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Abstract
Diagnostic tests are used to determine whether a disease or condition is present or absent in a patient, who will typically be 
suspected of having the disease or condition due to symptoms or clinical signs. Economic evaluations of diagnostic tests 
(e.g. cost-effectiveness analyses) can be used to determine whether a test produces sufficient benefit to justify its cost. Evi-
dence on the benefits conferred by a test is often restricted to its accuracy, which means mathematical models are required 
to estimate the impact of a test on outcomes that matter to patients and health payers. It is important to realise the case for 
introducing a new test may not be restricted to its accuracy, but extend to factors such as time to diagnosis and acceptability 
for patients. These and other considerations may mean the common modelling approach, the decision tree, is inappropriate 
for underpinning an economic evaluation. There are no consensus guidelines on how economic evaluations of diagnostic 
tests should be conducted—this article attempts to explore the common challenges encountered in economic evaluations, 
suggests solutions to those challenges, and identifies some areas where further methodological work may be necessary.
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Key Points for Decision Makers 

Economic evaluation of diagnostic tests typically 
requires economic modelling with significant structural 
assumptions.

The methodological approach adopted in economic 
models for diagnostics may vary according to the value 
proposition for the diagnostic.

Public and patient preferences for characteristics of diag-
nostics may not be captured by standard quality-adjusted 
life year calculations, and flexibility may be required to 
make optimal resource allocation decisions.

1  Background

Medical tests are used extensively in healthcare to deter-
mine the presence or absence of a disease, the extent of a 
disease, the response to treatment, the presence of risk fac-
tors, the likelihood the disease will respond to a particular 
treatment (e.g. precision medicine), and other uses besides. 

Some medical tests require minimal equipment or consuma-
bles, such as the capillary refill test, auscultation, and the 
Mini-Mental State Examination, while other medical tests 
require extremely expensive equipment, such as magnetic 
resonance imaging. Some tests require invasive procedures, 
such as biopsies and colonoscopies. Almost universally, the 
patient derives no benefit from the test, but the information 
obtained by the test is expected to lead to some change in 
how the patient is managed (e.g. initiating treatment). If a 
test does not change clinical management, it will have no 
clinical utility or economic value.

Diagnostic tests support clinicians to decide whether a 
particular disease or condition is present (or likely to be 
present) in a presenting patient, who will typically be symp-
tomatic. This is distinguished from population and targeted 
screening, where individuals are invited to have a test for a 
disease without any indication they have the disease; they 
are simply at risk for the disease. A single test may be used 
for diagnosis, screening, surveillance, monitoring, etc., so 
clarity about the population receiving the test is impor-
tant, since test performance can be affected by setting and 
population.

When it is proposed that a test should be introduced 
into healthcare, this may prompt an investigation of how 
effective the test will be and whether it will represent good 
value for money. In some cases a new test can be demon-
strated to dominate (be better in every way and less costly 
than) an existing test used in a diagnostic pathway, and the 
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new test can be introduced as a like-for-like replacement. 
But often new tests can be more expensive, can require 
changes to pathways, or can be better in some ways but 
worse in others. In this case, a clear value proposition for 
the test is necessary so that decision makers understand 
why it may be worthwhile to introduce the test, and an 
accurate assessment of the value can be undertaken.

Evidence for the effectiveness of diagnostic tests is fre-
quently limited to the clinical validity of the test, i.e. how 
good is it at categorising patients as having or not having 
the disease (sensitivity, specificity, and related measures), 
or measuring some quantity relevant to the disease. The 
test (or set of tests) that define the “true” disease status in 
clinical validity studies is called the reference standard, 
while the test being evaluated is called the index test. Evi-
dence rarely extends to a controlled assessment of how 
good the test is at producing meaningful benefits to the 
patient [1] (such studies are referred to as test-treatment 
or end-to-end studies), so it is impossible to estimate the 
full effect of a test on costs and health without the use of 
some modelling assumptions. This approach of evidence 
linkage based on clinical validity studies and modelling 
(sometimes referred to as indirect evidence for the clini-
cal effectiveness of a test) is embraced by some, but not 
all, health technology assessment organisations [2]. If a 
test-treatment study does exist, it may be possible to use 
it as the basis for an economic evaluation after due con-
sideration of risks of bias and whether follow-up is suf-
ficiently long to capture all differences in costs and health 
consequences.

In England, the National Institute for Health and Care 
Excellence (NICE) Diagnostics Assessment Programme 
invites clinicians and sponsors to submit diagnostic tech-
nologies for assessment, including economic evaluation by 
an independent technology assessment group (usually in the 
form of a model-based cost-utility analysis). Decisions by 
the committee are generally consistent with the application 
of a £20,000 per quality-adjusted life year (QALY) cost-
effectiveness threshold, but with certain decision-modifying 
factors, such as uncertainty [3]. In Canada, the Canadian 
Agency for Drugs and Technologies in Health (CADTH) has 
undertaken health technology assessments of diagnostics, 
including cost-utility analyses.

Van der Pol et al. [4] have produced guidance on the 
design and reporting of economic evaluations of diagnos-
tics, focusing rightly on the importance of having a very 
clear research question. This includes being clear about the 
population being tested: In which setting have they been 
identified? What symptoms do they have? Analysts should 
also ensure their economic evaluations comply with the 
Consolidated Health Economic Evaluation Reporting Stand-
ards (CHEERS) [5].

The main purposes of this article are to describe the 
methodology commonly used in economic evaluations of 
diagnostics (particularly modelling methodologies), align 
these methodologies with common value propositions for 
diagnostics, highlight issues that may arise in the economic 
evaluation of diagnostics, and act as a tutorial paper for those 
interested in model-based economic evaluation of diagnos-
tics. Occasionally the article touches on other uses of tests, 
e.g. surveillance and prognostic testing.

2  Common Methodological Approaches 
for Economic Evaluations of Diagnostics

This section presents three methodological approaches for 
the economic evaluation of diagnostics. These are focused 
on modelling the diagnostic pathway, i.e. determining which 
patients have a disease, whether there is a timely, correct 
diagnosis, how the patient will be managed in the future. 
They do not cover the long-term modelling of the disease 
(conditional on the outcome of the diagnostic pathway) 
because this will depend greatly on the nature of the disease, 
treatments, and the availability of data. Markov models are 
frequently employed, and general best practice for model-
ling will apply.

