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Abstract Mathematical simulation models are commonly

used to inform health policy decisions. These health policy

models represent the social and biological mechanisms that

determine health and economic outcomes, combine multi-

ple sources of evidence about how policy alternatives will

impact those outcomes, and synthesize outcomes into

summary measures salient for the policy decision. Cali-

brating these health policy models to fit empirical data can

provide face validity and improve the quality of model

predictions. Bayesian methods provide powerful tools for

model calibration. These methods summarize information

relevant to a particular policy decision into (1) prior dis-

tributions for model parameters, (2) structural assumptions

of the model, and (3) a likelihood function created from the

calibration data, combining these different sources of evi-

dence via Bayes’ theorem. This article provides a tutorial

on Bayesian approaches for model calibration, describing

the theoretical basis for Bayesian calibration approaches as

well as pragmatic considerations that arise in the tasks of

creating calibration targets, estimating the posterior distri-

bution, and obtaining results to inform the policy decision.

These considerations, as well as the specific steps for

implementing the calibration, are described in the context

of an extended worked example about the policy choice to

provide (or not provide) treatment for a hypothetical

infectious disease. Given the many simplifications and

subjective decisions required to create prior distributions,

model structure, and likelihood, calibration should be

considered an exercise in creating a reasonable model that

produces valid evidence for policy, rather than as a tech-

nique for identifying a unique theoretically optimal sum-

mary of the evidence.

Key points for decision makers

Calibration describes the process of estimating the

parameters of a simulation model so that the model

predictions are consistent with external data that may

be available.

Calibration can ensure that the simulation model

provides a realistic depiction of the processes

determining the outcomes of a health policy

decision, and thereby provide more accurate

predictions for outcomes of interest (e.g., summary

measures of health burden, budget impact estimates,

cost-effectiveness ratios).

Bayesian methods use simple laws of probability to

synthesize available evidence on model parameters

and modeled outcomes. This tutorial describes the

theoretical underpinnings of this approach, provides

an extended worked example to show how the

approach can be implemented, and discusses

practical considerations.
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1 Introduction

Mathematical simulation models are commonly employed

to assess health policy decisions because empirical studies

would be costly or impractical to undertake, or because

waiting for empirical results to become available would

delay an urgent decision. These models typically combine

multiple sources of evidence about how policy alternatives

influence outcomes, with this evidence encoded in model

parameters and formulae. Some evidence will pertain

directly to individual model parameters. For example, a

parameter describing sensitivity of a diagnostic test may be

directly informed by meta-analyses on the subject, and in

this situation, it is generally straightforward to incorporate

the evidence into the analysis. Other evidence may

describe modeled outcomes, which are typically complex

functions of multiple parameters. For example, program-

matic evidence on the number of individuals initiating

treatment for a particular condition may be related to

parameters describing the size of the target population,

screening rates, sensitivity and specificity of various tests

in the diagnostic algorithm, and potentially other parame-

ters. In this situation, individual parameters cannot be

updated directly, and other methods must be used. Model

calibration represents the process of incorporating evidence

on modeled outcomes into the model.

The ultimate goal of these health policy models is

usually to estimate summary outcomes—health burden,

budget impact, or cost effectiveness—for which no direct

evidence is available, but that are increasingly requested by

decision makers. By making best use of all available evi-

dence, in particular, calibrating models to relevant empir-

ical data, we can obtain better estimates for these outcomes

of interest. In this tutorial, we provide an introduction to

Bayesian calibration approaches and apply them in the

context of a worked example. Bayesian approaches use

simple probability rules to combine three sources of

information: (1) evidence about the distribution of model

parameters, (2) evidence about the distribution of modeled

outcomes, and (3) model structural assumptions that relate

parameters and modeled outcomes. By acknowledging

uncertainty in both parameters and calibration data, these

methods appropriately weight different sources of evidence

and provide estimates of uncertainty in model results.

2 Theoretical Framework

2.1 Probability Model and Bayes’ Theorem

Bayesian statistics assumes that evidence about quantities

of interest can be represented by probability distributions,

with Bayes’ theorem providing the machinery for updating

a probability distribution with new data. If p hð Þ represents
the probability distribution for a quantity h before consid-

ering new data (the prior), and p hjYð Þ represents the

probability distribution for h incorporating new data Y (the

posterior), we can obtain p hjYð Þ by multiplying the prior

by p Yjhð Þ (the likelihood function) and scaling by p Yð Þ, the
probability of observing the data:

p hjYð Þ ¼ p hð Þ � p Y jhð Þ
p Yð Þ : ð1Þ

For most applications, it is sufficient to represent the

posterior as proportional to the prior times the likelihood,

omitting p Yð Þ:
p hjYð Þ / p hð Þ � p Y jhð Þ: ð2Þ

By keeping Y fixed and varyingh, the likelihood function
p Y jhð Þ can be used to describe the relative likelihood of

different values of h given the evidence represented by Y .

