national and international swimmers over a
7-week period. The swimmers were tested before and after
a 4-week intense training period (IT) and a 3-week reduced
training period (RT). At the end of each period, the
swimmers performed in a competition and answered a
questionnaire on fatigue. The authors found that HF HRV
correlated with performance both during and at the end of
RT, i.e. performances were significantly negatively related
to LF HRV and LF/HF ratio, and positively related to HF.
Furthermore, the authors found changes in fatigue posi-
tively related to changes in HF and negatively related to LF
and LF/HF ratio between the IT and RT periods. The
authors summarized their findings that HF, LF and LF/HF
are significantly related to swimming performance, and
those swimmers with higher HF and lower LF/HF, after the
3 weeks of RT, reported lower fatigue [54]. However, no
significant changes in HRV with training load variations
were found. The authors concluded that in highly trained
swimmers who coped well with their training program,
higher levels of HF during taper constituted a favorable
condition to increased swimming performance, and that
HRV changes during that time are a valuable tool for
monitoring the adaptation in variations of training load
and, hence, to improve performance in elite swimmers
during periods of reduced training.

Garet et al. [59] aimed to quantify the association
between changes in night-time ANS activity and changes
in three 400-m front-crawl swim performances during or at
the end of three successive periods of recovery or training
over 7 weeks. The training load of the swimmers was
reduced between the intensive training period (following a
first recovery period) and the recovery periods. While no
differences in mean performance between the three
assessments were found, mean SDNNIDX showed a qua-
dratic trend, such that there was a decrease in performance
from 1 to 2, and a rise back to baseline in performance 3.
The authors reported various trends for wavelet transform
indices of TP and HF—that are associated with global and
parasympathetic activity—and wavelet transform indices
of LF, but did not report on the significance of effects [59].
However, when individual data was plotted against asso-
ciated changes in performance, TP (TPy,ycler) showed a
significant positive correlation. Furthermore, other corre-
lations with time (i.e. SDNNIDX) and frequency measures

@ Springer



1386

J. Koenig et al.

associated with global and parasympathetic activity were
significant but weaker. The authors concluded that indi-
vidual relative variations in performance and individual
relative variations in nocturnal ANS activity are closely
related [59].

Chalencon et al. [56] observed swimmers of regional to
national level over 31 weeks at two cycles of intensive
training and taper recovery periods to compare the
response of performance in weekly morning 400-m free-
style time trials and nocturnal ANS activity. The authors
found a logarithmic relationship between performance and
ANS activity, where higher HF was associated with greater
performance. The authors concluded that their results
demonstrated the relevance of HRV measurement as a
valuable tool to assess physiological training-induced
responses and to optimize athletic performance [56].

Cervantes Blasquez et al. [55] addressed differences of
pre-competitive anxiety and HRV in swimmers under a
training condition (TC) and a competition condition (CC),
and found HRYV related to pre-competitive anxiety under
different conditions. Pre-competitive anxiety scores for
somatic anxiety on the Competitive State Anxiety
Inventory-2 (CSAI-2) were higher in the CC than the TC.
The authors noticed a significant decrease in the RMSSD,
whereas all other time domain measures of HRV showed
no significant differences between the conditions. Non-
linear HRV analysis revealed that SD1 was significantly
lower during CC. Furthermore, there was a significant
increase of the LF/HF ratio and a decrease of HF in the
CC. All parameters that increased their value significantly
in the CC were related to sympathetic activity and all
parameters that decreased significantly were related to
parasympathetic activity. Overall, the authors provided
evidence for a change in autonomic control in competitive
situations and in the presence of pre-competitive anxiety
[55].

Another study [63] showed that improvement in physi-
cal fitness observed from the beginning to the end of the
athletes’ competitive season was associated with decreased
HR and BP at rest, but with no change in the corresponding
vagal and sympathetic spectral markers indexed by HRV.
The authors found significant differences on various HRV
measures in the supine and sitting position, but no signif-
icant HRV differences at post-season compared with the
pre-season were observed. The authors concluded that the
improvement in physical fitness observed from the begin-
ning to the end of the athletes’ competitive season was
associated with decreased HR and BP values at rest, but
with no change in the corresponding vagal and sympathetic
spectral markers indexed by HRV [63].

