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Abstract An athletic profile should encompass the

physiological, biomechanical, anthropometric and perfor-

mance measures pertinent to the athlete’s sport and disci-

pline. The measurement systems and procedures used to

create these profiles are constantly evolving and becoming

more precise and practical. This is a review of strength and

ballistic assessment methodologies used in sport, a critique

of current maximum strength [one-repetition maximum

(1RM) and isometric strength] and ballistic performance

(bench throw and jump capabilities) assessments for the

purpose of informing practitioners and evolving current

assessment methodologies. The reliability of the various

maximum strength and ballistic assessment methodologies

were reported in the form of intra-class correlation coeffi-

cients (ICC) and coefficient of variation (%CV). Mean

percent differences Mdiff ¼ jXmethod1�Xmethod2j
ðXmethod1þXmethod2Þ

h i
� 100

� �
and

effect size (ES = [Xmethod2 - Xmethod1] 7 SDmethod1) cal-

culations were used to assess the magnitude and spread of

methodological differences for a given performance mea-

sure of the included studies. Studies were grouped and

compared according to their respective performance mea-

sure and movement pattern. The various measurement

systems (e.g. force plates, position transducers, acceler-

ometers, jump mats, optical motion sensors and jump-and-

reach apparatuses) and assessment procedures (i.e. warm-up

strategies, loading schemes and rest periods) currently used

to assess maximum isometric squat and mid-thigh pull

strength (ICC [ 0.95; CV \ 2.0 %), 1RM bench press,

back squat and clean strength (ICC [ 0.91; CV \ 4.3 %),

and ballistic (vertical jump and bench throw) capabilities

(ICC [ 0.82; CV \ 6.5 %) were deemed highly reliable.

The measurement systems and assessment procedures

employed to assess maximum isometric strength

[MDiff = 2–71 %; effect size (ES) = 0.13–4.37], 1RM

strength (MDiff = 1–58 %; ES = 0.01–5.43), vertical jump

capabilities (MDiff = 2–57 %; ES = 0.02–4.67) and bench

throw capabilities (MDiff = 7–27 %; ES = 0.49–2.77)

varied greatly, producing trivial to very large effects on

these respective measures. Recreational to highly trained

athletes produced maximum isometric squat and mid-thigh

pull forces of 1,000–4,000 N; and 1RM bench press, back

squat and power clean values of 80–180 kg, 100–260 kg

and 70–140 kg, respectively. Mean and peak power pro-

duction across the various loads (body mass to 60 % 1RM)

were between 300 and 1,500 W during the bench throw

and between 1,500 and 9,000 W during the vertical jump.

The large variations in maximum strength and power can

be attributed to the wide range in physical characteristics

between different sports and athletic disciplines, training

and chronological age as well as the different measurement

systems of the included studies. The reliability and validity

outcomes suggest that a number of measurement systems

and testing procedures can be implemented to accurately

assess maximum strength and ballistic performance in

recreational and elite athletes, alike. However, the reader
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needs to be cognisant of the inherent differences between

measurement systems, as selection will inevitably affect

the outcome measure. The strength and conditioning

practitioner should also carefully consider the benefits and

limitations of the different measurement systems, testing

apparatuses, attachment sites, movement patterns (e.g.

direction of movement, contraction type, depth), loading

parameters (e.g. no load, single load, absolute load, relative

load, incremental loading), warm-up strategies, inter-trial

rest periods, dependent variables of interest (i.e. mean,

peak and rate dependent variables) and data collection and

processing techniques (i.e. sampling frequency, filtering

and smoothing options).

1 Introduction

A performance profile should encompass the physiological,

biomechanical, anthropometric and performance measures

pertinent to the athlete’s discipline. The measures that

comprise an athlete profile in sport may include: aerobic

capacity [1–5], anaerobic/lactate threshold [6, 7], repeated

sprint ability [8–17], maximum sprint ability (acceleration

and maximum speed) [18–36], agility [25, 29, 30, 37–43],

maximum strength [18, 44–55], ballistic upper and lower

body force, velocity and power production [47, 48, 56–76],

muscle architecture [77–80], anthropometry [50, 81–91],

functional movement [92–95] and flexibility [96–100].

Combinations of the above variables are often used for

talent identification, the creation of national standards and

performance tracking for the underlying purpose of deter-

mining an athlete’s ability to excel in a particular sport and/

or athletic discipline [44, 45, 49, 50, 52, 57, 75, 82, 83,

101–118].

To evolve current strength and conditioning practice,

physical performance assessments and athlete profiling

must be improved and standardized, as this will inevitably

allow for direct unbiased comparisons within and between

athletes and team/squads of the same sport/athletic disci-

pline. The type of strength, power, speed and conditioning

an athlete is exposed to will undoubtedly cause specific

neuromuscular and morphological adaptations, which in

turn may improve sports specific performance actions, such

as tackling, checking, hitting, blocking, fending, sprinting,

chasing, evading, kicking, shooting and passing. Strength

and conditioning practitioners use a combination of speed,

strength, hypertrophy, power and metabolic training phases

to elicit sport, positional and individual specific adapta-

tions. [26, 29, 36, 108, 119–133].