2.1  Decision Tree

The decision tree has long been used in economic evalua-
tions. It calculates the expected costs and benefits of differ-
ent competing options as a weighted average of the costs and 
benefits for different outcomes, where the weights corre-
spond to the probabilities of those outcomes being realised. 
Decision trees include “chance nodes” that reflect things 
that are subject to chance, e.g whether a patient responds to 
a treatment, receives an organ transplant, or in the case of 
diagnostics, whether a test gives a positive or negative result.

When using a decision tree for an economic evaluation 
of a diagnostic, there will typically be at least four possible 
outcomes, corresponding to the combinations of the true dis-
ease status and the test result. The best modelling approach 
is to branch (split) first by true disease status and then by 
test result, as shown in Fig. 1. Note that it does not need to 
be feasible in real life for patients to be split by true disease 
status—it is only important that the costs and outcomes can 
be appropriately modelled based on the true disease status 
and the results of testing. The key parameters to be mod-
elled then are the prevalence (the probability the patient 
truly has the disease), sensitivity (the probability of a posi-
tive test result in a patient with the disease), and specificity 
(the probability of a negative test result in a patient without 
the disease). When modelling multiple competing tests, the 
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prevalence will be a common parameter across the different 
options, while each test will have its own estimates of sen-
sitivity and specificity.

The decision tree component is fairly simple, but a model 
will also need to estimate the costs and benefits for the dif-
ferent outcomes so that these can be combined. For true 
positive and true negative results, it may be possible to esti-
mate these empirically, but generally assumptions will be 
required for incorrect test results and a modelling approach 
should be used.

If two or more tests are used in combination, then errors 
can be introduced if sensitivity and specificity estimates 
are naively combined, i.e. assuming that the sensitivity and 
specificity measured in the whole population will also give 
the probability of a correct test result when another test has 
excluded some of that population [6]. Best practice in this 
case is to estimate the sensitivity and specificity of tests in 
populations that have been stratified according to prior test 
results. There are approaches for meta-analysis that allow the 
synthesis of studies that evaluate individual tests along with 
studies evaluating tests in combination [7].

Consider a simulated example where the true disease sta-
tus can be defined by the true values of two characteristics, 
X1 and X2 (e.g. systolic and diastolic blood pressure). Tests 
1 and 2 are imperfect measurements of X1 (i.e. subject to 
some measurement error) that use different thresholds, and 
test 3 is an imperfect measurement of X2 , as shown in Fig. 2.

The sensitivity and specificity of each test will depend 
on whether any previous tests have already been used to 
stratify the population, as shown in Table 1. Tests 1 and 2 are 
highly correlated because they rely on measurement of the 

same characteristic, X1 . Note that even though test 3 meas-
ures a different characteristic to tests 1 and 2, its sensitivity 
and specificity are still affected by stratifying on the results 
of those tests. The sensitivity and specificity of particular 
combinations of tests are shown in Fig. 3. Combining tests 
1 and 2 is pointless unless it results in reduced costs of test-
ing. Combinations of test 3 with one of test 1 or test 2 are 
particularly effective because test 3 is measuring the charac-
teristic X2 and providing significant additional information.

Decision trees are ideal when the value proposition for 
the new test does not involve changes to timeframes and 
clinical pathways because future costs and health outcomes 
can be assumed to depend only on the result of testing (true 
positive, false positive, false negative, true negative), and not 
also contingent on the testing strategy.

2.2  Discrete Event Simulation

Here, we refer specifically to models where the diagnosis is 
modelled using discrete event simulation, not when discrete 
event simulation is used to forecast future costs and health 
outcomes that are then combined using a decision tree. A 
single discrete event simulation can incorporate the diagnos-
tic pathway and long-term outcomes, or another modelling 
methodology can be used to estimate long-term outcomes.

Discrete event simulations are particularly valuable if 
diagnosis is time critical or if new technologies may disrupt 
service pathways.

An instructive example is stroke patients. The manage-
ment of stroke depends on what has caused it, so deter-
mining whether it is an ischaemic stroke (caused by a clot 

Patients

Do have the disease

Do not have the disease

Test (true) positive

Test (false) negative

Test (false) positive

Test (true) negative

Prevalence

1 − Prevalence

Sensitivity

1 − Sensitivity

1 − Specificity

Specificity

Fig. 1  Decision tree for evaluating a diagnostic test
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preventing blood flow to the brain) or a haemorrhagic 
stroke (caused by bleeding in the brain) is important and 
must be done in a timely fashion. In England, suspected 
stroke patients are taken by ambulance to the nearest com-
prehensive stroke unit or acute stroke unit. If brain imag-
ing suggests that thrombectomy (surgical removal of a clot) 
is needed, a patient will be transferred to a comprehensive 
stroke unit if they are not already at one. An alternative strat-
egy, which may reduce the length of time between stroke and 
thrombectomy (improving outcomes) is to use mobile stroke 

units (ambulances with onboard computed tomography [CT] 
scanners) to determine whether thrombectomy is indicated 
on-scene [8]—an economic evaluation of this strategy would 
likely involve discrete event simulation, since outcomes are 
so dependent on the time between onset of symptoms and 
initiation of treatment.

Discrete event simulation is also likely to be important if 
the use of the test is not diagnostic, but instead testing over 
time in an at-risk population, e.g. colorectal cancer patients 
at risk of a second colorectal cancer [9], or screening for 

Fig. 2  Results of tests in the simulated example

Table 1  Sensitivity and 
specificity in the simulated 
example with stratification

Sens. sensitivity, Spec. specificity

Full population Test 1 Test 2 Test 3

+ve −ve +ve −ve +ve −ve

Test 1
 Sens. 0.712 – – 0.766 0.009 0.642 0.934
 Spec. 0.886 – – 0.665 0.999 0.985 0.870

Test 2
 Sens. 0.929 0.999 0.754 – – 0.906 0.999
 Spec. 0.663 0.006 0.747 – – 0.788 0.642

Test 3
 Sens. 0.760 0.685 0.945 0.742 0.997 – –
 Spec. 0.858 0.981 0.843 0.911 0.832 – –
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cancer in the asymptomatic general population. In this case, 
the discrete event simulation simultaneously allows for the 
disease state to evolve over time and for the health service to 
attempt to intercept disease as early as possible.