Significant effects of the altitude of the training location
on HRV were revealed in another study [52]. During
training at an altitude of 1200 m, various HRV indices

@ Springer

increased. However, none of these parameters changed
during training at an altitude of 1,850 m; nevertheless,
swimming performance improved. Again, and this deserves
special notice, the authors found the change in performance
was correlated with an increase in vagal activity, as
indexed by HF HRV. The authors tested the hypothesis that
17 days of training (twice a day) at two different altitudes
(1,200 vs. 1,850 m) induces specific modifications of HRV.
They observed a difference in HRV changes between the
two altitudes. During training at an altitude of 1,200 m,
supine and standing TP and supine HF, as well as standing
LF, were increased. Furthermore, the 2,000-m freestyle
performance was improved, whereas none of these
parameters changed during training at an altitude of
1,850 m. Most interestingly, the change in performance
was correlated with an increase in supine HF. The authors
noted that HRV analysis in altitude appears to be a
promising method for monitoring the interacting effects of
hypoxia and training loads as high training loads and
hypoxic stress may have cumulative effects on HRV by
decreasing spectral power [64]. Their results are in line
with the study by Chalencon et al. [56] who found a log-
arithmic relationship between performance and ANS
activity, where higher HF was associated with greater
performance. Based on the evidence from these studies,
one may generally conclude that greater HRV, especially
HF, is associated with better swim performance.
Furthermore, two studies investigated the effect of CWI
[62] or daily CWI [53] as recovery intervention for
swimmers. While one study found that the intervention
resulted in slower swimming times and a smaller decrease
in RMSSD [62], the other study [53] found that daily
intervention following training was associated with greater
resting cardiac parasympathetic activity indexed by
RMSSD. Parouty et al. [62] investigated the effect of CWI
compared with an out-of-water control condition on sprint
swimming performance in well-trained swimmers who
were randomly assigned to a specified sequence of condi-
tions. Each participant completed both conditions on two
testing sessions at the same time of day, 6-7 days apart.
CWI was associated with a decrease in swimming perfor-
mance and a smaller decrease in RMSSD after the first of
two 100-m swimming sprints. The authors concluded that,
despite a subjective perception of improved recovery fol-
lowing CWI, the intervention resulted in slower swimming
times and therefore is unlikely to provide any performance
benefit to well-trained swimmers [62]. In a similar study
design, Al Haddad et al. [53] investigated the effect of
daily CWI compared with a control condition where sub-
jects rested seated without immersion, during a typical
training week, on parasympathetic activity and subjective
ratings of well-being in a randomized crossover design.
The authors found that daily CWI recovery following
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training was associated with greater resting cardiac para-
sympathetic activity—indexed by RMSSD—and a better
maintenance of perceived sleep quality throughout the
training week. As direct benefits of CWI on physical per-
formance and training adaptation warrants further investi-
gations, the authors concluded that future studies
investigating the influence of other immersion modalities
on subjective ratings, ANS activity, training adaptation and
performance are needed [53].

3.2.3 Other Studies

Two other studies with different study designs to those
described above were included in the systematic review. Di
Michele et al. [57] assessed the relationship between HRV
and lactate concentration (LA) to estimate the AT in an
incremental front-crawl swimming test in high-level
swimmers. The authors found an overall strong relationship
between LA and HRV to estimate AT. They concluded that
it is possible to estimate the AT from the HRV in an
incremental front-crawl swimming test and that the strong
agreement between the HRV threshold and the LAar
supports the possibility of using the HRV-based method for
the actual testing of swimmers [57].

Hellard et al. [60] tested the hypothesis that a shift in
autonomic balance toward sympathetic predominance is
associated with a higher risk of infection in swimmers.
They observed 18 elite swimmers over the time course of
2 years in two Olympic preparation centers. Symptoms and
HRV were measured on a weekly basis, with eight HRV
variables quantified in the supine and orthostatic positions.
The authors found that an increase in parasympathetic
indexes in the supine position assessed 1 week earlier was
linked to a higher risk of upper respiratory tract and pul-
monary infections (URTPI) and muscular problems (MP;
muscle injury, pulled muscles, tendinopathies, delayed-
onset muscle soreness persisting >24 h after training,
shoulder-pain syndrome, and knee-pain syndrome) [60].
During the same week of measurement and symptom
documentation, a higher risk of MP was linked with an
increase in sympathetic and parasympathetic indices and a
gain in the LF/HF. Measured in the orthostatic position, a
decrease in HF was associated with an increased risk of MP
measured during the same week, and a gain in the LF/HF
ratio was statistically linked to an increase in URTPI and
MP. Furthermore, increased LF and decreased SD1 in the
OR position were associated with an increased risk of MP,
and an increase in the TP of HRV associated with a decline
in SD1 in the supine position was associated with a higher
risk for all-type pathologies in winter. The authors sum-
marized their findings and noted that the weeks that pre-
ceded the appearance of URTPI and MP were
characterized by an increase in autonomic parasympathetic

activity in the supine position. Therefore, the authors
concluded that HRV is a rapid and non-invasive tool to
indicate autonomic function, which provides complemen-
tary information that may help to reduce the risk of
infection in elite swimmers [60].