The mechanical assessment and analysis of weight-room

(i.e. pressing, pulling and squatting) and sport-specific

movements (i.e. throwing and jumping) through the use of

technology (i.e. force plates, position transducers,

accelerometers and video capture devices) may provide

strength and conditioning coaches with the tools required

to improve assessment methods to create comprehensive

athlete profiles that effectively influence programming. The

overall objective of this review is to consolidate current

maximum strength and ballistic assessment methodologies

in sport and provide practical recommendations for the

sport scientist and strength and conditioning coach. Sub-

sequent discussion will provide further insight into the

reliability, validity and primary differences between cur-

rent measurement systems and procedures/methods used to

assess ballistic upper and lower body capabilities and

maximum strength.

2 Methods

2.1 Search Strategies

The following electronic databases were searched multiple

times between February 1, 2013 and November 1, 2013:

MEDLINE, EBSCO Host, Google Scholar, IngentaCon-

nect, Ovid LWW, ProQuest Central, PubMed Central,

ScienceDirect Journals, SPORTDiscus and Wiley Inter-

Science between the years of 1980 and 2013. The follow-

ing keywords were used in various combinations during the

electronic searches: ‘recreational’, ‘elite’, ‘highly trained’,

‘athlete’, ‘sport’, ‘profile’, ‘physical’, ‘characteristics’,

‘maximum’, ‘strength’, ‘one-repetition’, ‘1RM’, ‘isomet-

ric’, ‘dynamic’, ‘ballistic‘, ‘neuromuscular’, ‘perfor-

mance’, ‘measure’, ‘capture’, ‘record’, ‘quantify’, ‘assess’,

‘evaluate’, ‘track’, ‘monitor’, ‘test’, ‘analyse’, ‘identify’,

‘develop’, ‘reliability’, ‘validity’, ‘human movement’,

‘jump’, ‘countermovement’, ‘bench’, ‘throw’, ‘squat’,

‘press’, ‘deadlift’, ‘clean’, ‘mid-thigh pull’, ‘measure-

ment’, ‘system’, ‘technology’, ‘device’, ‘method’, ‘proto-

col’, ‘design’, ‘force plate’, ‘linear position transducer’,

‘rotary encoder’, ‘accelerometer’, ‘optical sensor’, ‘jump

mat’, ‘video’, ‘Vertec’, ‘output’, ‘biomechanics’, ‘kinet-

ics’, ‘kinematics’, ‘force’, ‘power’, ‘velocity’, ‘displace-

ment’, ‘time’, ‘sampling frequency’, ‘rate’, ‘Nyquist

theorem’, ‘cut-off’, ‘data processing’, ‘smooth’, ‘filter’.

The searches identified 1175 potentially relevant articles.

Following a review of titles and abstracts, the total was cut

to 412.

2.2 Inclusion and Exclusion Criteria

Original research studies, technical notes, conference

abstracts, book sections and online sources focusing on

human movement measurement systems, maximum iso-

metric strength, maximum dynamic strength and ballistic

upper and lower body assessments were included in the
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initial screening phase. The studies were also required to be

written in English, all others were excluded. During the

final screening, selections were based on the relevance of

the identified sources to the assessment of maximum

strength and ballistic performance to recreational and elite

athletes, alike.

2.3 Data Analysis

The reliability of the included studies was reported in the

form of intra-class correlation coefficients (ICC) and

coefficient of variation (%CV). Mean percent difference

Mdiff ¼ jXmethod1�Xmethod2j
Xmethod1þXmethod2½ �

h i
� 100

� �
and effect size

(ES = [Xmethod2 - Xmethod1] 7 SDmethod1) calculations

were used to assess the magnitude and spread of method-

ological differences for a given dependent variable. Where

X represents the mean of each method (1 or 2) and SD

represents the standard deviation of method one. The

studies were grouped and compared according to their

respective performance measure and movement pattern.

The mean per cent difference calculations do not take into

account the variance of the change within and between

groups [134], therefore ES calculations were included to

account for variance by standardizing the effects allowing

for a more accurate comparison within and between mea-

surement systems and movement patterns [134]. The

magnitude of an ES varies based on the training status of

the athlete, as the adaptive response to training is larger in

recreationally versus highly trained athletes [135]. Effect

sizes have been classified into the following for recrea-

tionally trained: trivial (\0.35), small (0.35–0.80), mod-

erate (0.80–1.50) and large ([1.50); and trivial (\0.25),

small (0.25–0.50), moderate (0.50–1.00) and large ([1.00)

for highly trained athletes [134].

3 Measurement Systems

The technology used to profile athletes is constantly

evolving and becoming smaller, lighter and more practical.

Equipment has been designed and created to assess the

kinematics and kinetics of any and all isometric and

dynamic athletic movements (e.g. sprinting, cutting,

squatting, jumping, pressing, throwing and pulling) [2, 25,

37, 42, 43, 51, 136–148]. Current measurement systems

used to assess these athletic movements include: timing

lights [8, 23, 30, 149–153], video devices [154, 155],

optical motion sensors [156, 157], general positioning

systems (GPS) [2, 8, 158–160], stop watches [30, 41],

timing mats [154, 155, 157, 161], position transducers [56,

68, 162–165], force plates [56, 155, 164, 166–172], strain

gauges, rotary encoders [68, 173], accelerometers [163,

164, 174–178], magnetometers and gyroscopes [2, 25, 63,

76, 138, 140, 159, 166, 168, 171, 175, 177, 179–185].

