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Abstract

Background and Objective Bladder cancer is common among current and former smokers. High bladder cancer mortality
may be decreased through early diagnosis and screening. The aim of this study was to appraise decision models used for
the economic evaluation of bladder cancer screening and diagnosis, and to summarise the main outcomes of these models.
Methods MEDLINE via PubMed, Embase, EconLit and Web of Science databases was systematically searched from Janu-
ary 2006 to May 2022 for modelling studies that assessed the cost effectiveness of bladder cancer screening and diagnostic
interventions. Articles were appraised according to Patient, Intervention, Comparator and Outcome (PICO) characteristics,
modelling methods, model structures and data sources. The quality of the studies was also appraised using the Philips
checklist by two independent reviewers.

Results Searches identified 3082 potentially relevant studies, which resulted in 18 articles that met our inclusion criteria. Four
of these articles were on bladder cancer screening, and the remaining 14 were diagnostic or surveillance interventions. Two of
the four screening models were individual-level simulations. All screening models (rn = 4, with three on a high-risk population
and one on a general population) concluded that screening is either cost saving or cost effective with cost-effectiveness ratios
lower than $53,000/life-years saved. Disease prevalence was a strong determinant of cost effectiveness. Diagnostic models
(n = 14) assessed multiple interventions; white light cystoscopy was the most common intervention and was considered
cost effective in all studies (n = 4). Screening models relied largely on published evidence generalised from other countries
and did not report the validation of their predictions to external data. Almost all diagnostic models (n = 13 out of 14) had a
time horizon of 5 years or less and most of the models (n = 11) did not incorporate health-related utilities. In both screening
and diagnostic models, epidemiological inputs were based on expert elicitation, assumptions or international evidence of
uncertain generalisability. In modelling disease, seven models did not use a standard classification system to define cancer
states, others used risk-based, numerical or a Tumour, Node, Metastasis classification. Despite including certain components
of disease onset or progression, no models included a complete and coherent model of the natural history of bladder cancer
(i.e. simulating the progression of asymptomatic primary bladder cancer from cancer onset, i.e. in the absence of treatment).
Conclusions The variation in natural history model structures and the lack of data for model parameterisation suggest that
research in bladder cancer early detection and screening is at an early stage of development. Appropriate characterisation
and analysis of uncertainty in bladder cancer models should be considered a priority.

1 Introduction

Bladder cancer (BC) is a common malignancy with its high-
est burden falling on economically developed countries
[1-3]. Worldwide, BC ranks sixth in men and 17th in women
with the lifetime incidence risk of 1.1% and 0.27%, respec-
tively [1]. The risk of BC increases with age and the higher
risk for men than women reflects a higher exposure to car-
cinogens [1-3]. Tobacco smoking is the strongest risk factor,

Extended author information available on the last page of the article

accounting for an estimated 50-65% of all BC cases [4, 5].
Other common risk factors include occupational exposure
[6, 7], contamination of drinking water with arsenic and a
family history of BC [1, 2].

Bladder cancer is usually first suspected because of vis-
ible haematuria or urinary symptoms [8, 9]. At the time of
diagnosis, around 75% of patients have non-muscle-invasive
BC (NMIBC) [10], which generally has a favourable prog-
nosis. However, around 15% of patients with NMIBC will
progress to invasive disease with a much lower expected
survival [11]. The diagnostic procedures for symptomatic
patients may include: cystoscopy, telescopic endoscopy,
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Key Points for Decision Makers

Evidence on the cost effectiveness of bladder cancer
screening is consistent but very limited.

Bladder cancer models rely on data with high uncer-
tainty such as international data and assumptions.

In the absence of sufficient data for complex models,
more trials are needed to inform the parameters of natu-
ral history disease models, which in turn can inform the
protocols of the trials to test the bladder cancer screening
interventions.

ultrasound and/or computed tomography [4]. Screening (i.e.
detection of asymptomatic cancers) has been demonstrated
to provide survival benefits in prospective studies [8]. How-
ever, there remains no conclusive evidence on the effective-
ness of the implementation of either national or regional BC
screening programmes [1, 8].

In clinical trial settings, several BC screening approaches
have been explored [12]: urine dipstick is often considered
as a screening intervention in primary care settings, with the
potential for urinary biomarkers as well as cystoscopy with
ultrasound or computed tomography [8, 13]. Guidelines from
professional organisations across different countries, including
the USA, Canada, the UK, Japan and the Netherlands, are con-
sistent in recommending an evaluation for asymptomatic micro-
scopic haematuria [14]. However, the recommendations vary
regarding screening interventions, particularly the role of urine
dipstick and how to define the target screening population [14].

From an economic perspective, BC is one of the most expen-
sive malignancies to manage, with the follow-up costs being
twice as high for medium-risk disease and five times as high
for high-risk disease compared with low-risk (NMIBC) disease
[15]. As multiple BC screening options emerge, modelling stud-
ies are often used to assess optimal screening regimes and out-
comes prior to large-scale recommendations. The aim of this
study was to classify the approaches that have been used in cost-
effectiveness models in BC screening and early diagnosis with a
specific focus on understanding the modelling methods that have
been applied, the structure of the economic models, and model-
ling inputs and parameterisation. This review also summarises
the main outcomes of the identified cost-effectiveness models.

2 Materials and Methods

An initial scoping search was conducted in September 2021
to identify existing reviews. No reviews of BC natural his-
tory or cost-effectiveness models were identified; however,
search strategies from previous reviews of diagnostic and
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treatment interventions, and a review of the economics of
BC were used to define the most appropriate search terms
[16-19]. As the scoping search identified few studies, the
literature scope was then expanded to include diagnostic and
surveillance models to provide a comprehensive understand-
ing of BC modelling. The International Society for Pharma-
coeconomics and Outcomes Research Good Practices Task
Force Report on Critical Appraisal of Systematic Reviews
With Costs and Cost-Effectiveness Outcomes was followed
in the development of the protocol and reporting of these
studies [20]. The protocol registration number in the Pro-
spective Register of Ongoing Systematic Reviews (PROS-
PERO) is CRD42021281256.

Based on the initial scoping review, a systematic search
was conducted in MEDLINE via PubMed, Embase, EconLit
and the Web of Science databases. This search was sup-
plemented by searching the Health Technology Assessment
database of the Centre of Reviews and Dissemination of the
University of York, the National Institute for Health and
Care Excellence appraisal system, the Open Access The-
ses and Dissertations (https://oatd.org), Google Scholar
(the first 300 hits in the search for “bladder cancer”, “cost-
effectiveness”, “model”) and the references of the included
studies. The search period in the review was restricted from
01/01/2006 to 08/09/2021 to reflect current practice both
with cost-effectiveness modelling methods and early detec-
tion pathways. The development of the search strategy was
based on the recommendations of the UK InterTASC Infor-
mation Specialists’ Sub-Group [21]. The search strategy
was validated on the modelling studies identified through
a targeted search. An example of the search strategy devel-
oped for one of the databases is reported in the Electronic
Supplementary Material (ESM). An targetted update of the
literature search was conducted in May 2022.

Studies in any language were included if they met the
following criteria:

e Population: human adult population;

e Intervention: bladder cancer screening or diagnostic
interventions;

e Design: model-based research (either cost-effectiveness
models or natural history models of bladder cancer);

e Perspective/time horizon: any;

e Publication type: original studies; full-text publications
Or reports.

Exclusion list:

e Risk models, animal models, 1lab models, in vitro mod-
els, regression statistical models assessing relationships
between the parameters or only cost assessments;

e Reviews of the literature, protocols, commentaries and
conference abstracts.


https://oatd.org
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Titles and abstracts were screened by the first author
(OM) using the Rayyan tool to synthesise the studies that
fit the inclusion criteria [22]. The full texts of the articles
were independently evaluated by a second researcher (AIH),
who also validated the data extraction and duplicated the
quality assessment for each of the included studies.