4 Discussion

The present systematic review aimed to summarize trends
in the use of HRV measurements in the field of swimming
research. A search of three prominent electronic databases
by defined search strategies (see ESM Appendix), accord-
ing to the PRISMA statement, revealed 194 total studies
(after removing duplicates). Abstracts were then screened
for eligibility for inclusion within the review under pre-
defined inclusion criteria. An extensive search strategy of
three major databases was applied. However, the review is
still limited as one full text was not retrieved and several
conference proceedings were not included. Fourteen stud-
ies meeting the inclusion criteria were included within the
review. Besides one study from the US and one from
Canada, all studies were conducted in Europe, with studies
coming from France (n =38), Italy (n = 2), Greece
(n =1), and Spain (n = 1). All included studies were
published after the year 2000, with nine studies published
between 2000 and 2012, and six studies published within
the last 3 years. The first guideline [52] on standards of
measurements, physiological interpretation and clinical use
of HRV was published in 1996 and, thus, only studies
published after 1996 were included in the review. Included
studies therefore show a general good reporting of HRV
methods applied and measures derived. Most studies
reported the frequently used measures of HRV that are
summarized in Table 2. However, differences in the
methods of HRV recording carry a potential bias when
comparing results from different laboratories that use dif-
ferent devices to record HRV or different algorithms for its
analysis. Furthermore, measuring HRV during swimming,
or shortly after exercise, comes with several methodolog-
ical challenges. Most studies used ambulatory devices such
as the s810 [53, 54, 56, 59, 60, 62, 63], or the S810i [55,
57] (Polar Electro, Kempele, Finland). Although these
Polar recorders have been reported as reliable and valid
tools when compared with an ECG [70, 71], and are more
practical in such applied situations due to the affordability
of the device [72], if possible, traditional ECGs should be
used for both gathering and editing of HRV data [73].
Furthermore, as thermoregulation is driven by the ANS,
HRV measurements are affected by changes in the envi-
ronmental temperature [74, 75] that might occur by tran-
sition of athletes wearing only swim clothes into or out of
the water. While some authors’ demonstrated possible
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ways to control for core and skin temperature [61] in study
designs that required HRV assessment shortly after or
during exercise, the general influence of environmental
factors in this particular field of research appears to have
been underestimated.

Studies reviewed in this article fell mainly into three
classes; control group designs [58, 61, 65, 66] to investi-
gate between-subject differences (i.e. swimmers vs. non-
swimmers, swimmers vs. other athletes); repeated mea-
sures designs [53-56, 59, 62—-64] on within-subject differ-
ences of interventional studies measuring HRV to address
different modalities of training or recovery; and other
studies not falling into one of the aforementioned classes of
studies—using HRV to address a specific problem such as
the association of HRV and risk of infection in swimmers.

The controversial results from control group designs on
differences in the ANS function between trained and
untrained subjects [65 vs. 66, 58 vs. 61] are probably dri-
ven by methodological aspects that are crucial and should
always be taken into account when interpreting and com-
paring HRV data from different studies. For example, the
studies by Triposkiadis et al. [65] and Vinet et al. [66] not
only differed in sample size (n = 25/20 vs. n = 11/9) and
sex ratio (boys and girls vs. boys) but also on length of
HRYV recording (512 RR intervals vs. 6 min of a total of
4 h of recordings), the condition of recording (at rest vs.
during sleep) and the technical device used (12-lead ECG
vs. portable holter monitoring). Differences in the studies
by Franke et al. [58] and Lakin et al. [61] might also result
from different sample sizes (n = 9/11 vs. 21/10), sex ratios
(only male vs. balanced), length of HRV recording (256
RR intervals vs. 5 min), the condition of recording (supine
vs. seated position), and the technical device used (5-lead
vs. 3-lead ECG). While some of these results are therefore
controversial, they reveal that investigating HRV differ-
ences between (1) trained and untrained individuals or (2)
different types of athletes, and by (3) task and/or (4)
training modality are fields of interest for future studies.