These technologies have been validated to measure force,

acceleration, displacement, sprint times, change in position

and their respective integrated and derived variables.

This information may be used to provide immediate

performance feedback, assess the effectiveness of training

and track changes over time. Sports scientists have used

many of the above measurement systems in controlled

laboratory-based settings; and more recently accelerome-

ters have been employed to assess changes in force,

velocity and power during the above movements, to assess

the effectiveness of training interventions and monitor

performance over time [154, 156, 164, 175, 186–189]. A

shift to develop smaller, more practical wireless technol-

ogies (e.g. wireless accelerometers and GPS) may afford

strength and conditioning coaches the opportunity and

capability to assess performance changes in the various

training environments [190, 191]. However, these com-

mercially available devices (e.g. Myotest�, XC2�,

G-Link-LXRS�, AmmSensorTM) are still relatively untes-

ted in terms of measuring kinematics and kinetics during

squatting, jumping, pushing and pulling type movements in

high-performance environments [163, 164, 175–178, 182];

these technologies therefore require further validation

before being used as a monitoring tool in sport.

3.1 Sampling, Filtering and Smoothing Techniques

The data collected during these movement patterns are

often filtered, smoothed, differentiated and integrated to

calculate and predict specific kinematic (displacement,

velocity and acceleration) and kinetic (work, impulse, rate

of force development and power) variables using built-in

and customised software programmes [56, 139, 160, 163,

164, 168, 174, 186, 192–196]. The sampling frequency,

filtering and data smoothing techniques applied may also

affect the resultant output. A broad range of sampling

frequencies (25–1,000 Hz) have been applied to collect and

record kinematic and kinetic data across different mea-

surement systems (e.g. video, rotary encoders, position

transducers, accelerometers and force plates [56–58, 61,

62, 64, 67, 68, 71, 148, 162, 163, 166–168, 174, 192, 195,

197–204]. Recommendations are based on the Nyquist–

Shannon sampling theorem, which states that the critical

sampling frequency must be a minimum of two times the

highest frequency in the signal of interest to obtain all the

information found in the original signal [205, 206]. The

movement pattern assessed (e.g. jumping, throwing,

pressing and squatting), dependent variables of interest

(e.g. mean, peak and rate dependent variables) and mea-

surement system determine the frequency of the signal and

in turn the required sampling frequency (Table 1). The
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required sampling frequency increases with increasing

velocity; for example, to capture position changes of 5 mm

for movements with velocities between 1.00 and 3.00 m/s,

the subsequent measurement system must sample at rates

between 20 and 60 Hz [207–210]. Sampling at rates below

the critical frequency run the risk of aliasing (i.e. distorting

the original signal) and losing vital pieces of the original

signal (e.g. peak values) [205]. Regardless of the mea-

surement system employed, it is recommended that the

sampling frequency be at least five to ten times the fre-

quency of the signal of interest for human movements to

ensure peak values (e.g. peak take-off and impact forces)

are not missed [195, 206, 211]. However, when rate

dependent variables are included (e.g. rate of force devel-

opment) sampling frequencies should be much larger

(1,000–2,500 Hz). Therefore, the sampling frequencies

required to accurately capture maximum dynamic strength

(e.g. squat, bench press and clean), maximum isometric

strength (e.g. squat, bench press and mid-thigh pull) and

ballistic (e.g. bench throws and jumps) movements range

from low (100 Hz) to very high (2,500 Hz), respectively.

A number of measurement systems have built-in soft-

ware programmes that convert the analogue signal to dig-

ital, the time-dependent digital data (e.g. displacement,

velocity, acceleration and force) is then smoothed and fil-

tered (between 0 and 100 Hz), which is adjusted to reduce

noise and signal distortion [195, 203, 204, 206, 212–221].

Displacement, velocity, acceleration and force data are

most commonly smoothed using polynomial (e.g. second-

and fourth-order Butterworth filters), splines (e.g. cubic,

rectangular and quintic splines), Fourier transforms, mov-

ing averages (3–15 data points) and digital filters [67, 166,

195, 203, 204, 206, 217, 218, 220–235]. Human movement

occurs at relatively low frequencies (5–30 Hz), therefore

low-pass filters (4–10 Hz) are often used to remove the

high-frequency noise of the signal [216, 217, 221].

The filtered and smoothed data are then differentiated or

integrated depending on the measurement system used to

calculate other important variables of interest (e.g. impulse,

work and power). As the number of calculations increases,

so does the error, for example a position-time data from

linear position transducers and rotary encoders must be

differentiated and double differentiated to calculate

velocity and acceleration, introducing more noise for each

successive calculation [230, 236]. For a more detailed

description of kinematic and kinetic data collection and

analysis methods refer to the following sources [179, 205,

206, 221, 226, 230, 234–238].