2.3  Patient‑Level Analysis

If patient-level data are available from a diagnostic accuracy 
study, and there are no other accuracy studies that could 
contribute to a meta-analysis, the best approach to economic 
evaluation may be to base it on patient-level data [10].

Consider the study design shown in Fig. 4; for each par-
ticipant, we have the results of index test 1 and index test 
2 (two tests that we are considering introducing to clinical 
practice), and we have the results of the reference standard 
for any participants with at least one index test positive and 
a random subsample of participants with both index tests 
negative. While it would be preferable to have the refer-
ence test for all participants, this may not be feasible if the 
prevalence of the disease is low and the reference standard 
is costly and/or invasive.

For each participant, we can forecast their future costs 
and health outcomes based on the results of the reference 
standard and whether or not they are appropriately diag-
nosed. If the participant truly has the disease (according to 
the reference standard), then we forecast the future costs and 
health outcomes for a true positive and a false negative out-
come of testing (and the relevant costs and health outcomes 
are selected for each strategy based on the test outcomes); if 

Fig. 3  Summary receiver 
operating characteristic (ROC) 
plot. Note: ∨ and ∧ mean OR 
and AND, respectively in the 
Boolean logic sense, so that the 
combination T1 ∧ T2 gives a 
test positive result only if both 
T1 and T2 give a positive result. 
The same symbol is used for 
T1 as for T1 ∧ T2 because the 
sensitivity and specificity are 
indistinguishable in the plot 
(likewise for T2 and T1 ∨ T2)

Fig. 4  A diagnostic accuracy study design that can underpin an eco-
nomic evaluation; participants who test negative by both index tests 
are randomly assigned to receive the reference standard or not
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the participant truly does not have the disease, we forecast 
for a true negative or false positive outcome; if the partici-
pant did not undergo the reference standard, then we can 
impute the probability they have the disease and proceed 
accordingly. We can also link the forecasts of future costs 
and health outcomes to participant characteristics, e.g. age, 
sex, and comorbidities.

Finally, we estimate the costs and health outcomes for 
each participant under each testing strategy and add the costs 
of the technologies themselves.

A key advantage of doing the study like this is that asso-
ciations between participant characteristics, disease charac-
teristics, and test outcomes will carry through to associations 
with costs and health consequences (e.g. QALYs) without 
us needing to even be aware of them. For example, Lynch 
syndrome (a hereditary cancer syndrome) is more likely to 
be present in a younger cancer patient, younger patients have 
greater potential to benefit from life-long preventive meas-
ures, and the specificity of tumour tests for Lynch syndrome 
decrease with increasing age [10].

3  Value Propositions

It is essential that the value proposition for a new technol-
ogy is understood. Diagnostics can have a wide variety of 
different value propositions [11], and in some cases (e.g. 
when conducting an early economic evaluation), this value 
proposition may not yet be clearly articulated by its spon-
sors. Healthcare payers may also identify the characteris-
tics of tests they wish to see developed using target product 
profiles [12].

It is also important to bear in mind that a holistic view of 
the benefits and risks or harms of a technology is necessary. 
The sales pitch for a technology may omit the downsides—it 
is essential that the economic evaluation does not.

The following sections outline a variety of value propo-
sitions and how these influence the methods of economic 
evaluation.

3.1  Replacing a Test with a Cheaper, Better Test

If the test is intended to replace an existing test, but it is 
cheaper than the existing test and better (i.e. has better sen-
sitivity and specificity), then it is generally not necessary to 
do a full cost-effectiveness analysis where future costs and 
health outcomes are forecast. If these conditions can be dem-
onstrated to hold (at least on the balance of probabilities), 
then the new technology is dominant. Attention should be 
focused on whether the new test is superior in all patients, 
since if the new test is inferior in certain populations (e.g. 
tests for gynaecological malignancy can be less accurate in 
premenopausal women), dominance will not hold.

3.2  Replacing a Test with a More Expensive Test

If the new test is intended to replace an existing test, but it is 
more expensive than the existing test, then a full cost-effec-
tiveness analysis where future costs and health outcomes 
are forecast is necessary. The new test does not need to have 
superior sensitivity and specificity, but it should be superior 
on at least one of those measures. A decision tree approach 
will generally be appropriate.

3.3  Replacing a Slow Test with a Faster Test

If the new test is intended to replace an existing test, but it 
generates results quicker, then it is important to consider 
what value this actually adds. Some cases where a quicker 
test may add significant value (to justify a potentially greater 
cost) are:

• Acute conditions where a diagnosis is needed urgently as 
the patient’s condition may deteriorate

• Tests used during operations where surgery is paused 
while test results are produced, since quicker results will 
reduce operative time

• Point-of-care testing where quicker results can avoid 
the need for additional consultations or operations (e.g. 
rapid diagnostics to detect lymph node involvement dur-
ing breast cancer surgery [13])

• Conditions where current testing times mean patients are 
left highly anxious for several weeks and this time can be 
brought down substantially

It is important to remember that the new test may, for 
example, sacrifice accuracy in favour of speed. An economic 
evaluation of a test or tests should generally include accu-
racy and the costs and consequences of diagnostic errors 
unless there is absolute certainty that tests have totally 
equivalent accuracy.

3.4  Replacing a Test with a More Acceptable Test

There is no doubt that some medical tests are painful, 
uncomfortable, or inconvenient. A new diagnostic test may 
be more acceptable to patients because it is less painful or 
uncomfortable, or it takes less time out of their day (which 
would not appear as a cost using the common third-party 
payer perspective).

If a new test is less painful or uncomfortable, how should 
this difference in acceptability be incorporated into an eco-
nomic evaluation? Traditional cost-utility analyses will 
attempt to estimate a health state utility value for undergo-
ing the test [14–16] and will apply this utility value for the 
length of the test. However, even if a test leads to a health 
state utility value worse than death (e.g. −0.865 , the lowest 
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utility value in the Indonesian EQ-5D-5L value set [17]), 
if it only lasts for 1 h, then it will at most lead to a loss of 
0.00032 QALYs, with a monetary value of $15.97 implied 
by a cost-effectiveness threshold of $50,000 per QALY. Is 
this a remotely sensible value to assign in an economic eval-
uation? Craig et al. [18] found significant violations of the 
constant proportionality assumption underpinning QALYs, 
lending credence to the idea that short-term impacts on 
health-related quality of life may have an outsized influence 
on preferences. It has been specifically argued that QALYs 
are not appropriate when the health condition is acute, and 
argued instead that an alternative methodology such as will-
ingness to pay should be employed [19]. There is evidence 
that for acute conditions, QALYs are not predictive of will-
ingness to pay [20], but QALYs are accepted by many poli-
cymakers, while willingness to pay is generally not.