The extraction tables included the categories on several
dimensions: (1) general information (authors, publication
year, country, setting, funding) and PICO (Population,
Intervention, Comparator and Outcome; (2) modelling
methods (model type according to the taxonomy of model
structures for economic evaluations of health technolo-
gies [23], software, cycle, time horizon, disease states,
discounting, inflation, methods used for costs and out-
comes, parametrisation approach and sensitivity analy-
sis); (3) data sources; (4) choices in modelling BC; and
(5) quality of the studies using the Philips checklist [24]
and the Bilcke et al. guide on uncertainty evaluation [25].

The standardised evaluation of the included models was
based on two instruments: the Philips checklist [24] and
the guide on uncertainty evaluation by Bilcke et al. [25].
The Philips checklist included the questions on the struc-
ture (S1-S9), data (D1-D3), and consistency (C1, C2) [24].
The questions on uncertainty (D4) were excluded from the
Philips checklist, while have been guided by the Bilcke
et al. methodology [25] to avoid incompatibility between
the instruments (this approach was selected as more detailed
and explicit, see the ESM for the details). The ranking
options of the Philips checklist included “yes”; “partially”,
“can’t tell” and “no” (all treated as “no”); or “NA”.

The approach for data synthesis was consistent with the
International Society for Pharmacoeconomics and Outcomes
Research Good Practices for systematic reviews with cost and
cost-effectiveness outcomes [20]. A narrative synthesis was
used to address qualitative aspects of model design, includ-
ing model scope, methods and choices in modelling BC. For
screening studies, graphical synthesis reported standardised
(inflated to 2022 and converted to international dollars) incre-
mental cost-effectiveness ratios to visualise the cost-effec-
tiveness outcomes by underlying disease prevalence, using
the consumer price index and purchasing power parities to
standardise the values [26-28]. Graphical synthesis of the out-
comes for the diagnostic studies was not undertaken because
of heterogeneity in PICO, methods and health settings [20].

3 Results
3.1 General Description and PICO

Our search identified 3082 records, of which 18 models—
four on BC screening and the remaining on BC diagnostic

or surveillance interventions (Fig. S1 of the ESM)—met our
inclusion criteria. The excluded full text articles are reported
in the ESM.

All included models were developed in high-income
countries, with nine of them within the US context (Tables 1,
2). Payer perspective was mentioned in the majority of the
studies (n = 12) with two studies stating the societal per-
spective but reporting the inputs for the direct medical costs
only [29, 30].

Three and two out of four screening models simulated
high-risk and general-risk populations, respectively [29,
31-33]. High-risk groups were defined in the models as
heavy smokers and those with occupational exposure, and
as any male individual above the specified age. Two related
cost-effectiveness studies assessed biochemical bladder
markers [32, 34] as an intervention for BC screening, and
two assessed dipstick haematuria testing [29, 33] (all com-
pared to no screening, Table 1).

The diagnostic models included patients with haematuria
(n =5), NMIBC (n = 8) and muscle-invasive BC (n = 1).
A range of different diagnostic and surveillance interven-
tions were assessed in the models. Hexaminolevulinate blue
light cystoscopy and white light cystoscopy (WLC) were the
most frequently compared interventions, followed by cystos-
copy as a stand-alone or a combination of the interventions
(Table 2).

In screening models, two out of four studies reported
quality adjusted life-years (QALYs) [29, 33] and one more
life-years saved (LYS) [31] (Table 1). In diagnostic models,
QALYs were reported only in four out of 14 studies [35-38]
and two more studies reported LYS only [39, 40], with cases
detected and resource utilisation used as the primary model-
ling outcomes (Table 2).

3.2 Screening Models: Outcomes

The models that evaluated haematuria tests included the
impact on bladder and kidney cancers, as well as other uro-
logical diseases. All studies concluded that BC screening
is cost effective in either all populations (n = 1) or only
high-risk population groups (n = 3, as defined using BC
demographic features) (Table 1).

All studies concluded that screening is more cost effec-
tive with a higher incidence or prevalence of the disease
(Fig. 1). There was no homogeneity in a value of BC
prevalence or incidence that would define when screen-
ing becomes a cost-effective intervention. Cost per cancer
detected was the lowest in the older age group (71-80 years)
with the highest disease prevalence [24]; although no stud-
ies compared cost per QALY for populations among dif-
ferent ages to examine how cost effectiveness of screening
varies by age.

A\ Adis



0. Mandrik et al.

636

[OIBasy OYNULIdS JoJ pry ul jueln) asauedef pue juowdo[oad pue Yoreasay [edIpIJA 10J Aouady uedef,

dn-yoayd ey oyroads HHS ‘sreak

-oy11 pAasnipe-Afenb {7y ‘owoonQ ‘1ojeredwo) ‘uonuaArdiu] ‘uoneindod 014 ‘parels Jou SN ‘901AIRS YI[EOH [BUONEBN SHN ‘PABS SIBIA-OJI] SA7 ‘ONEI SSQUIATIOYQ-1SOO [BJUSWRIOUT YFI]

SurAes 1509
SLDHS plepuels
oy} 03 uonippe ut
BLINJEWARY YONS
-dip 103 Suruearog
(s100ued Aoupry
pue Ioppe[q
uon  pauIquIod) SAT
-erndod yst1-ySiy /089103 pue
BUTOANDOPR1S0D  XTVO/T9'861+3F
060C$
1S189K 08— L
TET$ stk
0L=19 “0€SH$
819K 09—16
(G769 S1BIK
0S—1¥ “0699$
1SIBOK (7> MSLI
USTH ‘S0E°6£T1$
s1e9K 6/ 0L
‘820°69¢$
s189K 69—()9
‘C16°E8LS
s1B9K 66—0)S
YSUI [e1ouald
:pa1odIep

uone[ndod

roym ay) jou

nq Ysu-ysiy e
Ul QATIOAYR 150D

SAT

/85€°S€$ WHDI

ur pJInsar %[

JO 2oudpIOUL

[enuue uy

*90UQPIOUT 1D

-ued [enuue %7

uor B Je UdAd Julaes

-erndod yst1-ySmy 1S00 UI poY[NSaI
B Ul 9A1IOJYJ 150D

100ued 1od 150D

uonuaArQuy

Suraes 1500 ATVO 8600000°0

JSElERIGN

[ 12d XTVO
800’0 ‘paudAIdS
[ 10d SX'1600°0

SN

PaudAIds

1 1d SXT €000

L6k

PoudaIdS

1 3d p1°LEF

SN

(s3uraes
1S09) PAUAAIIS

[1d 101$

Surusaros
[enuue/SoSLASIP
[eo130[01n
J0 Aoupry

SKTVO 19130 “19ppeIg

UQ210s own
-1/s190Ued Kou

SATVO Pue SAT  -PIY pue 1oppelg

UQI0S SwWn)
PJ02Jap IQdUR))  -[/I0URD IOPPE[g

[eru
-Ud1q ‘Jenuue
Hikhiogaluiril

SAT -[/1edued Joppelq

DOHS a1
~INY/DHS oY
Jo syuepuaye

[[® 10} BLINJRW
-oey Yonusdiq

Surtueards

ou/3unse)