4 Ballistic Profiling

Biomechanically, sport is typified by a spectrum of specific

force–velocity–power governed actions, such as pushing,

pulling, jumping, running, sprinting, cutting, tackling,

fending, blocking, kicking and passing [2, 105, 107, 204,

239–242]. Explosive upper and lower body capabilities are

generally quantified and assessed via force plates and

position transducers [16, 118] technology during explosive

pulling, pressing, squatting, jumping and throwing [61, 71,

75, 166, 167, 192, 197, 203, 204, 243–246]. Ballistic

movements, such as jumping and throwing allow the ath-

lete to accelerate the body/bar throughout the entire range

of motion; producing greater velocity and power outputs

than traditional non-ballistic movements [247]. When

designing vertical jump and bench throw profiling proto-

cols, the sports scientist and strength and conditioning

coach must carefully consider the measurement system

(e.g. force plate, position transducer, jump mat, video,

accelerometer, optical motion sensors), testing apparatus

[bar type (free vs. fixed)], movement pattern (i.e. coun-

termovement, concentric-only, direction of movement,

depth), loading parameters [single load, incremental load-

ing, absolute load, relative load (%1RM vs %BM)], warm-

up strategy and inter-trial rest periods. A number of dif-

ferent bench throw and vertical jump testing protocols have

been implemented to reliably (ICC C 0.83; CV B 6.4 %)

assess vertical displacement (jump and throw height),

force, velocity and power across the various absolute and

relative loads using the previously mentioned measurement

systems [45, 57, 58, 61, 62, 64, 67, 68, 141, 148, 162, 166–

168, 181, 187, 192, 195, 197, 199–202, 222, 248–250].

Table 1 Recommended sampling frequencies for ballistic, dynamic

strength and isometric strength testing [165, 195, 205, 242, 244, 300,

326, 329, 335, 337, 347, 375, 403–409]

Movement

pattern

Velocity

range

(m/s)

Rate of force

development

(kN/s)

Recommended sampling

frequency range (Hz)

Vertical jump 1.50–3.50a 5–15b 350–700a 1,000–1,500b

Bench throw 1.00–2.50a 2–10b 250–500a 200–1,000b

1RM clean 0.50–3.50a 10–25b 350–700a 1,000–2,500b

1RM bench

press

0.10–0.70a 5–15b 100–200a 500–1,500b

1RM squat 0.20–1.00a 5–20b 100–200a 500–2,000b

Iso-squat 5–25b 500–2,500b

Iso-mid-thigh

pull

5–25b 500–2,500b

Iso-bench

press

5–15b 500–1,500b

a Recommended sampling frequencies are based on the sampling rates

of five to ten times the minimum sampling frequency (which are based

on capturing position changes of 5 mm)
b Recommended sampling frequencies for rate of force develop-

ment are based on a sampling frequency to capture force changes

of 10 N
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4.1 Ballistic Assessment Strategies

The measurement system used during the ballistic assess-

ment will inevitably affect the resultant kinematics and

kinetics. Jump mats and photo-cells predict jump height

based on flight time; whereas the reach-and-jump appara-

tuses (e.g. Vertec) measure jump height directly based on

the difference between reach height and the highest

obtained jump. Based on jump height and body mass peak

power can be predicted using previously developed

regression equations. Video capture devices use anatomical

landmarks to track movement of the centre-of-mass, which

are converted to vertical and horizontal position coordi-

nates via digitisation, jump height is calculated as the rise

of the centre-of-mass. Velocity and acceleration are cal-

culated through single and double differentiation of the

digitized position-time data; subsequently force (mass 9

acceleration) and power (force 9 velocity) can be deter-

mined if the mass of the athlete is known. The force plate

predicts jump height from take-off velocity using different

methods that include integration of the acceleration-time

curve, the impulse-momentum theorem and the work-

energy theorem. The force plate calculates power from the

ground reaction force and velocity of the centre-of-mass as

integrated from the acceleration-time curve; whereas the

position transducer calculates power from the system mass

(body mass ? external load) and velocity of the position

transducer attachment point as differentiated from the

position-time data. When these two devices are synchro-

nized, power is calculated from the ground reaction force

of the force plate and the velocity of position transducer.

Based on the above descriptions inter-device differences

are expected as the respective kinematics and kinetics are

measured and calculated via different parameters.

A number of vertical jump studies have compared the

kinematic and kinetic differences between measurement

systems (Table 2). [154, 155, 157, 166, 167, 192, 194,

251–253]. Lara et al. [194] reported that vertical jump peak

power predictive equations based on jump height and body

mass developed by Sayers [253], Harman [252] and Can-

avan [251] differed from the force plate by 9 %

(ES = 0.52), 21 % (ES = 1.19) and 33 % (ES = 1.76),

respectively. Other studies also observed trivial to large

differences in peak power (MDiff = 2–22 %;

ES = 0.03–1.72) between the force plate, linear position

transducer and force plate synched with a linear position

transducer during loaded and unloaded squat jumps

(Table 2) [166, 202]. Previous researchers using acceler-

ometers found the bar attachment [164, 175] set-up to over-

predict (*3–8 %) and the hip attachment [156, 250, 254,

255] to under-predict (*2–6 %) flight time, force and

power in comparison to force plate technology. Jump

height estimations also varied in direct relation to the

measurement system used [154, 155, 157]. Predicted jump

height differences between 2 and 32 % (ES = 0.08–2.27)

have been reported between force plates (i.e. calculated

from take-off velocity), video, photo-cells, jump mats,

accelerometers and jump-and-reach apparatuses (Table 2)

[154, 157, 256, 257]. The different devices measure and

predict jump height and power based on different param-

eters, therefore inter-device differences should be expec-

ted. Nonetheless, these devices were all deemed highly

reliable (ICC [ 0.92; CV \ 5.6 %) for estimating jump

height within and across testing sessions. It must be noted

that measurement systems requiring a greater number of

steps (e.g. differentiation, integration, multiplication, divi-

sion, regression analysis) to calculate a specific variable of

interest are at a greater risk of increased noise and calcu-

lation error [155, 230].