Parameter sets with higher values of p Yjhð Þ are more

consistent with the data Y , and this property allows us to

assess the extent to which the evidence supports one

parameter set compared with another. Bayesian methods

focus on estimating the posterior distribution p hjYð Þ, and
therefore incorporate evidence from both prior and

likelihood. Estimating the posterior distribution can be

complicated when calibrating health policy models, but the

basic components are those described above: (1) prior

distributions representing evidence on model parameters,

(2) a likelihood function relating modeled outcomes to

empirical data, and (3) the model itself, which translates

model parameters into modeled outcomes.

2.2 Application to Health Policy Models

The health policy model (M) is a mathematical function

that transforms a parameter set h into a set of modeled

outputs u. Both h and u can be multi-dimensional, h is a

parameter set including a value for each model parameter,

while u can include a variety of outcomes (essentially, all

outcomes from the model). Information about h is opera-

tionalized as the prior p hð Þ. Evidence on model outcomes

is operationalized by the likelihood function p Y jucð Þ
[subscript c denoting the subset of outcomes used for

calibration].

Bayes’ theorem allows us to calculate the posterior for

h:

p hjYð Þ / p hð Þ � p Y jM hð Þð Þ: ð3Þ

Most modern Bayesian analyses approximate this

posterior distribution using numerical methods. Rather

than producing a closed-form equation that could be used

to generate new parameter sets, these methods produce a

614 N. A. Menzies et al.



large sample of parameter sets where each set represents a

draw from the posterior parameter distribution p hjYð Þ.
Once we have this sample of calibrated parameter sets, we

can use these in a traditional Monte Carlo simulation to

estimate a distribution for any outcome of interest:

p ujYð Þ ¼ p M hjYð Þð Þ: ð4Þ

2.3 Relationship to Other Approaches

The Bayesian approach outlined above is one of several

frameworks described for calibrating simulation models. In

contrast to ad hoc, frequentist, or otherwise non-Bayesian

calibration frameworks [1–4], the theory underlying

Bayesian approaches provides an axiomatic basis for

deciding how to quantify evidence, avoiding arbitrary

decisions about the relative weight to be placed on different

data sources or the use of heuristics to select well-fitting

parameter sets. In contexts where priors, likelihood, and

model are all correctly specified, the Bayesian approach

can provide a theoretically optimal summary of the evi-

dence [5, 6], allowing a decision maker to maximize

expected utility when paired with a utility function repre-

senting his/her preferences for different outcomes [7].

However, for complicated policy problems, the task of

specifying priors, likelihood, and model will involve many

choices for which the underlying theory provides only

general guidance. Simplifications are invariably made in

terms of how the simulation model is constructed, or which

data are deemed relevant to the decision problem. In this

context, the theoretical guarantees described above will not

necessary hold. Despite these challenges, Bayesian

approaches have been found to perform well compared

with alternative approaches [8], and provide a principled

framework for making analytic choices. The section below

considers these applied issues in the context of a simplified

policy problem.

3 Worked Example

3.1 Policy Question

The example deals with a hypothetical sexually transmitted

disease. Infected individuals experience progressively

increasing mortality rates. A treatment is available, which

reduces mortality but is not curative and is required for life.

Currently, individuals with late-stage disease are eligible

for treatment, but it is unclear whether individuals with

early-stage disease should also receive treatment. The

analysis is designed to estimate the cost effectiveness of

providing treatment for this group, compared with a status

quo restricting treatment to individuals with late-stage

disease.

3.2 Study Model

The model is adapted from approaches for modeling

human immunodeficiency virus in high-burden settings [9],

simplified for ease of exposition for this example. The

population is divided into five health states including non-

susceptible (N), susceptible (S), early disease (E), late

disease (L), and treatment (T). The number of individuals

by state and year (t) is given by Nt, St, Et, Lt, and Tt,

respectively. Individuals enter the model distributed across

the N and S states, and transition between states to allow

for infection (S to E), disease progression (E to L), treat-

ment initiation (E and L to T), and death (N, S, E, L and T

to D) via background and disease-specific mortality. Fig-

ure 1 shows the model schematic and Table 1 describes

model parameters. Differential equations describing the

model are given in the Technical Appendix.

The force of infection (kt) is calculated as

kt ¼ q EtþLt
StþEtþLtþTt

, where q represents the effective contact

rate (the rate of infection for a susceptible individual

exposed to 100% infected contacts). This formulation

assumes a fraction of the population (N) is not sexually

active.