It is likely that when the value proposition for a new diag-
nostic is that it reduces pain or discomfort, health economists 
will need to present economic evaluations using QALYs, but 
should supplement these with analyses incorporating will-
ingness to pay.

3.5  Inserting a Triage Test

Sometimes a new test is not intended to replace an existing 
test, but to be used before the existing test in a sequence in 
order to rule out the disease in some patients. Typically, this 
is because the existing test is expensive, invasive, or time-
consuming. A triage test should be highly sensitive so that 
the rate of false negatives is controlled. Provided the triage 
test is rapid, a decision tree is likely to be appropriate. The 
analyst should check that there is no risk of patients “falling 
out” of the diagnostic pathway because of the addition of 
an extra test.

3.6  Companion Diagnostics

If the sole purpose of a test is to identify patients who can 
receive a single targeted treatment, the test should be viewed 
as a companion diagnostic and the economic evaluation 
should include both the test and the treatment. The popula-
tion for the economic evaluation should be everybody who 
would receive the test, not just those who get selected for 
treatment.

Things get more complicated if one test can determine 
eligibility for multiple targeted treatments (e.g. DNA mis-
match repair deficiency testing to determine eligibility for 
immunotherapy). If the different targeted treatments are 
appraised individually (as is often the case with reimburse-
ment agencies), then each of them will have to bear the cost 
of the companion diagnostic until one of the treatments 
is reimbursed, at which point the companion diagnostic 

becomes standard care. From that point on, further treat-
ments being appraised (including treatments once rejected 
being reappraised) will arguably not have to bear the cost 
of the companion diagnostic. In order to ensure fairness, 
the population for these subsequent economic evaluations 
should be only those selected for treatment (provided the 
selection criteria are identical for all treatments), all treat-
ments should be included in a single fully incremental analy-
sis, and the cost of the companion diagnostic can be ignored.

3.7  Expanding the Population that Can be Tested

Perhaps the existing test for a disease is so expensive, inva-
sive, or otherwise deleterious that some patients never 
receive the test. If the patients are symptomatic, they may 
have their symptoms managed, rather than the definitive 
cause of those symptoms identified and treated. If the test is 
instead for a risk factor (e.g. a hereditary predisposition to 
cancer), then perhaps only individuals with a high chance of 
having the risk factor undergo testing.

A novel test may mean that the population being tested 
expands; it is critically important that when conducting 
an economic evaluation, the population should not differ 
between the study arms at baseline. Figure 5 shows how such 
economic evaluations should be approached—any character-
istics that were previously used to determine who gets test-
ing at present should also be present when estimating costs 
and outcomes with the novel test. For example, if patients 
are not currently getting tested because they are at high risk 
of dying from a comorbidity before they could benefit from 
treatment of the disease of interest, those patients should still 
be modelled as at high risk of dying from that comorbidity 
after having the novel test.

3.8  Lowering the Rate of Test Failures

In this value proposition, the novel test promises fewer test 
failures. By test failures, we do not mean when a test gives a 
false positive or false negative result, but when the test fails 
to give a result at all. The consequences of a test failure can 
vary substantially. The analyst should consider the follow-
ing: Can the test even be repeated (or did the test destroy 
the only available sample)? Does repeating the test require 
the patient to be recalled? Is the test very likely to fail again 
if it already failed once? Will a different test be used in the 
event of a test failure?

3.9  Replacing a Test with a Cheaper, Worse Test

If the existing test is very expensive, it may be worth replac-
ing it with a much cheaper test, even if the cheaper test 
results in worse health outcomes on average. In this case, 
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the new technology is in the south-west quadrant of the cost-
effectiveness plane (less costly and less effective). Economic 
evaluation proceeds as normal, but some thought should be 
given to whether healthcare professionals will adopt the new 
test if the existing test continues to be reimbursed.

3.10  Prognostication or Prediction

The results of a test may be highly informative for the prog-
nosis for a patient already affected by disease or may indi-
cate their risk of developing future disease. There is evi-
dence that patients are willing to pay for a test that predicts 
their future risk of disease, even if there is no intervention 
that can modify that risk, i.e. they are willing to pay for the 
information alone [21].

As we discussed earlier (Sect. 3.4, “Replacing a Test with 
a More Acceptable Test”), just because patients are willing 
to pay for something does not mean that healthcare payers 
will, particularly if the effect on QALYs is negligible or 
even negative (e.g. being told one is at risk of developing 
a disease in the future may lead to long-term mental health 
consequences).

4  Populating Diagnostic Models

The component of a diagnostic model that estimates long-
term costs and health outcomes will need to be populated 
(parameterised) just like any other health economic model, 
so here we focus on the diagnostic component of the model. 
We consider the diagnostic accuracy parameters, the pre-test 
probability, and costs associated with the diagnostic test.

4.1  Diagnostic Accuracy

The key diagnostic accuracy parameters will be the sensitiv-
ity and specificity of the test, the accuracy of the test among 
diseased and non-diseased populations, respectively. These 
parameters are usually sufficiently important to justify con-
ducting a systematic review, and a meta-analysis if this is 
appropriate after studies have been identified. The Cochrane 
Screening and Diagnostic Tests Methods Group has pub-
lished a handbook for conducting systematic reviews and 
meta-analyses of diagnostic tests [22]. Particular attention 
should be paid to the risk of bias in diagnostic studies.

In an economic evaluation, we may be particularly inter-
ested in the comparative accuracy of two or more tests, and 
if there are studies that have evaluated those tests simul-
taneously, then our estimates of the accuracy of each test 
will not be statistically independent. Our economic evalu-
ation should include the statistical dependence of accuracy 
estimates because it may have a significant effect on the 
results, particularly the amount of uncertainty in results. 
The second edition of the handbook (in draft at the time of 
writing) contains sections on meta-analysis of comparative 
accuracy studies, but this is an area of active methodological 
development.