BLINJRWORY
yonsdip swoH

Surusaros
Ou/CcdINN

Suruoaros
OU/ZTdINN

6.0t PISE) DHS o Ut sjuaned

(811 Y31y se pouyop)
QAOQE puE SIAA G PaSe UojA

se pouyop) s1eak 6/—0L Pue 69-09
s1eWw Iappelg  ‘6S—0S uaw pue uonendod [e1ousn

(aansodxa [euon
sIoyrew Joppe[g -ednodo 1o Sunjows AAedY) JSLI YySTH

Luipunj a1eIs
/revdmos/ueder  [62] 20T ‘09O

Surpuny
ou/aAnoadsiod
SHN/MN  [€€] 810T YoaL

SN/SN/SN [z€] 900z “oreas

SN/SN/VSQ  [¥€] 900T ‘ueio]

Arewwuns s)nsoy ¥d01

9SO 9SB( ‘S109JJ0
[eruswRIou]

9SO 9seq ‘S)1S00
[ejuawaIduy

Suruaaros
Jo Kouonbaiy
SOUWI00INO YI[edHq Jaseasiq

Joreredwod/(s)uonuaAIUY

-o0ads1ed/Anuno)

Surpuny/ oAn
IRk ‘Joyny

SOWO9INO Y} pue QD] :SAIPNIS SSOUIATIOYR-)S0I FJUTUIIOS JIOURD Ioppeld | d|qeL

A\ Adis



637

Appraisal of Bladder Cancer Screening Models

sIsougerp
AJ1e9 Jo sagejueApe
) ySromino

Aew suLre

o1d
I10J uapInq 3s0d
pue [EOTUT[O JOMO']

sjgouaq
[ed1ul[d ppe pue
3uraes 1500 yjoq

9q 03 ATI[ ST D Id
g JO Qoue[[IoAIns
oy ur Adooso3sAd
10§ Juowaoe[dar v
se 9sn 0} y3nouo
91BINJOR 10U I8
SIoYIew 9[qe

Pa10930p
100ued 19d UOT]

- 1—006°€TS$ 8000°0—10000°0

Suneurwoq S0
%1t — :sKep

Paq Jo Joquiny
%18

:oAnIsod-as[e
%G°6 Suoner
-n3[nj Jo roquinu
£94¢ " — 1SAIWO)
-09)8KD {95/ °¢ —
:591d095015K0

VN IS JO ToquunN

%€0°0
INOWN) SATS
-sa13o1d © Suiaey

%81

I€-01$

099+$ —

(%9'1) 60L°81T AS

0107 eLNjeWwoRy

uo sour[opIns

PR19939p yomng ‘vnd ‘dd
SI9OUED JO JOQUINN]

oIM

ATVO /O7m + D14 TVH

skep paq

‘d ‘suonjengny
¢SOTW0}09)SAD
‘s01d005015K0
Jrqrxay ‘sord

-0050)$A2 1M

pI3L jo oqunN /) TM + OTd TVH

INOWN] JATS ,QOUR[[TOAINS
-sa13o1d & Juraey [RUOTIUQAUOD
Jo Aiqeqoid /pROUB[[IOAINS
‘Toppelq oy Sur [EUOTIUDATOD

VIV :SouI[apIng

eLINJRWSRY
ordoosorotwu pue
SS0IS Y)IM SINPY
od
AN U121
10 mau pajoadsns
yIm sjuaned

ldynl e sur

-AIRII DFIINN
UIm syuaned

BUIOU
-1018D [eI[oyjoIn

[97]

SN/IAed/SN 610T ‘BAQ1IZI09D)

SN/WAISKS
areomeay/vsN  [9€] €10T ‘PrRYIED

SNy/(s1opr1aoid
QIROY)[BAY JOY)O
pue s[eydsor))

Joseyond/uopamg [ev] STOT Ysueq

@IHO
SpueIayIoN

oy jo werdoxd
[oreasay Aouaro

“Jo/;[e19100s (o€]

-[reae Apjuarm)) pajeurwo(q  :I9ppe[q oy Surso] 1,93  -sof Jo Aifiqeqoid OAISBAUT SSOT  [IAN UM Sjuoned  /SPUBMIOUION oYL, 600T ‘QoID-Ioyyog
O4dINN
JUQLINOAT YT YNm
sjuonjed SurSeuew
10} gL peseq
-woor Junerado
[euonIpes uey)
QATIOQYQ 1500 QIOW DIIANN
sem uoneIn3[ny Kreqided 1
juenjedino M JO JjuoweSeuewr
pordnod Adoosoy peseq-woor 3une  DIAN Arefided
-s£5 oue[[roAIng Suneurwoq €00 T16$ — AIVO  -1edo/paseq-2oyj0 AT Y syuaned SN/SN/VSN  [S€] ST0T ‘qruemy
Juosiad 1 1od owod Juosiad 1 1od J0jeredwod Surpunj/ean
suorsnouo)  Pwodno 1d YHII -JNO [BJUSWIAIOU] SISO [BIUSUIIOU] SowooINQ /(S)uonuoAIaIU] uonendod -0ads1ad/fjuno) Teaf ‘ToyINy

SOWI00IN0 AY) Pue QDI :S[OPOU SSAUIATIOLJ-JSO OUB[[IQAINS PUE SISOUSLIP JOOUBD J9ppe[g ¢ d|qeL

A\ Adis



0. Mandrik et al.

638

SOW00INO
JIWOUO0J? pue
[eorur]d aaoxdwrt
Kew sossargoxd
J1 910J9q SLASIP
H Jo dyerpowr

AoAny

-00dsar ‘¢4 1°99¢$
pue Lzv°LES

pue ‘0STor1$
lam DEINN
JdH “¥I Y1101
1500 18A-G

(se11059)80
YSII SSOIO. $)S0D
aredwoo 0) swre)

DAIAN Pim

juoned juerdwod

[Ly]

-I9UI JO UONIR VN VN dATIER[NWIND Y], VN SUOTJUOAIOIUI ON]  9[eW P[O-TEaX-G9 SN/SN/VSQN 610T ‘USQUESSOI
Y6L°SES
:3urdKigns
VNY ‘TLO'SES
TOOUH T8 IES Awo1091845
:soua3 Jredax sayoeoidde [eorpel ‘Awo}
-VNA ‘621°7¢$ [euonipen pue -00)s2 [eotpel
(syuened %001) SIIRWOIq ) soyoeoidde KQ pamo[[o} DVN
soua3 aredar JOVN + Awoy uoaMm19q sIeak [euonIpen pue ‘Aur0309)1sA0 1ed
-VN( Uuo paseq -091540 Teodrpel -JI[ €470 O3 SIoYTeWOIq -1peI +JVN JO
sem ASojens oAny $6STSES ouofe 12°0 — :[eAlAInS ELRIEEINEY) asn oy} opIng D4IN HIN
-00JJ2-1509 1SOW Y[, AWO0IONSAD [BIIPRY [[2I9A0 UBIIA 0¥0°01$-96+1$ SAT 0) SIoyIeWwOrg M sjuaned JRIBJIPIIN/VS [0¥] 8T0T ‘ueloT
SSQUAAT)ORJJO
1500 paroxdur
9q p[nom a1y} paaes 1500 SN/Ioked
‘soye1 uorssargord Qoua1modaI 1ad €0 — :sAep pag [[BI2A0 ‘sAep DM DIIANN -[3UIS [eSIOATUN [¥¥]
soroxdwt )T JI  €94'8TS—HSEGI$ 10— :$20ULIMOTY TLET-9ETI$  PAq ‘seouaLmddy /OImM + D19 TVH im syuaned  uelpeuen/epeue’ L10T ‘uosseery]
(s1eak ()G < 93k
Pa10919p ‘SIOWS ‘SoTe)
100ued 1od 0059$ BLINJRWIRY
:Kd02s03sko + 1D Adoo onewoydwAse
£000°S$ :Adodsoy -80J8K9 ($)/1D i sjuaned
-sK5 + punosenin (¢)/Ado2s0ysko YSU-Y3IH (7)
QATIOQJJ9 1500 [euar {000‘01$ pUE PUNOSEN[N  BLINJEWORY dNeW
jsowr 9y} ST Ad0osoy :£d09s0)sK0 Pa3019p euaa (g)/Adod -oydwkse yym
-s£5 pue punoseny ‘PRIRUILIOP (1D ¢C0'0—1000°0 0£6—0TI$ SIooUED Jo JoquinyN  -s0Isko pue [ (1)  sywonedimpy (1) SN/1oked/ysn (141 L10T ‘urodieH
Luosiad 1 1od owod Juosiad 1 1od J0jeredwod Surpunj/oan
SUOISN[ou0)) QWooIno 1d YHDI -JNO [BJUSWIAIOU] SISO [BIUSUIIOU] sowodInQ /(S)uonuAIaIU] uonendod -0ads1ad/fyuno) Teaf ‘ToyIny

q

(ponunuoo) zsjqey

A\ Adis



639

Appraisal of Bladder Cancer Screening Models

G 0 Arerewurxoxdde
ST QATIOQYD 1509 9q
1im  Adoosoror
Jjerpawwr, jey)
Anqeqoxd oty
‘(4ADI uedu oy)
9sed JeuoOnIppE