Although less researched inter-device differences were

observed during bench throw and explosive bench press

assessments [68, 163]. Gomez-Piriz et al. [163] found

wireless accelerometry (805 ± 242 W; 1.94 ± 0.50 m/s)

to over-predict explosive bench press peak power and peak

velocity by 20 % (ES = 2.77) and 7 % (ES = 1.05) using

a 25-kg load, in comparison to a position transducer

(662 ± 52 W; 1.81 ± 0.13 m/s). The within-subject SDs

may also suggest that the accelerometer was more variable

and less stable than the position transducer. Drinkwater

et al. [68] reported a high criterion validity (r C 0.97) for

optical rotary encoders in assessing mean and peak power

during a 40-kg Smith machine bench throw in comparison

to a digital video camera. A number of studies assessed

criterion validity using a Pearson product correlation, while

failing to report absolute or mean percentage differences

between measurement systems, therefore only partially

validating these respective systems [68, 188, 258]. Based

on the above studies, the various measurement systems

should not be used interchangeably to assess and monitor

kinematic and kinetic changes in bench throw and vertical

jump performance because of the observed differences

(Table 2).

Vertical plane movements using free [56, 148, 166, 181,

195, 202, 204, 222] and fixed bar [45, 57, 61–63, 67, 162,

197, 233] set-ups are most commonly used to assess jump

and bench throw capabilities, as they are more easily

evaluated using the various measurement systems; and

incremental loading can be applied more effectively.

Bench throw and vertical jump profiles have been created

using incremental load testing [i.e. absolute and relative

(%1RM or %BM) loads] [57, 61, 62, 64, 76, 148, 180, 203,

204, 259]. The logistics of these incremental loading

schemes should be carefully considered when applied to

team sports versus individual athletes, as absolute loading

may be more practical (i.e. less time consuming) in team

sport settings, where a large number of athletes are tested
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within a single session [45, 64, 76, 141, 148, 162, 164, 181,

246, 260, 261]. The use of magnetic braking systems is

often advised during heavy load trials as a safety precau-

tion to reduce impact forces on landing [262–264]. Train-

ing experience and age should also be taken into

consideration when selecting the loading scheme, as more

experienced athletes will most likely have greater tolerance

to heavier external loads.

There are two similar, yet distinct bench throw and

vertical jump movement patterns used to assess these

kinematics and kinematics, the countermovement and

concentric-only muscle actions; which are respectively

Table 2 A study comparison of ballistic lower and upper body measurement systems

Study N Group Movement pattern DV Device Output

Lower body

Aragon-Vargas [257] 52 Collegiate M CMJ JH Video 52.0 cm

FP - TVel 36.1 cm

FP - Ft 40.2 cm

Cormie et al. [166] 10 Collegiate M JS PP FP 6,261 W

LPT 6,497 W

FP ? LPT 6,303 W

Cormie et al. [166] 10 Collegiate M JS 85 % PP FP 4,247 W

LPT 4,403 W

FP ? LPT 4,093 W

Dias et al. [155] 20 Nonathletic M/F CMJ JH Video 37.9 cm

FP 36.4 cm

Jump mat 27.6 cm

Garcia-Lopez et al. [157] 89 Students M/F CMJ JH FP 32.7 cm

Photo cells 31.4 cm

Jump mat 26.9 cm

Hori et al. [202] 30 Professional AFL M CMJ 40 kg PP FP 3,866 W

LPT 3,567 W

FP ? LPT 4,427 W

Hori et al. [202] 30 Professional AFL M CMJ 40 kg PF FP 2,151 N

LPT 2,159 N

Hori et al. [202] 30 Professional AFL M CMJ 40 kg PV FP 1.99 m/s

LPT 2.23 m/s

Kibele [256] 8 Athletic M/F CMJ JH Video 32.7 cm

FP - TVel 30.2 cm

FP - Ft 30.8 cm

Lara et al. [194] 161 Recreational M/F VJ PP FP 3,524 W

EqnCanavan 2,533 W

EqnSayers 3,232 W

EqnHarman 2,856 W

Nuzzo et al. [154] 40 Recreational M CMJ JH Vertec 47.9 cm

Jump mat 55.3 cm

Accel 44.3 cm

Upper body

Gomez-Piriz et al. [163] 3 Athletic M EBP PP LPT 662 W

Accel 805 W

Gomez-Piriz et al. [163] 3 Athletic M EBP PV LPT 1.81 m/s

Accel 1.94 m/s

Accel accelerometer, AFL Australian Rules Football, CMJ countermovement jump, DV dependent variable of interest, EBP explosive bench

press, Eqn power predictive equation (W), F female, FP force plate, Ft jump height calculated from flight time, JH jump height, JS jump squat,

LPT linear position transducer, M male, N sample size, PP peak concentric power (W), PV peak concentric velocity (m/s), TVel jump height

calculated from take-off velocity, VJ vertical jump
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used to assess the stretch-shortening cycle and concentric-

only capabilities of the athlete [75, 148, 265]. The inclu-

sion of both movements in a ballistic performance profile

may help determine an athlete’s level of stretch-shortening

cycle augmentation (i.e. ratio between countermovement

and concentric-only performance) [265]. The eccentric

displacement (depth) of these ballistic movements will

influence the validity, reliability and subsequent kinematic

and kinetic outputs, and therefore needs to be carefully

considered [141, 266–268].