4.2  Pre‑test Probability

The pre-test probability that a patient has a disease is an 
essential factor in cost-effectiveness. The pre-test probabil-
ity of disease across a population is often referred to as the 
prevalence, although this can be confusing since prevalence 
has a related but different interpretation in epidemiology.

Fig. 5  Decision tree when we 
expand the population being 
tested

Existing approach

New approach

Group A - use existing test

Group B - no testing

Group A - use existing or novel test

Group B - use novel test
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The pre-test probability can be heterogeneous and depend 
on the presence or absence of particular symptoms and risk 
factors. If these factors resulting in heterogeneity in pre-test 
probability have no influence on the performance of the test 
or the future costs and health consequences conditional on 
the test outcomes, then they can be ignored, but this is a 
strong assumption unlikely to hold. We show, in the Elec-
tronic Supplementary Material (a simple decision tree model 
built in Microsoft  Excel®) that it is possible a test appears to 
be cost-effective when heterogeneity is ignored, when in fact 
it is not cost-effective in either of the subgroups considered.

If the setting for the economic evaluation of a test is the 
same setting in which its diagnostic accuracy was evaluated, 
then the prevalence of the disease (according to the reference 
standard) in the diagnostic accuracy study (or studies) is a 
suitable estimate for the pre-test probability. This should be 
stratified where possible according to known risk factors. If 
no such studies exist (e.g. if the diagnostic accuracy was esti-
mated using a case-control or two-gate design), then expert 
elicitation may be an appropriate alternative [23].

4.3  Costs

When assigning costs to resources, it is of course important 
that these reflect opportunity costs, where possible, and that 
they follow the economic perspective on costs (e.g. third-
party payer, societal). If a diagnostic technology requires 
very high fixed costs, an approach to allocating those fixed 
costs to each use of the technology should be adopted [24].

5  Challenges in Economic Evaluation 
of Tests

5.1  What if There are More than Two Disease States?

Often diagnostic tests are intended to determine whether a 
disease is present or absent (two options). But in some cases 
the disease state may not be binary. For example, patholo-
gists will aim to determine the histotype, stage, and grade of 
lung cancers because these inform prognosis and the most 
appropriate treatment. Histotype is a categorical classifica-
tion, while stage and grade are ordinal (lower stages and 
grades are less advanced and less aggressive, respectively).

This does not make economic evaluation impossible, but 
it is important to be able to estimate future costs and health 
outcomes according to the different disease states (even if 
with significant uncertainty) and what happens if the health-
care system misclassifies the patient. Once this has been 
achieved, a decision tree approach is still viable—the popu-
lation is split initially into the different disease states and 
then the probabilities of different test results (according to 

the technology used) determine how patients are ultimately 
classified and treated.

5.2  What if There are More than Two Possible Test 
Results?

Even if it is agreed that the objective is to determine whether 
a disease is present or absent, it is possible that the test tech-
nology can produce something other than positive or nega-
tive. For example, a urine dipstick test can have different 
strips that indicate the concentration of an analyte is within 
a particular range, or a test may be fully quantitative, or it 
may be an imaging test.

A key role for the health economist is to understand how 
test results are, or could be, used in clinical practice. What 
test result will lead to a disease being ruled out with no fur-
ther testing? What test result will lead to commencement of 
treatment? What test result will lead to further testing? If the 
pre-test probability of having a disease is heterogeneous (e.g. 
some patients have more specific symptoms than others, or 
the disease is associated with age) or the consequences of 
mistakes are heterogeneous, then there may not be a simple 
answer to these questions, and we may instead need to simu-
late how test results are interpreted and acted upon.

If we are interested in simulating the interpretation of a 
test result, Bayes’ theorem tells us how to correctly update 
our belief that a patient has the disease according to the 
results of a test (though it may not correlate well with how 
physicians in fact interpret those results [25]). Bayesian 
interpretation of test results using likelihood ratios is math-
ematically convenient. The likelihood ratio, LR⋆ , for a par-
ticular test result, T⋆ , is given by:

where Pr
(

T⋆
∣ D+

)

 and Pr
(

T⋆
∣ D−

)

 are, respectively, the 
probability of getting the result T⋆ in a diseased and non-
diseased patient. Then if we have estimated the pre-test 
probability of the disease as p , the post-test probability of 
the disease, p′ , is given by:

Note that this works regardless of whether T⋆ is positive 
or negative or takes a semi-quantitative or fully quantitative 
value.

Even if physicians would not naturally interpret test 
results using Bayes’ rule, it may be feasible to construct 
and populate a simple model of physician behaviour, or to 
produce a simple decision aid to accompany the test that 
correctly applies Bayes’ rule.

LR
⋆
=

Pr

(

T⋆
∣ D+

)

Pr(T⋆ ∣ D−)

,

p�

1 − p�
= LR⋆

⋅

p

1 − p
.
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5.3  Optimising Test Thresholds

If a test is quantitative (producing a single continuous value, 
e.g. the concentration of an analyte), then the threshold can 
be optimised from an economic perspective, by identifying 
the threshold that leads to the maximum net benefit [26]. 
Net benefit is the value of health benefits ( B ) offset by costs 
( C ), and is calculated based on the willingness to pay for a 
unit of health benefit ( � ). The net health benefit (NHB) is 
expressed in units of health benefit, while the net monetary 
benefit (NMB) is expressed in monetary units:

A test cannot change the true disease status of a patient; 
it can only change whether the diagnosis is correct or not, 
i.e. changing the threshold of a test can only turn true posi-
tives into false negatives (or vice versa) and true negatives 
into false positives (or vice versa). What matter, therefore, 
are the net benefit gained by converting a false positive into 
a true negative ( ΔNBD− ) and the net benefit gained by con-
verting a false negative into a true positive ( ΔNBD+ ). Then 
if sensitivity and specificity are functions of the threshold, � , 
denoted �(�) and �(�) , and the disease prevalence is � , then 
the optimal threshold ( 𝜃⋆ ) will be determined by:

NHB = B −
1

�
⋅ C

NMB = � ⋅ B − C
.