12d 006173 Jo Aed
0} SSQUUI[IM © 1Y

[S0)

0} 07 — :Adoo
-SOIOTW AUNNOY *G

9€0'0—L000

:Kdoosorotwu
Jerpaww] ‘4

0

:Kdoosootw areIp
-owrwut Yyonsdi "¢

(souareaard (L800 —

uo Surpuodap) 019100 —)

A6 v—183 Kdoosorotwu
:Kdoosorotur 9y aunnox yonsdi(q ‘g

-1powrwt 3dooxa 0 onsdig

'] :oou9readrd uo

Surpuadop ‘uon

-uaAIuI Jsadeayd
WOIJ JUSWIOU]

pajeurwiop [[e
‘UOT)UAIIUT
3sadeayd 0y

paredwod YOI

(€98°L£TF)

aad +Koou
-y + Sq
‘(95T°60€3) aad
+ 1KDounurwuy

+ Sd “(¥82°09%)

67F¢ LT3 Adod
-SOIOIW dUNNOI *G

6'7EFI V' 67F
:Kdoosororu
Jrerpowiu] ‘4
L'TF —
3urAes 1500

:Adoosororu 9)e1p
-ourwt yonsdi( ‘¢

VCIF—CF
Kdoosororwu

qunno1 yonsdiqg ‘g

['€3— Suiaes
-1800 :yonsdrq

‘1 :90u9reaald uo

Surpuadaop ‘uon

-UdA UL umwﬂwoﬂo

WOIJ JuawaIduf

P312319p Sased andJ,

Adoo
-SOIOTW QUINOI
*G/Adoosororu
Serpourr
“p/oanisod jr
Adoosororur deIp
-owrwt + yonsdip
‘¢/oanisod J1 Adoo
-SOIOIW UINOI
+ yonsdip -z/
quore yonsdi(q '|

BLIn)
-ewory pajoad
-sns YIMm syudned

N
HADIN/SHN/AIN  [27] 900T ‘s108poy

ddd + HSId +
SA “(+98°8CF) OIM + £30[01kd>
add + Kpou 0} paredwod/qad
-nwwy ‘(Z9LTF) pue ) Im ‘04D
pIoysa1y} aad + HSIH -ounww] ‘HSI4 (swoydwAs joen
JURLIND Y] YIIM “(SLSSE) DIM ‘CZAAN) s1o AIeurn Jomof 10
QAT}OQJJ9 1509 Jsouwt + HSIH ‘(€2v€3F) -jreworq jo sadAy BLINJEWORY SSOIT
3 st dn-morpoy adad + ASo 200 Jo1y) ‘A30[0314d 10 o1doosororur)
pue sisouSerp -10345 :o1e SAT 01400 — :DAT ‘D4 Jo suoneulq J100UEd I9ppe[q
feniur ur DM Aq 1od sar3ojens 801 ] — SAT ‘P19919p -woo) sAI3AeNS Jo swoydwAs SN
pamof[[oy A301014D pojeurwiop JON|  :S9Sed JO IaquInN L¥S—9F S9SED JO JoquINN onsougeIp 9g yIm S)npy ‘GOIN/IAed/SIn  [6€] 010T ‘Nemoln
Luosiad 1 1od owod Juosiad 1 1od J0jeredwod Surpunj/oan
suorsnouo)  Pwodno 1d YHOI -JNO [BIUSWAIOU]  SISOO [BIUSWIIOU] sawoonQ J(S)uonuaaIou] uonerndog -0adsiad/Kyuno) I8k ‘IoyIny

(ponunuoo) zsjqey

A\ Adis



0. Mandrik et al.

640

jueld
EINIRE) I E) I 9seyq 21monns
1500 3u1eq JO 89°0 -eIjuy N oYl
Jo Aypiqeqoad e sey Sunoouuo)) aurd
dHS¥DOd ‘ATVO “IPSIN pagneng
Iod 000"0TF J0 10000 :ATVO £doosoysko gL 1ygs/aptaoid
ployseip ey X1V 1od 880°0CF €100 *SAT 9L 0F ATVO ‘SKT  QIqIXop/dHSYDA -BWoRY IM SINPY sreoyesH/MN  [L€] 810 ‘uonng
PaAIasqo %01 — :SIIWO0)
9q 031 A[oY1] QI -091SA0 JO IoquInN
S)Jouaq [eIIUI[O 9¢ — suon
IOAIMOY ‘oATIESoU -038a1I JO JoquINN
1509 10 [eXnau ‘951 — :sordod VSV amoojoyd
1500 9q 0 A[oYI] -501$40 JO JoqUINN $91d09501$£0 JO DEIAN U210 :Surpuny/(1oked)
SLLEINL 10) %T LT — :DdIN Taquinu ‘DTN OIM 10 mou pajoadsns aIedyifeay yst
"TVH Jo uonemsug UN 0 UoIssaIS0Id  JHS UOI[[I G¢'6 — o) uossarord /D TM+OTd TVH Pim syusied “pamS/uspams [S¥] 910¢C ‘os0y
173:Adod
G — :Kdod -S018K0 + Adoo
-8018K0 + Adoo -S0ISAD eMMIIA '8
-5015K0 [enIIA *g LETF
€ - :Kd02s03sko + ,Kdoos0ysko
:Kdoosoisko +  AydeaSouosoisk) -/ + Kdooso1sko
Ayder3ouosoisk) 7 GeF:Adod [enMIIA '
91 — :Adoo -s03SA9 + HSIA ‘9 ,£d00s03sKo +
-s01SK0 + HSIA 9 G#3 :Adoo AydeiSouosoisk) /.
0¢ :Adodo  -s0I8Kd + GINDIN 'S ,A&dod
-s038A9 + GINDIN 'S 113 :Adod -s018K9+ HSIA 9
0] —:Adod>  -s03sAd + ua3nue ;&doo
-S01SK0 + uagnue Inown) I9ppe[q -s01SK0+ SINDIN °S
Inown) Iappe[q 193 :Ad02soy ,Kdoos0)sko
000613 8 — :Adoosoy -$K0 + ZZdIAN '€ +uaSnue
sa1391e1S 19YJ0 quore Adoasoisko -sK9 + ZZdINN ‘€ - Inown) 19ppe[q ‘4
uey) A[JS0o SSIf oI ‘00513 — Adoo -C 16VF ,Kdoos0)sko
Kd02s01sKd SINDIN -s031SA9 GINDIN 01 :Ad02s01sAD | :Kd02s03sK)) T + ZZdINN ‘€
pue £do2soisko 1daoxe ‘Adoosoy :(Adoos01sko + :(Adoos031sAo &aoomoum%o M se
K30[031K)) "sased -sKo A30103k0  £30]034£5) uonuoa + £3010314)) uon + A30[01AD) ' pouyep eLMjeW
I90uRd [eUISLIO 0) Surredwod -1our )sodeaydo  -uaAlojul Jsadeoyd quote  -oey ordoosororw SN
109)9p sa13arens [V payeutwop vy WOIJ JUWAIOU] WOIJ JUSWIOU] PIJI)IP SASLD Ani], Kd02s0yskD 1 Im syusned ‘ADIN/SHNAIN  [2#] 900T ‘s1eSpoy
Juosiad 1 1od owod Juosiad 1 1od Jojeredwod Surpunj/oan
suoIsnouo)  Pwodno 1d YHII -JNO [BIUSWAIOU]  SISOO [BIUSWIIOU] sawoonQ J(S)uonuaaIou] uonerndog -0adsiad/Kyuno) I8k ‘IoyIny