A model simulation is initiated 30 years in the past

(t = 0) when the epidemic is believed to have started, and

Non- 
Susceptible

(Nt)

Treatment
(Tt)

Susceptible
(St)

Late 
Disease

(Lt)

Early 
Disease

(Et)

Dead 
(Dt)

a*b a*(1-b)

μB

μB

μB+μE

μB+μL

μB+μT

λt

c

rL

rE

Model entry Health state transition

Fig. 1 Schematic of the example model. Boxes represent model

states and arrows represent transitions. Parameter descriptions are

provided in Table 1
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run forward to provide historical and future estimates for

various outcomes. The analysis adopts a 20-year time

horizon, with the incremental cost-effectiveness ratio

(ICER) representing the ratio of incremental costs to

incremental life-years lived for the proposed policy vs.

status quo (both undiscounted). Additional details (in-

cluding R code) are provided in the Technical Appendix.

3.3 Analytic Results Without Calibration Data

We first discuss how an analysis might proceed if cali-

bration data were not available. In this situation, it is

common to calculate results using point estimates for each

parameter (i.e., ignoring parameter uncertainty), or alter-

nately to calculate results using a probabilistic sensitivity

analysis. Using parameter point estimates is the simplest

approach, but unlike probabilistic sensitivity analysis, this

approach does not provide uncertainty estimates for mod-

eled outcomes. In addition, as modeled outcomes are typ-

ically non-linear functions of the parameters, the results

produced by using parameter point estimates will differ

from the mean results from a probabilistic sensitivity

analysis (via Jensen’s inequality) [10]. For these reasons, it

is becoming increasingly conventional for modeled eco-

nomic evaluations to take parameter uncertainty into

account [11–13]. Probabilistic sensitivity analysis

(achieved via Monte Carlo simulation) is the accepted

approach for quantifying the implications of parameter

uncertainty for modeled outcomes and providing summary

information on decision uncertainty [14, 15]. With this

approach, important decisions must be made on how to

synthesize evidence on parameter values and operational-

ize this evidence as prior distributions. The process of

defining model parameters and creating prior distributions

is not discussed here as it has been addressed in detail

elsewhere [12], but it is an important consideration during

model calibration. The process of identifying and synthe-

sizing evidence for both priors and calibration targets is

best viewed as components of a single estimation proce-

dure [16–20].

We conducted a probabilistic sensitivity analysis to

demonstrate the results that would be obtained with the

example model in the absence of calibration data. Many

parameter sets were drawn from the prior distributions

described in Table 1, and outcomes estimated by Monte

Carlo simulation. From the uncalibrated model, incre-

mental life-years were estimated to be 213,000 (equal-

tailed 95% interval = [6, 775]), and incremental costs

were estimated to be US$277 million [-34, 1235]. The

ICER was estimated to be US$1300 per life-year saved,

though this estimate is very imprecise because of parameter

uncertainty (Fig. 5).

3.4 Operationalizing Calibration Targets

The calibration data include (1) population-based preva-

lence surveys for the present year as well as 10 and

20 years ago (t = 10, 20, and 30); (2) natural history

studies reporting life expectancy of 10 [8, 12] years among

newly infected individuals without treatment; and (3)

program data estimating current treatment volume at

75,000, ± 5000. Table 2 describes these data and how they

can be operationalized as calibration targets, which are

mathematical functions that summarize the available evi-

dence on modeled outcomes.

3.4.1 Whether to Use the Original Data Likelihood

For the prevalence calibration targets in the worked

example, we know the data generation process, a simple

Table 1 Model parameters and prior distributions

Parameter Description Prior distribution Implied mean and

95% interval

a Annual birth rate, calculated to achieve steady state

based on population size of 1 million and lB
No uncertainty, taken as fixed 15,000

b Fraction of births entering non-susceptible state Beta, a = 2, b = 8 0.20 [0.03, 0.48]

lB Background mortality rate No uncertainty, taken as fixed 0.015

lE Disease-specific mortality for early disease Log-normal, l = -3.121, r = 0.5 0.05 [0.02, 0.12]

lL Disease-specific mortality for late disease Log-normal, l = -1.511, r = 0.5 0.25 [0.08, 0.59]

lT Disease-specific mortality on treatment Log-normal, l = -3.814, r = 0.5 0.025 [0.01, 0.06]

q Effective contact rate for transmission Log-normal, l = -0.818, r = 0.5 0.025 [0.01, 0.06]

p Rate of progression from early to late disease Log-normal, l = -2.428, r = 0.5 0.10 [0.03, 0.24]