In a health technology assessment of different technol-
ogies to detect preterm labour, one technology was fully 
quantitative (quantitative foetal fibronectin [qfFN]) [27]. 
The economic evaluation considered the use of qfFN at 
thresholds of 10, 50, 200, and 500 ng/ml, but we can use the 
approach above to estimate the economically optimal thresh-
old. Using linear regression on costs (minus the cost of each 
test) and QALYs, we can estimate that ΔNBD+ ⋅ � ≈ 1340 
and ΔNBD− ⋅ (1 − �) ≈ 1040 . We use maximum likelihood 
estimation to estimate the distribution of the analyte condi-
tional on the true disease status and therefore the sensitivity 
and specificity depending on the threshold:

where Φ(⋅) is the standard normal cumulative distribution 
function. Based on these assumptions, the optimal threshold 
is 98.5 ng/ml, as shown in Fig. 6. Of course, we have (for the 
sake of simplicity) ignored uncertainty in the various esti-
mates—the aim should be to select the threshold that gives 
the greatest expected net benefit, taking the expectation across 
the distributions representing uncertainty in all parameters.

𝜃⋆ = argmax𝜃

{

ΔNBD+ ⋅ 𝜋 ⋅ 𝛼(𝜃) + ΔNBD− ⋅ (1 − 𝜋) ⋅ 𝛽(𝜃)
}

.

�(�) = 1 − Φ

(

log�−5.99

1.71

)

�(�) = Φ

(

log�−2.83

2.29

)

,

Fig. 6  Optimising the threshold for a test based on net benefit
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5.4  What if There is No Reference Standard?

Soares et al. [28] considered the case of evaluating a test for 
which there is no reference standard, i.e. no way of know-
ing whether a patient truly had the disease or not at the time 
of receiving the test under consideration. They considered 
prognostic tests (where the test is intended to predict a future 
outcome rather than the current disease state) to be a special 
case of this problem.

Their solution to such problems was to abandon model-
ling the true disease state and for the outcomes to be based 
only on the test result and whether the patient undergoes treat-
ment. If a test-treatment study happens to exist where patients 
are randomly assigned to receive a test or not, and lifetime 
health outcomes and resource use are observed, this approach 
is entirely appropriate. But in the likely situation that no such 
study exists, we are left to attempt to model outcomes accord-
ing to the results of a test rather than the true disease status, 
which is in conflict with general best practice guidance on 
modelling [29, 30].

An alternative approach is to have some form of latent dis-
ease state. For a test intending to diagnose disease now but 
where there is no reference standard, approaches exist relying 
on latent class modelling [31]. The results of a prognostic test 
can also be linked to a modelled latent characteristic of the 
patient being simulated.

Consider, for example, a prognostic test that gives the esti-
mated probability, p̂ , that a patient develops a disease within 
the next 5 years, unless an intervention is put in place (which 
will happen if p̂ exceeds some threshold). A natural modelling 
approach may be to use an exponential distribution for the time 
to developing the disease, where the rate parameter, � , is taken 
to be the solution to p = F(5) = 1 − e−5� , and p is the “true” 
risk for a patient with those characteristics. It is likely impor-
tant to include some error in the transmission between p and p̂ 
since the prognostic model is not perfect, and overestimating 
or underestimating the true risk for a patient could both lead 
to losses. Prognostic models can also be imperfectly calibrated 
[32], meaning that the p̂ are systematically biased (at least in 
some ranges)—this should be represented in a model also.

6  Recommendations and Areas for Further 
Research

While we have found no consensus recommendations for 
modelling diagnostics, there is a strong argument that, 
when a linkage approach is adopted, the economic model 
structure should include the true disease status, and this 
should simultaneously drive test outcomes and the future 
course of the disease (according to whether the patient 
receives a correct diagnosis at baseline). The possible 
exception to this is if test-treatment studies exist that are 

judged to be a superior basis for economic evaluation over 
the linkage approach. This is especially relevant if there 
is no “gold standard” for clinical validity studies and/or 
the ways in which test information can lead to clinical 
benefit are highly complex or not well understood (e.g. in 
psychiatry).

Analysts should consult with clinical experts and/or 
producers of a test to determine its value proposition, 
since different value propositions may require different 
modelling approaches. Certain value propositions (e.g. 
when a new test is more acceptable than an existing test) 
may not sit well within the standard economic evaluation 
methodology of cost-utility analysis, where QALYs are the 
measure of health benefit, and analysts should be prepared 
to investigate willingness to pay as an alternative.

All general-purpose good practice guidelines on the 
conduct and reporting of health economic modelling apply 
to modelling diagnostics, and the specific recommenda-
tions by van der Pol et al. [4] are well-made.

Economic modelling of diagnostics touches on many 
areas of active research, including approaches to synthe-
sising evidence from diagnostic accuracy studies. Three 
factors may yet be under-researched in the economic mod-
elling of diagnostics: differential diagnoses, clinical fac-
tors, and inconsistent evidence.

By differential diagnoses, we refer to the alternative dis-
eases that could explain the symptoms (assuming that we 
are evaluating the use of a test in symptomatic patients). 
Analysts tend to give little thought to these, and how mis-
classified results are modelled in general. A fairly typical 
assumption is that a false positive result will lead to some 
attempt at managing a disease that is not there, but that 
the mistake will be rapidly corrected, with overall fairly 
limited effects on costs and usually no effect on QALYs. 
Analysts should generally question whether this is an 
appropriate assumption, especially when:

• The disease is rare and false positive findings may be 
quite numerous.

• Treatment for the primary disease in question carries a 
significant risk of harm.

• An alternative disease that could explain the symptoms 
is progressive (so there is a risk the real disease will be 
made worse by the false positive finding leading to a 
diagnostic delay).

• The symptoms are severe and cannot be managed with-
out addressing their true cause.

One example where a number of different diseases were 
potentially relevant was the use of reflectance confocal 
microscopy in suspected skin cancers, where some of the 
clinical validity studies found that technologies sometimes 
incorrectly diagnosed one type of skin lesion as another, 
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including benign lesions being misclassified as melanoma 
[33].

By clinical factors, we refer to how a clinical system may 
not incorporate a test result in the way it is modelled. Fre-
quently a model will assume that once a certain diagnostic 
pathway is completed, the patient will either be discharged or 
treated, but this may not be an accurate assumption. A clini-
cian may conduct more tests than is assumed, either before 
discharging a patient (because they perceive the patient is at 
higher than average risk of the disease or risks worse con-
sequences than average if a diagnosis is missed) or initiat-
ing treatment. A clinician may conduct fewer tests than are 
assumed, e.g. incorrectly treating a triage test as a definitive 
test. A patient may become “lost in the system” if the diag-
nostic pathway is complex and they are not highly visible (e.g. 
an emergency department attendee or an inpatient). Economic 
models can incorporate such possibilities, but they rarely do.