(ponunuoo) zsjqey

A\ Adis



641

Appraisal of Bladder Cancer Screening Models

TedA T 10§ syjuowr ¢ A19A9 sjusned udaIds SSIMIaYIO ‘aansod I,

£d02s01s£0 syjuowr ¢ K1Ag,

Syuow g pue [ ‘¢ 18 £doosoysAo [onuod yirm SISA[eue SJI[[9JESOIONU SYIUOW ¢ AIDAH,

pajrodar axe §3500 [EOIpAU JO2IIP ATUO ‘SIOYINE Y} Aq pajels,

partodar 1 pajussard st GXT 10 XTVO 1od YADI,
QuweIjowI) [9pow JoA0 Judned 1o,

Kdo9s015£0 Y31 JIYM DT ‘PIOE O1[oNuUOqLI YN ‘Wop3urs] pAatun N ‘s1eak-of1] paysnlpe-Lenb x1v O sis
-ouSerp orwreukpooyd G4 ‘YuowrdooAad(] pue YoIeasay YI[esH J0f Uoneziuesi0 qYH(O ‘PAIEIS 10U SN “OAISBAUI-I[OSNW-UOU A 1S9} onsouSerp urojoid XLnew Ies[onu ZzJWN ‘UesH Jo sam
-1ISUJ [RUONEN HIN ‘90TAI0S UI[edH [euoneN UL SHN ‘90us[[ooX{ ore)) pue yiedH Joj aymmnsu] [euoneN gDIN ‘Aderoyiowayd jueanfpeosu Hyy ‘O[qesridde jou eN ‘OAIseAur-o[osnu [IA ‘UId)
-0Id G 9OURUDIUIRIA QWOSOWOIIIUIA SINDIN ‘PIALS SIBIA-OJI] SAT [SL-MO[ Y7 “YSLI BIPIULIUI Y] ‘wdkoounuuu] J£)ounui] ‘el SSQUIAIIOIYR-IS0d [BIUWRIOUL YD S Y31y yH
“Q)BUINAS[OUTIEXAY TV ‘OANISOd-0s[e] 4. 1S9} ONsouSeIp uonezIprigAy mis ur 9ousosarony fsy ‘£doososko ajqrxoy D4 ‘ouss g dnoiS uonejuswordwrosssord redal uoIsoxe gIDNMH ‘proe
JI9[ONUOQUIAX09p YN ‘Siudned eLMBWOBRH JO uoneoynens sry Ioj Iayisse) onsouselq JHSYO( ‘AydeiSowo} pandwod 1 ‘Adoosoysko y3ip onjq H7g ‘10oued I19ppe[q D
2107 ‘uonenyeAy BLINJEWSLH PIZIPIepue)S BILIOJIE)) UIOYINOS SJUSUBWLIS] JOSTEY Y ‘(90UaLInoal jnoyim syuened 10J 193eaIay) A[re
-NUUE PUe ‘SYIUOW ¢ ‘SyIuow ¢ 18 Ad0IS0ISAD SOUB[[IOAINS SPUIWUOIAT ‘SASLD JSLI MO[ SUOWE ‘pue uoned nens st Jordxa) A3o[o1n Jo uonerdossy ueadoiny ay) jo saurepms Qv7 ‘010 BLUM
-BWORH UO SAUI[OpIND yang—yoin( 6007 ‘QUI[opINS UONRIJ0SSY [ed1S0[0IN) UBIPRUED) /) ‘[20Ua1Indal Jnoyim syuaned 1oy 19)jearoy) A[[enuue pue ‘SIeak ¢ JXau ay) J0J SYIuow 9 AI9AQ ‘sIeak
T 10 sypuowt ¢ A10A9 Ad00s0ISAd JO 9[Npayos B QUIINO PUE ‘SUOTIEPUSUITIIOIT OUR[[IOAINS AJIjens-ysur APoIdxa 10U op] Z10g ‘uIepIns uoneroossy [ed1So[0IN) UBILIOWY V)]V :SQUI[OpIND

SOWI0JINO
[Te Ul pajeurop
Korjod eumndQ
0 SATVO
S[enplalput
S[ewsy 10§ £0°0
pue s[enpraiput
S[eW 10} 20°0 *SA'T

Kdooso03sko

19730 849 — :sard 10§ Korjod rewndo uonepunoj
(OB 9)euIuop -00501849 ‘94°() — SAIVO ‘SAT /600T NV A/SauI] 90URIOS [eUONEN
jou pIp saurepng :91e1 uorssargord ‘s01d00s0IsA)  -opImn3 y(V 913 DYIINN °peid Ay L/([epowt [ed
VOV Pue NvVH VN ‘NVH /VOV VN ‘9)EI UOISSAIS0IJ  -QJEXS QOUR[[IOAING  MO[ (IIM SIUdTIE] -UId) VN/VSN [8€] 210T ‘uenx
Luosiad 1 1od owod Juosiad 1 1od J0jeredwod Surpunj/oan
suorsnouo)  Pwodno 1d YHOI -JNO [BJUSWIAIOU] SISO [BIUSUIIOU] sowodInQ /(S)uonuAIaIU] uonendod -0ads1ad/fyuno) Teaf ‘ToyIny

(ponunuoo) zsjqey

A\ Adis



642

0. Mandrik et al.

3.3 Diagnostic Models: Outcomes

White light cystoscopy dominated the computed tomography
scan [41], the protocol including a microsatellite analysis
with control cystoscopy at 3, 12 and 24 months [30], and
the protocol using virtual cystoscopy followed up by cys-
toscopy if the first test is positive [42]. Interventions that
supplemented cystoscopy had higher costs and effects, while
tumour markers had higher costs and varied values for clini-
cal effects [30, 39, 41, 42]. The strategy of using the cystos-
copy only for positive cases with other primary diagnostic
tools (such as urine cytology or cystosonography) had lower
costs and effects [38, 42]. Compared with hexaminolevuli-
nate blue light cystoscopy, WLC had higher costs in two
out of four studies [36, 43—45]. These studies concluded
that hexaminolevulinate blue light cystoscopy had higher
therapeutic effects than WLC, and is therefore likely to be
cost effective [36, 43—45]. Only one of the included studies
[28] assessed incremental cost-effectiveness ratio as costs
per QALY (the intervention was considered as dominating).
Three other studies [32, 35, 36] assessed cost per progres-
sion, recurrence or resource use, leaving a high uncertainty
around interpretation of their results. The heterogeneity in
the choice of other evaluated diagnostic interventions and
their comparators was too large to support a systematic com-
parison (Table 2).

3.4 Screening Models: Methods

Two screening models used a decision tree and two oth-
ers used Markov model structures [29, 34] (Table S1 of the
ESM). All screening models were cohorts rather than indi-
vidual patient-level models.