The depth of bench throw (e.g. bar-to-chest, 90� elbow

angle and self-selected depth) and vertical jump (e.g. self-

selected, 90� knee angle and parallel) assessments vary

between studies [45, 56, 61, 62, 67, 68, 148, 162, 181, 195,

197, 204, 222, 233, 248, 269]. There are inherent benefits and

limitations to using self-selected and fixed depths [266, 268].

Two studies investigating the effects of squat jump (SJ) and

countermovement jump (CMJ) depth on performance found

that as squat depth increased, peak force (MDiff = 16–57 %;

ES = 1.41–3.27) decreased and jump height increased

(MDiff = 35–56 %; ES = 2.08–4.67) [266, 268]. Clark et al.

[141] found that the full range (bar-to-chest) bench throw

produced greater peak force (MDiff = 27 %; ES = 2.38) and

throw height (MDiff = 16 %; ES = 0.49) in comparison to

the half range bench throw using a load of 60 kg. It seems

that increasing CMJ and SJ depth may improve jump height

and reduce peak force; whereas increasing bench throw

depth appears to increase throw height and peak force.

Other ballistic upper and lower body movements, such

as horizontal and lateral jumps and throws have also been

used to a lesser extent to assess performance in these

respective planes [74, 107, 270–277]. Horizontal and lat-

eral jumps and throws may provide the strength and con-

ditioning coach with information regarding the athletes’

explosive horizontal and lateral capabilities that could

transfer to sport-specific qualities, such as sprint accelera-

tion and change in direction ability [74, 107, 133, 242, 271,

274, 278–282]. Unilateral (e.g. single leg and single arm)

ballistic movements have also been used to assess kine-

matic and kinetic asymmetries for preventative and reha-

bilitative purposes [242, 274, 279–281, 283–285].

Horizontal, lateral and unilateral ballistic assessments in

sport have been under-used in comparison to bilateral

vertical jumps, considering the sports-specific application

and relevance of these assessments.

Various warm-up and post-activation potentiation

strategies (e.g. dynamic stretching, light ballistic loading,

plyometric, heavy dynamic loading, isometric contractions,

motivation, feedback) have also been implemented to

improve ballistic upper and lower body performance (e.g.

power, velocity and jump height) [60, 246, 286–300].

Researchers have reported jump height increases of

3–5 cm (ES = 0.32–1.25) and peak power increases of

120–350 W (ES = 0.22–0.77) following heavy load back

squats (1–5RM) [9, 255, 288, 299, 301, 302]. According to

Kilduff and colleagues [287, 288, 299], it may take

4–12 min to significantly potentiate CMJ and bench throw

peak power following a heavy set of back squats and/or

bench presses. However, others suggest that bench throw

and vertical jump performance (e.g. force and power out-

put) can be effectively potentiated (3–8 %) with as little as

90 s to 3 min rest following moderate load sets (body mass

75 % 1RM) [303–305]. Implementing potentiation exer-

cises as part of the standardized warm-up prior to assessing

ballistic upper and lower body capabilities may be a

worthwhile strategy. Visual and verbal performance feed-

back strategies (ICC = 0.83–0.87) have also been shown

to improve the reliability of ballistic assessments and per-

formance in comparison to non-feedback strategies

(ICC = 0.53–0.74) [306, 307]. Traditional rest periods

prescribed between sets range between 2 and 5 min across

numerous ballistic upper and lower body profiling studies

[45, 57, 61, 62, 67, 68, 148, 162, 166, 181, 192, 197, 203,

204, 233]; implementing longer inter-set rest periods

(4–12 min) could also allow for optimal neuromuscular

recovery and in turn an increase in ballistic performance.

Given this information the reader needs to be cognisant of

the inherent benefits and limitations of the various assess-

ment strategies currently available, as they will inevitably

affect the resultant kinematic and kinetic outputs.

4.2 Power Production in Sport

Concentric power (peak power and mean power) and jump

height are the two most commonly reported ballistic per-

formance variables within sport [22, 33, 49, 58, 61, 64, 71,

73, 75, 181, 204, 248, 286, 308–311]. Peak power can be

defined as the maximum instantaneous value achieved

during the concentric phase at a given load, whereas mean

power is calculated as the area under the concentric portion

of a power-time curve using a given load [312]. The load

that maximises an athlete’s power output is often referred

to as the Pmax load; which is often predicted based on a

polynomial equation applied to the individual power-load

curve; and is expressed as mean or peak power [61, 63, 64,

71, 75, 192, 244, 247, 260, 262, 265, 286, 308, 313–319].