In the case of inconsistent evidence, we note the possibil-
ity that there will be studies that measure only the results 
of tests (accuracy studies) and others that measure the out-
comes for patients (test-treatment or end-to-end studies), 
and that these studies may give inconsistent findings. For 
example, diagnostic accuracy studies may show that a new 
test has improved sensitivity and specificity compared to an 
existing test, while end-to-end studies show no benefit from 
the new test. Health technology assessment agencies have 
not issued any guidance on how to handle such inconsisten-
cies [2]. Test-treatment studies are far from immune from 
bias [34], and there are a variety of study designs with differ-
ent advantages and disadvantages, as well as the possibility 
of adaptive studies [35]. In principle, a Bayesian economic 
model can incorporate evidence on the accuracy of tests as 
well as on the longer-term outcomes observed in a test-treat-
ment trial, but this will require strong assumptions about the 
correctness of the linkage approach, and it is unclear how 
studies at high risk of bias should be handled.

7  Conclusion

Although there have been substantial developments in how 
evidence for the effectiveness of diagnostics is appraised 
and synthesised, methods for the economic evaluation of 
diagnostics remain unstandardised and have not become 
markedly more sophisticated. There are a number of pitfalls 
to avoid when modelling the cost-effectiveness or cost-utility 
of diagnostics, and it is important to understand that not all 
diagnostics “add value” in the same way.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40273- 023- 01241-2.

Acknowledgements I thank Prof. Chris Hyde (University of Exeter) 
for reviewing a draft of this manuscript, which prompted valuable 
discussion.

Declarations 

Funding None.

Conflicts of interest/competing interest The author declares no con-
flict of interest.

Ethical approval Not applicable.

Consent to publish Not applicable.

Consent to participate Not applicable.

Author contributions TS is the sole author.

Data availability There are no data included in this article that are not 
in the public domain. The simulated example shown in Fig. 2 can be 
replicated by drawing 

(

X1,X2

)

 from a bivariate normal distribution 

with mean (0, 0) and covariance matrix 

(

1 0.4

0.4 1

)

 , then simulating 

Z1 ∼ N
(

X1, 0.2
)

, Z2 ∼ N
(

X1, 0.2
)

 and Z3 ∼ N
(

X2, 0.2
)

 , and 
finally simulating the test results as Y1 = I

(

Z1 > 0.6
)

 , 
Y2 = I

(

Z2 > 0
)

 and Y3 = I
(

Z3 > 0.5
)

 . The true disease status is 

given by I
(

X1 + X2 > 1
)

.

References

 1. Ferrante di Ruffano L, Davenport C, Eisinga A, Hyde C, Deeks JJ. 
A capture-recapture analysis demonstrated that randomized con-
trolled trials evaluating the impact of diagnostic tests on patient 
outcomes are rare. J Clin Epidemiol. 2012;65:282–7.

 2. Ferrante di Ruffano L, Harris IM, Zhelev Z, Davenport C, Mallett 
S, Peters J, et al. Health technology assessment of diagnostic tests: 
a state of the art review of methods guidance from international 
organisations. medRxiv. 2022;31:154.

 3. Chen G, Peirce V, Marsh W. Evaluation of the National Institute 
for Health and Care Excellence Diagnostics Assessment Program 
decisions: incremental cost-effectiveness ratio thresholds and 
decision-modifying factors. Value in Health. 2020;23:1300–6.

 4. van der Pol S, Rojas Garcia P, Antoñanzas Villar F, Postma 
MJ, van Asselt ADI. Health-economic analyses of diagnos-
tics: guidance on design and reporting. Pharmacoeconomics. 
2021;39:1355–63.

 5. Husereau D, Drummond M, Augustovski F, de Bekker-Grob 
E, Briggs AH, Carswell C, et al. Consolidated health economic 
evaluation reporting standards (CHEERS) 2022 explanation and 
elaboration: a report of the ISPOR CHEERS II good practices task 
force. Value in Health. 2022;25:10–31.

 6. Novielli N, Cooper NJ, Sutton AJ. Evaluating the cost-effective-
ness of diagnostic tests in combination: is it important to allow 
for performance dependency? Value Health. 2013;16:536–41.

 7. Novielli N, Sutton AJ, Cooper NJ. Meta-analysis of the accuracy 
of two diagnostic tests used in combination: application to the 
Ddimer test and the Wells score for the diagnosis of deep vein 
thrombosis. Value Health. 2013;16:619–28.

https://doi.org/10.1007/s40273-023-01241-2


351Modelling the Cost-Effectiveness of Diagnostic Tests

 8. Fassbender K, Walter S, Grunwald IQ, Merzou F, Mathur S, Les-
meister M, et al. Prehospital stroke management in the thrombec-
tomy era. Lancet Neurol. 2020;19:601–10.

 9. Erenay FS, Alagoz O, Banerjee R, Said A, Cima RR. Cost-
effectiveness of alternative colonoscopy surveillance strategies 
to mitigate metachronous colorectal cancer incidence. Cancer. 
2016;122:2560–70.

 10. Snowsill TM, Ryan NA, Crosbie EJ. Cost-effectiveness of the 
Manchester approach to identifying Lynch syndrome in women 
with endometrial cancer. J Clin Med. 2020;9:1664.

 11. Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, Bossuyt PM, 
Deeks JJ. Assessing the value of diagnostic tests: a framework for 
designing and evaluating trials. BMJ. 2012;344:e686.

 12. Cocco P, Ayaz-Shah A, Messenger MP, West RM, Shinkins B. 
Target Product Profiles for medical tests: a systematic review of 
current methods. BMC Med. 2020;18:119.

 13. Huxley N, Jones-Hughes T, Coelho H, Snowsill T, Cooper C, Meng 
Y, et al. A systematic review and economic evaluation of intraop-
erative tests [RD-100i one-step nucleic acid amplification (OSNA) 
system and Metasin test] for detecting sentinel lymph node metas-
tases in breast cancer. Health Technol Assess. 2015;19:216.