The models with decision tree structures predicted the
potential health and cost impact of screening interventions

Fig. 1 Incremental cost- $60,000.00
effectiveness ratio for bladder
cancer screening with differ-
ent prevalence rates for the
disease. Notes: Squares reflect
the outcomes “per cancer
detected”, circles reflect the
outcomes the life-years saved or
quality-adjusted life-years. The
incremental cost-effectiveness
ratios under the axe represent
cost-saving outcomes. The grey
circle reflects the incremental
cost-effectiveness ratio in the
UK study (assumed cost-effec-
tiveness threshold £20,000)

$50,000.00

$40,000.00

$30,000.00
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$10,000.00
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by combining the characteristics of the screening tests (such
as sensitivity and specificity) with underlying BC prevalence
data [32, 33]. Average life expectancy by stage among the
modelled population group (75-year-old men) was used in
the decision tree model predicting LYS and QALY over
the lifetime [33]. The models with Markov structures (one
with a lifetime and another one with a 5-year horizon) used a
decision tree to model the screening and diagnostic pathways
leading to the detection of BC; patients with the diagnosed
BC entered one of the BC states (Markov model) and could
undergo recurrence, surveillance, progression or death [26,
27].

3.5 Diagnostic Models: Methods

All but one diagnostic model [39] had a time horizon of
5 years or less. Five out of 14 diagnostic and surveillance
models had a decision tree cohort structure [36, 40-42, 45],
and one model was a simulated patient-level decision tree
model [46] (Table S2 of the ESM). The decision tree struc-
ture was applied mainly in the diagnostic and surveillance
models with the focus on clinical or healthcare outcomes
(e.g. cancers detected, or healthcare resources used, and not
LYS or QALYSs); similar to screening models, the decision
tree structure was used to model the diagnostic and treatment
pathways based on sensitivities of the tests. In the simulated
patient-level decision tree model of Georgieva et al., patients
were assigned individual characteristics (including sex, age,
smoking status and history of gross haematuria), and the
probabilities of different types of urinary tract cancers were
based on these characteristics at diagnosis [46]. This model
predicted the number of detected and missed cancers, which
allowed for the assessment of costs and the cost effectiveness
of each intervention based on the sensitivity and specificity
of each diagnostic test.

®
]
® O
1% 2% 2% 3% 3% 4% 4% 5%
(&7 © ©

Assumed prevalence rate, %
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Seven diagnostic models were cohort-level Markov mod-
els [30, 35, 37, 39, 43, 44, 47] (one of them was a semi-
Markov model [30]), and one model was an individual-level
Markov model [40]. Markov states were used in the cohort
models to simulate the transitions during the surveillance
period (i.e. after the diagnosis), such as progression, recur-
rence of the disease or death. The simulated patient-level
Markov model of Yuan simulated the natural history of
secondary BC to assess the impact of different diagnostic
guidelines, with the Markov states including the natural his-
tory of BC, treatment and death [38].

3.6 Screening Models: Sources of Data

Screening models were directly parameterised from
published sources and/or registers and were based on
assumptions on the disease incidence, prevalence and
screening effect (e.g. downstaging) [32-34] [Table S3
of the ESM]. Base-case epidemiological inputs, such as
incidence, were based on experts’ or researchers’ assump-
tions. The definition of high-risk populations varied by
study, from 2% for prevalence to 10% for incidence [29,
31-33]. Data on costs were retrieved from the databases
(Medicare, National Health Service reference costs and
the National Health Insurance) and supplemented with
data from local hospitals and expert opinions [24-27].
Three studies [31-33] used other inputs from published
sources; the screening accuracy and downstaging data
were retrieved from meta-analyses of international stud-
ies, individual publications, clinical experts’ and authors’
opinions. Models had differing assumptions on screening
test sensitivities, which ranged from 60 to 100% for dif-
ferent tests (dipstick tests or biomarkers) and population
groups (average risk or high risk) [32-34]. Two stud-
ies (with the UK and Japan context) reported QALYs
as the outcome measures and both retrieved utility val-
ues from previous cost-effectiveness analyses, including
those conducted in other countries (from Canada and
the USA, respectively). A recent study by Okubo et al.
evaluating the cost effectiveness of combining haematu-
ria screening with a Specific Health Checkup (where a
haematuria test is already performed for around 38% of
participants) informed the transition probabilities by the
Specific Health Checkup report and the National Cancer
Registry data [29].

Specificity of the primary tests in the screening models
(with values ranged from 60 to 99.9%) impacted the follow-
up interventions and costs of diagnosis [24-27]. None of the
models reported screen-induced overdiagnosis, overtreat-
ment or other potential screening-related harms.

3.7 Diagnostic Models: Sources of Data

Most of the models were directly parameterised from pub-
lished sources (i.e. used published data as direct model
inputs) with one study also using a within clinical trial
assessment [30] and two others manually calibrating some
of the disease parameters by using the data from the Euro-
pean Organization for Research and Treatment Center as
calibration targets [38, 47] (Table S4 of the ESM). Expert
elicitation, assumptions and published sources were used
for epidemiological data, with all but three studies referenc-
ing international data for some of the parameters including
sensitivities, disease severity and progression [35, 37-39,
41-47]. National datasets (such as Medicare for all the
US studies, National Health Service reference costs or the
National formularies) were used in all but two studies with
in-hospital cost calculations [30, 44] to estimate the direct
medical costs. Variable uptake for the diagnostic and sur-
veillance interventions was not considered in the included
models, as it was not measured empirically for the evalu-
ated interventions. Diagnostic studies included harms (n =
7) related to unnecessary tests for those with false-positive
diagnoses, complications from invasive diagnostic and
treatment procedures, including mortality from radiation-
induced tumours and anaesthesia based on published data
[30, 37-39, 41, 42, 46].

Three out of four studies reporting QALYSs retrieved
health-related utility values from previous cost-effectiveness
studies [35, 37, 38]; all three studies (two from the USA and
one from the UK) referenced a cost-effectiveness analysis of
radical cystectomy in Canada that evaluated related utilities
based on a standard gamble approach involving 25 urolo-
gists [48]. Mowatt et al. used utility values from the other
urological cancers [39] stating that the modellers selected
the best available source of the evidence to inform health-
related utility values. While the study of Mowatt et al. [39]
is not recent, the reliance of the later studies on qualitative
data from the previous model suggests that scarcity in utility
values may still be an issue.

3.8 Modelling BC

The identified models defined BC states in the following
ways (Table 3):

1. Without a standard classification system defining the
cancer as detected, progressed and/or recurrent [30, 35,
40, 42, 45-47].

2. Using Tumour, Node, Metastasis (TNM) system or its
elements [34, 36] or numerical staging [29].
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3. Using risk-based classification states, such as NMIBC
of low, intermediate and high risk, and non-metastatic
and metastatic muscle invasive BC [33, 37, 39, 43, 44].

Some of the diagnostic and screening models simulated
population groups including patients with asymptomatic
microscopic haematuria [41], microscopic haematuria [39,
42, 46] or suspected haematuria [42], while predicting out-
comes from the time of the diagnosis. However, none of the
models simulated a complete natural history (i.e. progres-
sion of asymptomatic disease from primary cancer onset).
Screening or diagnostic models can be divided into sev-
eral types according to the inclusion of the natural history
components.

1. Models Without Progression of Undiagnosed Cancer

Models of this type simulate effects and costs based on
stage at diagnosis for screen-detected and symptomatic
disease and did not consider cancer progression [33-36,
4042, 45, 46] or considered only progression for diagnosed
disease [29, 30, 47]. These models were informed by the
assumed or evidenced incidence rates and test sensitivi-
ties. When modelling the consequences of a false-negative
test instead of disease progression, these models assessed
incremental costs. For example, the diagnostic study of
Rodgers et al. [42] considered costs of repeat testing for
microscopic haematuria with false-negative diagnosis.
Teoh et al. [33] applied higher lifetime treatment costs to
false-negative screened patients, similar to those detected
symptomatically.