Crossover designs with repeated measures foremost
focused on the improvement of training modalities for
professional swimmers. From this class of included studies
one can generally state that HRV seems to be related to
swimming performance. Of particular interest for future
studies is the investigation of (1) the specific role of
parasympathetic activity indexed by time (i.e. RMSSD,
pNN50) and frequency domain measures (i.e. HF) of
HRV—as most studies revealed a significant correlation of
performance measures with these parameters of HRV; (2)
the effect of recovery interventions on the ANS that can be
assessed using measures of HRV; and (3) to explore to
what extent HRV can mirror the impact of different
training modalities. The particular association of swim
training and vagal activity is in line with findings from
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research on animals. Recent research in rats suggests that
resting bradycardia (induced by swim training) is mainly
mediated by parasympathetic activity and differs from
other training modes (i.e. running) that seem to decrease
intrinsic HR [76]. Future studies in humans should
emphasize this particular association and investigate the
differences between swimming and other modalities of
physical activity. However, since numerous factors influ-
ence autonomic modulation of the HR (e.g. age, time of the
day, nutrition) and thus affect experimental data, cau-
tion should be used in implying causation in the results of
studies, which are largely based on correlation data. Pro-
spective trials and well-controlled replication studies are
necessary to strengthen the existing evidence on a possible
relation between HRV and swimming performance.

Besides the studies summarized with control group and
crossover designs, two other studies were included in the
systematic review. One [57] assessed the agreement
between HRV and LA to estimate the AT in swimmers and
found that it is possible to estimate the AT from the HRV.
Recently, several studies aimed to develop methods for
estimating the AT [77] from HRV [78, 79]. HRV allows
the differentiation of sub- from supra-ventilatory-threshold
exercise [79], and oxygen consumption at the ventilation
AT level was related to the variance of RR intervals [78].
However, given the large variability in both measures, the
feasibility of such applications needs to be questioned. It
has been shown that combined methods are superior (over
the use of a single method) and more accurate in the
determination of ventilatory thresholds. Based on the evi-
dence reviewed, this should also be taken into account
when using HRV to determine ventilatory threshold. The
other study [60] found that changes in HRV are associated
with the risk of infection in swimmers, and provides
information that may help to reduce the risk of infection in
elite swimmers. These types of studies promote the inte-
gration of the use of HRV measures in regular training in
professional athletes, and the latter study points to the
prospective value of HRV assessment. While clinical
research emphasizes the prognostic or predictive value of
HRYV [80-84], the study by Hellard et al. [60] was the only
one treating HRV as independent variable to predict the
risk of infection. The utility of HRV to determine indi-
vidual training load or expected performance outcome by a
priori baseline assessment might further be of interest in
the development of new fields of research.

5 Conclusion
The assessment of ANS activity underlying physical

activity is of interest for professionals in the field of sports
to improve training processes and competitive outcomes.
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Of particular interest seems the appropriate assessment of
parasympathetic activity, as recent research suggests that a
high and relatively stable vagal activity during preparation
may indicate a readiness to train or appropriate recovery
that positively affects performance in athletes [85]. Fur-
thermore, measures of training-induced disturbances
in autonomic control may provide useful information for
training prescription [86]. HRV provides a feasible, non-
invasive measurement for the quantification of ANS
activity and allows the distinct evaluation of vagal activity
by different time and frequency domain measures
(Table 2). Therefore, HRV has several advantages com-
pared with other measures of cardiovascular activity during
exercise.

However, studies on cardiac variability in athletes are
still an almost unexplored domain [35]. While recom-
mendations for the standardization of measurement con-
ditions in future studies on athletes that also apply for
swimmers are given elsewhere [35], this review provides
a summary of the current evidence from HRV research on
swimming and recommendations for future directions.
Besides studies that focus on the outcome and effects of
frequent swimming on ANS function, especially in ado-
lescents, the majority of studies included in this review
used measures of HRV to mirror and improve training or
competition conditions and performance outcome in pro-
fessional athletes. With respect to these studies, the
review revealed two major findings: (1) performance in
professional swimmers is correlated with ANS activ-
ity indexed by HRV (particularly parasympathetic activ-
ity); and (2) differences in training and recovery
modalities can be illustrated by methods of HRV mea-
surement and analysis.

While the feasibility and possibilities of HRV measures
for this particular field of application are well documented
within the existing literature, it seems that their incorpo-
ration in regular everyday training is far from realized
because HRV research on swimming faces several meth-
odological challenges related to the particular nature of the
sporting activity. Existing studies encourage the use of
HRV measures for a broad variety of applications by
trainers, athletes and experts within the field but more
research is needed, focusing on translational approaches
that transfer current evidence into regular practice.
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