Pmax has been reported across a range of bench throw

(30–60 % 1RM; 35–70 kg) [45, 61, 63–65, 128, 197, 249,

308, 320] and vertical jump loads (0–60 % 1RM) [56, 57,

64, 148, 166, 167, 192], which is dependent on the mea-

surement system and the group or individual being asses-

sed. Athletes can produce peak power outputs between 450

and 1,500 W during the bench throw using relative loads

between 20 and 60 % 1RM (20–80 kg) [45, 64, 65, 197,

309, 321]; and between 3,000 and 9,000 W during vertical

jump using loads between body mass (no external load) to
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60 % 1RM (0–120 kg) [49, 56, 57, 61, 64, 65, 71, 75, 181,

198, 204, 322]. Mean concentric power outputs between

300 and 800 W during the bench throw using relative loads

between 20 and 60 % 1RM (20–80 kg); and between 1,500

and 4,000 W during vertical jumps using loads between

body mass to 60 % 1RM have been reported [47, 61–63,

71, 181, 202, 259, 261]. Larger variations in mean and peak

power can be attributed to the full spectrum of loads used

and the wide range in physical characteristics between

various sports and athletic disciplines.

Many of these studies have reported Pmax in their

assessments, while failing to report other equally important

variables [57, 61, 62, 64, 65, 128, 148, 197]. Kinematic and

kinetic variables, such as force and velocity should also be

included to provide a greater mechanical understanding of

these ballistic movements [67, 180, 195, 222, 246]. The

addition of maximum force (Fmax) and maximum velocity

(Vmax) as assessed during throwing and jumping may

provide a more holistic representation of ballistic perfor-

mance [180, 323]. Fmax (velocity = 0 m/s) and Vmax (for-

ce = 0 N) encompass the entire force–velocity spectrum,

as they are hypothetical maximums produced at extreme

ends of the force–velocity curve and could provide valu-

able prognostic information for athlete profiling and pro-

gramming, but such a contention requires further

validation. This is especially so given the spectrum of

force–velocity–power actions in sport.

5 Maximum Strength

Maximum strength can be defined as the maximum amount

of force (dynamic or isometric) an athlete can produce

against an external load during a given movement [324].

Maximum strength is an integral part of most sports, spe-

cifically in contact sports, throwing events (e.g. shot put and

hammer throw) and weightlifting [18, 33, 46, 83, 100, 106,

140, 242, 325–330]. The following factors need to be con-

sidered as they will inevitably affect the maximum strength

measure: testing equipment, measurement system, move-

ment pattern, contraction type (i.e. eccentric-concentric,

concentric-only and isometric), range of motion (eccentric

depth), warm-up strategy, motivation and loading scheme.

The different maximum dynamic [57, 162, 174, 248, 326,

331–335] and isometric [242, 326, 336, 337] strength testing

methodologies have been deemed highly reliable

(ICC [ 0.91; CV \ 4.5 %) and are subsequently discussed.

5.1 Maximum Dynamic Strength Assessment

Strategies

The 1RM bench press, back squat and clean are the most

common methods of assessing maximum strength in

athletes [18, 22, 27, 45, 70, 72, 73, 144, 197, 202, 240, 244,

308, 326, 335, 338–343]. The required squat depth (i.e.

quarter, half, parallel and full) and knee angle (70�–110�)

varies between studies, in turn affecting the resultant 1RM

[45, 162, 181, 197, 244, 248, 326, 333, 336, 344–347]. The

box squat has also been used as replacement and supple-

mentary testing and training exercise and in turn possibly

affecting the resultant kinematics and kinetics, but not

necessarily maximum strength when performed correctly

[45, 65, 267, 305, 347]. Bench press depth was not always

identified in the studies, but a bar-to-chest depth is required

by the International Powerlifting Federation [348] and a

handful of studies [162, 174, 181, 248, 326, 349, 350]. As

expected, shallower depths resulted in greater 1RM outputs

(MDiff = 49–58 %; ES = 4.24–5.43) [173, 336]. The use

of a fixed lifting apparatus (e.g. Smith machine) versus

free-weights also appeared to affect the resultant 1RM

squat (MDiff = 2 %; ES = 0.09) and 1RM bench/chest

press (MDiff = 8–13 %; ES = 0.35–0.70) [346, 351].

Submaximal strength tests have also been implemented to

accurately assess strength and predict 1RM; mean differ-

ences of 0–4 % (ES = 0.00–0.13) have been reported

between true 1RM and predicted 1RM bench press and

back squat [174, 334, 352, 353]. This information may be

useful in determining the athletes 1RM without subjecting

them to maximum external loads during testing. The clean

(full clean and power clean) instructions were similar

between studies: lift the bar explosively in the vertical

plane from the floor (first pull) past the knees, followed by

an explosive (Vmax) triple extension of the knees, hips and

ankles (second pull), scoop under and catch the bar on the

shoulders with the elbows high in a front quarter/full squat

position [73, 165, 335, 354].

Previous researchers have implemented many different

warm-up strategies, such as the cycle ergometer

(5–10 min) [73, 204, 244, 269, 336], dynamic stretching

and potentiation exercises to maximize strength [73, 294,

295, 355–360]. Squat, leg press and bench press strength

increases of 2–4 % (ES = 0.07–0.21) have been reported

following various potentiation strategies (e.g. drop jumps,

plyometric push-ups and dynamic warm-ups) [356, 358,

359, 361]. Other studies have also found maximum

strength increases of 8–12 % (ES = 0.50–0.64) using

various motivational strategies [362–364]. In general,

loading patterns progressed from light to heavy

(30–100 % 1RM) across three to seven successive sets of

two to ten repetitions prior to reaching 1RM; 3–5 min

rest was given following each set [45, 57, 73, 162, 165,

174, 181, 197, 248, 326, 333, 357]. Based on the

above information, different methods of potentiation

strategies may be a beneficial warm-up strategy to fur-

ther increase upper and lower body 1RM outputs during

testing.
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5.2 Maximum Isometric Strength Assessment