2. Models with Progression of Undiagnosed Cancer as a
Result of a False-Negative Test

These models simulate progression to more advanced
BC states for patients with a false-negative test result by
combining prevalence data and characteristics of screen-
ing tests [37, 39, 43, 44]. For example, the diagnostic

Table 3 Modelling bladder cancer in diagnostic and screening models

model of Sutton et al. included an undiagnosed state for
patients with false-negative results and assumed that
these patients will be diagnosed within the next 2 years;
patients in an undiagnosed state could progress to low-
risk, high-risk or metastatic states and could then be
diagnosed [37].

3. Models with Progression of Asymptomatic Cancer

The only model that included undiagnosed states
for BC that were not related to testing false negative
(i.e. asymptomatic cancer) was a clinical surveillance
model of Yuan et al. [38]. This model simulated the
natural history of secondary BC for patients defined
as low risk at the time of diagnosis and were disease
free following the treatment. This model assumed a
progression of patients from treated low-risk BC, to
asymptomatic intermediate risk and then finally high
risk. At each of these states, patients could transit to the
detected state following the surveillance intervention.
Diagnosed patients could not progress to more advanced
disease but could progress to the death state as a result
of BC death or age-specific death from other causes.
The progression of asymptomatic disease was estimated
by comparing the predicted disease rates to the one
observed in the European Organisation for Research and
Treatment of Cancer trials [49]. The process of calibra-
tion is not described in the article.

3.9 Quality Ranking Using the Philips Checklist

In general, studies addressed most of the evaluated quality
criteria of the Philips checklist (Table S5 of the ESM),
with 14 studies were scored “no” only on 30% or less
questions. Meanwhile, assessment of internal and exter-
nal consistency was not reported in 17 and 14 studies,
respectively (possibly being reported in separate publica-
tions or reports). A short time horizon was also a frequent

Characteristics

Types of the models identified

Studies

Bladder cancer states

Tumour, Node, Metastasis system

Risk-based classification states

Numerical staging

Bladder cancer natural history

Progression only for diagnosed cancer

Progression of undiagnosed cancer if false-negative test

No classification system for disease progression is used

No progression of cancer

[30, 35, 40, 42, 45-47]
[34, 36]

[33,37, 39, 43, 44]
[29]

[33-36, 40-42, 45, 46]
[29, 30, 47]

[37, 39, 43, 44]

Progression of secondary asymptomatic cancer [38]

Progression of any asymptomatic cancer

No models
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concern (n = 8 out of 18 studies) in the models (Fig. 2).
The quality of two older screening studies was lower than
the quality of later screening models and the diagnostic
studies; however, because only a few studies were identi-
fied, no meaningful comparison can be provided. Agree-
ment between the two reviewers for each category of the
Philips checklist [24] was very high at 92%.

3.10 Structural and Parameter Uncertainty in BC
Models

Structural uncertainty in screening models was related to
different structural assumptions, such as using a decision
tree structure to ascertain long-term outcomes, choice of
static probabilities, using the BC cases detected as the mod-
elling outcome (instead of the LYS or QALYs), methods
and assumptions on BC mortality/survival use in modelling
and mismatch between the selected perspective and costs
[29, 31-33]. Structural uncertainty was not fully addressed
in screening models (Table S6 of the ESM), with the study
of Teoh et al. partially exploring structural uncertainty by
specifying the availability of sources of evidence, their
appropriateness and the limitations. Parameter uncertainty
(related to the assumed epidemiologic values, unrepresenta-
tive populations [using international data or small sized sam-
ples] or unspecified sources) was present in all screening

C2 External consistency

studies (Tables S3 and S6 of the ESM) [29, 31-33]. None
of the published articles mentioned the model validation.
Only the most recent study by Okubo et al. fully addressed
parameter uncertainty by the explicit probabilistic sensitiv-
ity analysis [29].

In diagnostic models, short-term time horizon, static tran-
sition rates, choice of the outcomes (only BC cases detected
or resource use and not LYS or QALYs), the approaches
to test sensitivity, incidence, disease progression, recur-
rence and BC mortality evaluation were recorded among
the other sources of structural uncertainty (Table S6 of the
ESM) [7, 30, 35-47]. While most models did not report
on structural uncertainty, Klaassen et al. [44] and Mowatt
et al. [39] addressed the structural uncertainty by conduct-
ing scenario analyses, while three other studies [37, 38, 42]
partially addressed structural uncertainty by explicitly speci-
fying the accepted and the alternative assumptions. Similar
to the screening models, parameter uncertainty was identi-
fied in all included studies and was addressed through the
probabilistic sensitivity analysis in five diagnostic studies
[37, 39, 41, 42, 46]. Two publications described a valida-
tion conducted for the diagnostic models (one of them with
the calibrated parameters) using survival data or the risk
distribution [38, 46].

C1 Internal consistency
D3 Data incorporation
D2d Quality of life

D2c Costs

D2b Treatment effects
D2a Baseline data

D1 Data identification

S9 Cycle length

S8 Disease pathways

S7 Time horizon

S6 Model type

S5 Strategies/comparators
S4 Structural assumptions
S3 Rationale for structure

S2 Scope

S1. Objective
0% 20%

40% 60% 80%

HYes WNo mNA

Fig.2 Critical appraisal of the economic models using the Philips
et al. checklist. Notes: Dimensions of quality in the Philips et al.
checklist: S1 clear statement of decision problem, defined objectives
and decision makers; S2 clear statement, justification, and consist-
ency of scope and perspective; S3 rationale for structure explained
and based on evidence; S4 structural assumptions justified and rea-
sonable; S5 strategies/comparators defined with all the options con-
sidered; S6 model type based on decision problem; S7 sufficient and
justified time horizon; S8 disease states/pathways reflect biological
process; S9 cycle length justified by the nature of the disease; D1 data

identification is transparent, appropriate, justified and high quality;
D2a baseline data described and justified; D2b treatment effect based
on recognised meta-synthesis, justified extrapolation and survival,
with all assumptions documented and justified; D2c costs and dis-
counting accord with standard guidelines; D2d quality of life weights
(utilities) appropriate, justified and referenced; D3 Data incorporation
justified and transparent; C. internal and external consistency is eval-
uated. The categories used: “yes”, “no” (no, partially, or can’t tell),
“NA” (not applicable
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3.11 Summary from Studies with Low Uncertainty

Studies that addressed at least partially both structural
and parameter uncertainty [25] also were ranked high on
Philips checklist criteria [24]. All three studies with explic-
itly addressed structural and parameter uncertainty (two of
which were reports) were the diagnostic studies [37-39].
Mowatt et al. [39] analysed multiple diagnostic interventions
concluding that cytology followed by WLC in initial diag-
nosis and follow-up while being the least effective strategy
is the most cost-effective approach in the UK setting. Sutton
et al. concluded that a diagnostic classifier for risk stratifica-
tion of haematuria patients is cost effective in the UK with
a probability of 68% [37]. Yuan et al. compared the long-
term clinical effect of different guidelines in the US setting
and concluded that none of the comparators dominate each
other [38].

4 Discussion

This review explored methods used in modelling the cost
effectiveness of diagnostic, surveillance and screening
interventions in BC. The screening models evaluated the
cost effectiveness of biomarkers and urine dipstick tests in
general-risk and high-risk populations; all screening studies
concluded that screening is cost effective with the underly-
ing disease prevalence being its important determinant. The
earlier models evaluating the cost effectiveness of biomark-
ers [31, 32] though had low quality and high structural and
parameter uncertainties.