 14. Wright DR, Wittenberg E, Swan JS, Miksad RA, Prosser LA. 
Methods for measuring temporary health states for cost-utility 
analyses. Pharmacoeconomics. 2009;27:713–23.

 15. Ogwulu CB, Jackson LJ, Kinghorn P, Roberts TE. A systematic 
review of the techniques used to value temporary health states. 
Value in Health. 2017;20:1180–97.

 16. Stoniute J, Mott DJ, Shen J. Challenges in valuing temporary 
health states for economic evaluation: a review of empirical appli-
cations of the chained time trade-off method. Value in Health. 
2018;21:605–11.

 17. Purba FD, Hunfeld JAM, Iskandarsyah A, Fitriana TS, Sadarjoen 
SS, Ramos-Goñi JM, et al. The Indonesian EQ-5D-5L value set. 
Pharmacoeconomics. 2017;35:1153–65.

 18. Craig BM, Rand K, Bailey H, Stalmeier PFM. Quality-adjusted 
life-years without constant proportionality. Value in Health. 
2018;21:1124–31.

 19. Bala MV, Zarkin GA. Are QALYs an appropriate measure for 
valuing morbidity in acute diseases? Health Econ. 2000;9:177–80.

 20. Franic DM, Pathak DS, Gafni A. Quality-adjusted life years 
was a poor predictor of women’s willingness to pay in acute 
and chronic conditions: results of a survey. J Clin Epidemiol. 
2005;58:291–303.

 21. Neumann PJ, Cohen JT, Hammitt JK, Concannon TW, Auerbach 
HR, Fang C, et al. Willingness-to-pay for predictive tests with 
no immediate treatment implications: a survey of US residents. 
Health Econ. 2012;21:238–51.

 22. Deeks J, Bossuyt P, Gatsonis C, editors. Cochrane handbook for 
systematic reviews of diagnostic test accuracy [Internet]. The 
Cochrane Collaboration; 2013. http:// srdta. cochr ane. org/.

 23. Bojke L, Soares MO, Claxton K, Colson A, Fox A, Jackson C, 
et al. Reference case methods for expert elicitation in health care 
decision making. Med Decis Making. 2022;42:182–93.

 24. Sassi F, McKee M, Roberts JA. Economic evaluation of diagnostic 
technology: methodological challenges and viable solutions. Int J 
Technol Assess Health Care. 1997;13:613–30.

 25. Gigerenzer G, Gaissmaier W, Kurz-Milcke E, Schwartz LM, 
Woloshin S. Helping doctors and patients make sense of health 
statistics. Psychol Sci Public Interest. 2007;8:53–96.

 26. Sutton AJ, Cooper NJ, Goodacre S, Stevenson M. Integration of 
meta-analysis and economic decision modeling for evaluating 
diagnostic tests. Med Decis Making. 2008;28:650–67.

 27. Varley-Campbell J, Mújica-Mota R, Coelho H, Ocean N, Barnish 
M, Packman D, et al. Three biomarker tests to help diagnose pre-
term labour: a systematic review and economic evaluation. Health 
Technol Assess. 2019;23:1–226.

 28. Soares MO, Walker S, Palmer SJ, Sculpher MJ. Establishing 
the value of diagnostic and prognostic tests in health technology 
assessment. Med Decis Making. 2018;38:495–508.

 29. Haji Ali Afzali H, Bojke L, Karnon J. Model structuring for eco-
nomic evaluations of new health technologies. Pharmacoeconom-
ics. 2018;36:1309–19.

 30. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan 
P, Krahn M. Conceptualizing a model: a report of the ISPOR-
SMDM modeling good research practices task force-2. Med Decis 
Making. 2012;32:678–89.

 31. van Smeden M, Naaktgeboren CA, Reitsma JB, Moons KGM, de 
Groot JAH. Latent class models in diagnostic studies when there 
is no reference standard—a systematic review. Am J Epidemiol. 
2013;179:423–31.

 32. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, 
et al. Discrimination and calibration of clinical prediction models: 
users’ guides to the medical literature. JAMA. 2017;318:1377–84.

 33. Edwards SJ, Mavranezouli I, Osei-Assibey G, Marceniuk G, 
Wakefield V, Karner C. VivaScope 1500 and 3000 systems for 
detecting and monitoring skin lesions: a systematic review and 
economic evaluation. Health Technol Assess. 2016;20:1–260.

 34. Ferrante di Ruffano L, Dinnes J, Sitch AJ, Hyde C, Deeks JJ. 
Test-treatment RCTs are susceptible to bias: a review of the meth-
odological quality of randomized trials that evaluate diagnostic 
tests. BMC Med Res Methodol. 2017;17:1–12.

 35. Hot A, Bossuyt PM, Gerke O, Wahl S, Vach W, Zapf A. Rand-
omized test-treatment studies with an outlook on adaptive designs. 
BMC Med Res Methodol. 2021;21:1–12.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

http://srdta.cochrane.org/

	Modelling the Cost-Effectiveness of Diagnostic Tests
	Abstract
	1 Background
	2 Common Methodological Approaches for Economic Evaluations of Diagnostics
	2.1 Decision Tree
	2.2 Discrete Event Simulation
	2.3 Patient-Level Analysis

	3 Value Propositions
	3.1 Replacing a Test with a Cheaper, Better Test
	3.2 Replacing a Test with a More Expensive Test
	3.3 Replacing a Slow Test with a Faster Test
	3.4 Replacing a Test with a More Acceptable Test
	3.5 Inserting a Triage Test
	3.6 Companion Diagnostics
	3.7 Expanding the Population that Can be Tested
	3.8 Lowering the Rate of Test Failures
	3.9 Replacing a Test with a Cheaper, Worse Test
	3.10 Prognostication or Prediction

	4 Populating Diagnostic Models
	4.1 Diagnostic Accuracy
	4.2 Pre-test Probability
	4.3 Costs

	5 Challenges in Economic Evaluation of Tests
	5.1 What if There are More than Two Disease States?
	5.2 What if There are More than Two Possible Test Results?
	5.3 Optimising Test Thresholds
	5.4 What if There is No Reference Standard?

	6 Recommendations and Areas for Further Research
	7 Conclusion
	Anchor 30
	Acknowledgements 
	References