Strategies

Maximum isometric strength tests are less accessible and

therefore less popular than the 1RM, as a force plate or

strain gauge is required to assess these strength qualities

(e.g. peak force, mean force and rate of force development)

[49, 51, 54, 172, 244, 269, 326, 332, 365]. A number of

investigations have reported strong correlations

(r = 0.76–0.97) between maximum dynamic strength and

isometric force production during similar movement pat-

terns [332, 336, 337, 366]. When converted to system mass

(external load ? body mass), the peak force produced

during isometric squats and mid-thigh pulls was slightly to

significantly larger (MDiff = 2–32 %; ES = 0.13–3.40)

than the system mass during the 1RM squat [54, 244, 326,

336, 366]. This information may prove useful for com-

paring isometric to dynamic strength. The isometric squat

(90–140�) and isometric mid-thigh pull (120–145�) knee

angles, contraction durations (3–6 s), inter-trial rest inter-

vals (2–5 min) and force plate sampling frequencies

(500–1,000 Hz) vary between studies [54, 172, 242, 244,

269, 326, 332, 336, 337, 367–371]. It appears that force

capabilities during the isometric squat and leg press

increased (MDiff = 1–70 %; ES = 0.05–1.67) with an

increased knee angle beyond 110� (110�–170� vs. 90�–

110�) [336, 365, 369, 370].

The isometric bench press has also been assessed at a

number of positions relative to the chest (i.e. 2–50 cm from

the chest) and elbow angle (90–135�) using strain gauges

and force plates [172, 300, 372–374]. No upper body

studies to date have compared or reported differences in

isometric force production between the various joint

angles; but based on the force-position analysis of the

heavy dynamic bench press, it would appear that the

greatest amount of force (acceleration) is produced during

the initial concentric acceleration phase (60–90�) when the

athlete is attempting to overcome the inertia of the external

load [375–378].

5.3 Maximum Strength in Sport

Maximum strength varies greatly within and between

sports and athletic disciplines, depending on anthropome-

try, morphology, chronological age, training age and

experience [46, 48, 66, 112, 308, 325, 350, 353, 379–381].

Maximum isometric forces between 1,000 and 4,000 N

have been reported in recreational to highly trained athletes

during the isometric back squat and mid-thigh pull move-

ment patterns [49, 51, 54, 244, 269, 326, 332, 336, 337,

366]. The 1RM bench press, back squat and power clean

can have a range of 80–180 kg, 100–250 kg and

70–140 kg, respectively [18, 25, 45, 62–64, 72, 73, 107,

166, 197, 204, 244, 260, 309, 321, 326, 335, 339–342, 382,

383]. In competitive sport, heavier athletes typically have

superior maximum upper and lower body strength qualities

because of an increase in the muscle cross-sectional area

[49, 162, 328, 342, 382, 384–388].

The large ranges in maximum dynamic and isometric

strength may be a result of the various testing methodol-

ogies and large variations in somatotype within and

between sports and athletic disciplines. Anthropometric

and morphological differences are often off-set by scaling

maximum strength to body mass, or by allometrically

scaling to a ratio (0.44–0.67) of body mass to allow for an

unbiased comparison between athletes [46, 66, 162, 389].

Scaling by a percentage of body mass eliminates body

mass bias for the sample of interest.

These isometric and dynamic strength tests can be used

to assess and monitor maximum strength adaptations as

well as effectively inform weight-room specific program-

ming. However, these weight lifting-based assessments do

not necessarily provide a true representation of the required

sports specific strength qualities [35, 49, 51, 172, 390].

Sports specific maximum strength tests have also been

developed to quantify individual tackling [53, 136, 391],

scrumming [51, 53, 55, 142, 390, 392], hitting [393–396],

kicking [397, 398] and punching [399–402] capabilities;

however, their diagnostic value to strength and condition-

ing practice remains inconclusive.

6 Conclusion

Maximum strength and ballistic qualities vary widely

within and across sports owing to the large range in posi-

tional and sport-specific requirements and subsequent

physical characteristics. When creating a performance

profile, the strength and conditioning practitioner needs to

carefully consider the benefits and limitations of the vari-

ous measurement systems, testing apparatuses, measure-

ment system attachment sites, movement patterns, loading

parameters, warm-up strategies, rest periods, dependent

variables of interest and data collection and processing

techniques.

Based on current reliability findings (Table 3), all of the

reviewed maximum strength and ballistic assessment

methodologies may be implemented to measure their

respective measures. The most accurate and reliable methods

are not always the most practical, therefore sport-specific and

environmental factors should also be considered when

selecting a battery of performance tests for assessment and

monitoring purposes. Given the methodological differences,

comparisons of the same performance measure between

research studies were difficult. Therefore, the reader needs to

be cognisant of the benefits and limitations of the different
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assessment methodologies currently available, as this will

inevitably affect the outcome measure. Current physical

performance assessments are used to create national stan-

dards and develop athlete performance profiles to better

inform programming. Athlete performance profiles can be

further improved by assessing sport-specific tasks covering

the entire force–velocity–power spectrum, such as passing,

throwing, shooting, punching, kicking, fending, tackling,

hitting and body-checking.
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