Diagnostic models assessed a wide range of interven-
tions. In studies of variable quality, hexaminolevulinate
blue light cystoscopy was consistently considered as a
cost-effective intervention compared with WLC. The
studies with low structural and parameter uncertainty
concluded on the cost effectiveness of cytology followed
by WLC in the initial diagnosis (compared with multi-
ple alternatives) [39] and a risk stratification approach for
patients with haematuria in the UK [37]. Diagnostic mod-
els had variable predictions on the cost effectiveness of
urine biomarkers in BC diagnosis (reporting higher costs
and variable effects compared with their alternatives), with
a high-quality model with low uncertainty reporting that
tumour markers are not cost effective in the UK setting
[39].

The conclusions of the cost-effectiveness analyses are
subject to provisos regarding limitations of the methods used
and available data constraints, with the following discussion
points identified:

A\ Adis

(1) Correspondence of the PICO to the decision problem

The description of the population (asymptomatic, symp-
tomatic, or diagnosed with NMIBC or muscle invasive BC)
defined the initial and the following states of the models.
The choice of the intervention will affect the model design
because some screening and diagnostic tests, such as the
urine dipstick test, may also lead to the diagnosis of other
diseases (e.g. kidney cancer or other urological conditions).
As such, BC models should assess the need to include the
simulation of other relevant health conditions to avoid
underestimating the potential benefits of screening and diag-
nostic interventions.

While patients, interventions and comparators were well
defined in BC models, the economic outcomes investigated
were more inconsistent. Bladder cancer models frequently
reported cost per detection, recurrence, progression or
resources used as the main outcome. While these outcomes
may be interesting in their own right, they are inadequate in
two regards: first, they do not capture the long-term mor-
tality or health-related quality-of-life impacts of early or
delayed detection; second, they do not allow comparative
economic analyses across different health conditions and
thus cannot inform policy decisions [50].

(2) Choice of the model structure

Selection of the model should be based on the simplest
structure that addresses the objectives of the study, the struc-
ture of the disease and the clinical guidelines or treatment
pathways [23]. The healthcare decisions, particularly large
investments such as national screening programmes, should
consider uncertainty that cannot be reflected in determin-
istic models. In cancer modelling, timing is important for
costs and health outcomes, as costs are commonly higher
the first year of diagnosis than the following years [51] and
cancer-related decrements in health related utilities vary over
time [52]. While stochastic timed models without interac-
tion would be the expected choice for most BC screening
and diagnostic models, in our review, most of the included
models were deterministic, and the decision tree structure
was used in more than one-third of all the analysed models.

(3) Modelling natural history of bladder cancer in screening
models

In comparison to breast, cervical and colorectal cancers
[53-55], the evidence pertaining to the cost effectiveness
of BC screening is currently limited. As such, BC models
are less sophisticated and have a much greater reliance on
expert judgement than models for cancers with well-estab-
lished screening programmes. Only one natural history
model, without a cost-effectiveness component, was identi-
fied. However, as this model simulated only secondary BC
cancer, it is not directly applicable to a screening popula-
tion [38]. None of the cost-effectiveness models simulated
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a complete natural history (i.e. a progression of asympto-
matic primary BC from cancer onset), which hinders cross-
comparisons between modelling predictions. While there is
some understanding of the BC risk factors, onset, progres-
sion and recurrence [11, 56], modelling natural history of
BC is constrained by a lack of direct or indirect data that are
able to: (a) inform the progression of asymptomatic disease
(e.g. dwell time) and (b) inform long-term clinical outcomes
(e.g. survival) in complex individual-level models or when
the model states are consistent with the detailed histology
of the disease. The absence of the natural history model-
ling leads to a general limitation of published BC screening
models. Such models are not nimble enough to compare dif-
ferent designs of screening programmes or accurately predict
a long-term effect of repeated screenings or the impact of
screening on screening-related harms, such as overdiagnosis.

Modelling a complete natural history in screening models
requires a complex structure and a life-time horizon to cap-
ture the long-term effect and harms. There is a high require-
ment in data for indirect parametrisation of such models (i.e.
calibration of the parameters to inform the transitions in
unobserved health states), including the prevalence of undi-
agnosed cancer, speed of cancer growth or sojourn time, and
the probability for cancer spontaneous regression or recur-
rence [47], which in turn implies that more modelling inputs
need to be evaluated for their quality in screening models
compared to diagnostic models.

(4) Uncertainty in bladder cancer modelling

Structural and parameter uncertainty is common in
screening and diagnostic BC models. This uncertainty
relates to both the epistemic uncertainty in the applicability
of data (e.g. using the international data or assumptions), an
aleatory uncertainty with a frequent reliance on determinis-
tic analysis and a lack of validation or scenario analyses to
explore uncertainty in model structures.

The parameter uncertainty in the identified models sug-
gests a possible scarcity of sources to inform country-spe-
cific parameters and a need to assess the transferability of
sources available for modelling. In particular, the data need
to be improved to inform health-related utility values in BC
models.

While a clinical effect of medical interventions is gener-
ally considered to be generalisable, there may be specific
considerations that make this less so for diagnostic tests,
especially for screening interventions [57, 58]. It is common
for cancer screening models to assume that disease onset is
a setting-specific transition relying on a set of risk factors,
while cancer progression consists of generalisable param-
eters [59]. This assumption, mainly based on a lack of data
to state otherwise, suggests that careful consideration should
be taken to generalise the baseline disease risk from other
settings [57]. Considering that all models were developed

within the context of high-income countries, neither their
outcomes nor their inputs are generalisable to the middle-
income or lower-income settings.

4.1 Implications for Research

While empirical evidence is necessary to inform the model-
ling parameters and to improve predictions, mathematical
disease models are also used to inform the trials’ design
[60, 61]. As such, development and implementation of tri-
als needed to inform the models and models to inform the
trials should be an iterative process. This also suggests that
BC models informed by the limited trial data should be flex-
ible enough to incorporate this iterative process when the
new data appear, especially where this has the potential to
inform developments to model structure in addition to sim-
ple parameter updates. The utility values for BC health states
as well as population preferences for different diagnostic
and screening interventions, currently not considered in the
mathematical disease models, should be explored in future
studies.

4.2 Limitations of the Review

While this review sought to search comprehensively the
literature, there are limitations to note as well. Only one
reviewer screened the initial abstracts, which may have
resulted in missed studies or an unintentional bias in the
initial search. To assuage any further bias, two independent
reviewers assessed the full texts of the included publications
and the quality of studies. Moreover, two of the included
publications were grey-literature reports (i.e. publications
that did not go through the formal peer-review process),
which may not appear in a systematic search if the repro-
duction of the search strategy is attempted. To standardise
the quality assessment, the Philips checklist [23] was used,
with a very high average agreement rate among the raters
(92%). However, some of its components, such as a short
time horizon, are better suited for screening studies rather
than diagnostic studies. Moreover, some limitations of the
appraised health economic studies may be reasoned by com-
pliance to local guidelines. Finally, all the models that were
included in this review were from high-income countries,
and therefore may not be generalisable to other populations
across the globe.

5 Conclusions
Although the evidence pertaining to the cost effec-

tiveness of BC screening is consistent, it is still in its
nascent stages. More data are needed to systemically
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address uncertainties in models, as well as the natural his-
tory of BC. This suggests that BC models are not nim-
ble enough to compare different designs of screening pro-
grammes, or to predict screening-related harms such as
overdiagnosis. Future clinical trials may help to decrease
uncertainty in the structures and parameters of BC models,
as all models rely on data. Once the natural history of BC
models is established, these models can then inform optimal
population screening and surveillance strategies that may not
be possible to evaluate in the scope of clinical trials.
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