rL Rate of treatment uptake for late disease Log-normal, l = -0.818, r = 0.5 0.50 [0.17, 1.18]

rE Rate of treatment uptake for early disease No uncertainty, taken as fixed 0.0

cT Annual cost of treatment Log-normal, l = 6.888, r = 0.2 US$1000 [662, 1451]
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random sample of the entire population, using a perfect

test. This data generation process produces three indepen-

dent binomial likelihoods that can be used directly as

calibration targets. In other situations, the process that

generates calibration data (how data are collected, how

sample estimates relate to population characteristics) will

be more complex, and may produce a likelihood requiring

a complicated series of calculations and/or involve addi-

tional parameters to be estimated simultaneously. This can

present challenges for using the data likelihood itself as a

calibration target, particularly if evaluating the likelihood

is computationally intensive. An alternative approach is to

analyze the data using conventional methods to produce

summary statistics (e.g., point estimates and confidence

intervals), and use these to create calibration targets. This

approach can reduce the difficulty of creating calibration

targets, and allow the appropriate analytic techniques to be

applied to the data. However, care must be taken that this

two-step approach does not omit important features of the

data, such as correlations between variables in the

likelihood.

3.4.2 Choosing a Function to Approximate the Likelihood

When creating calibration targets from published

research, the underlying data are generally not available

and the likelihood must be approximated with a different

function. This is the case with the calibration target for

average survival, where the likelihood is approximated by

a normal distribution parameterized using the published

mean and confidence interval. Even when data are non-

normal, the central limit theorem dictates that the normal

distribution will provide an increasingly accurate

approximation of the true likelihood as the sample size

increases, and given its analytic tractability it can usually

be included among the options being considered. Care

must be taken in situations where the outcome being

calibrated is restricted to some part of the number line

(such as average survival, which is strictly positive). In

this situation, if a substantial portion of the normal dis-

tribution used as a calibration target lies outside of the

support of the outcome, the mean and variance of the

calibration target could be biased.

Table 2 Calibration data and likelihoods

Empirical data Relevant model outcome Likelihood function

Three population-based surveys of disease

prevalence, each a simple random sample of

500 individuals, using a diagnostic algorithm

with perfect sensitivity and specificity

At t = 10: 25 out of 500 positive

At t = 20: 75 out of 500 positive

At t = 30: 50 out of 500 positive

Prevalence in year t can be directly estimated

from the model as prevt ¼ EtþLtþTt
NtþStþEtþLtþTt

,

evaluated in each year in which the survey

was conducted

Independent binomial likelihoods for the

form

L1 ¼
500

25

� �
prev2510 1� prev10ð Þ500�25

The log-likelihoods can be written more

parsimoniously:

ln L1ð Þ / 25prev10 þ 475 1� prev10ð Þ
ln L2ð Þ / 75prev20 þ 425 1� prev20ð Þ
ln L3ð Þ / 50prev30 þ 450 1� prev30ð Þ

A study published from an observational cohort

suggesting a mean survival following infection

of 10.0 years, with confidence interval [8.0,

12.0]

Mean survival following infection is not

directly estimated by the model, but can be

calculated from the parameter values as:

surv ¼ 1
lBþlEþp

þ p
lBþlEþp

� 1
lBþlL

The sampling distribution for the study

data is unknown, and is approximated

with a normal likelihood:

L4 ¼ 1

r
ffiffiffiffi
2p

p exp � 10�survð Þ2
2r2

� �

The standard deviation is estimated from

the width of the reported confidence

interval:r̂ ¼ 12�8
2�1:96

The log-likelihood can be written more

parsimoniously:

ln L4ð Þ / � 10�survð Þ2
2r̂2

Routine reporting suggests 75,000 individuals

receiving treatment in the current year, ±5000

because of uncertainties in reporting

Treatment volume in year t is equal to Tt The sampling distribution for the study

data is unknown, and is approximated

with a normal likelihood, with r̂ ¼ 5000
1:96:

ln L5ð Þ / � 75;000�T35ð Þ2
2r̂2
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The choice of distribution to approximate a likelihood

can be consequential, especially when the various sour-

ces of evidence disagree. In this situation, the slope of

the log-density in the tails of the distribution will

determine the strength of the calibration target. Figure 2

shows the density function, log-density, and the slope of

the log-density of four different non-negative distribu-

tions, the Log-normal, Gamma, Weibull, and truncated

normal distributions, each parameterized with a mean of

1.0 and a variance of 0.5. The distributions display quite

different behavior in their tails, despite matching means

and variances. For these reasons, it is important to

understand how functions used for calibration targets

behave under different scenarios.

3.4.3 Calibrating to Outcomes Not Produced by the Model

Another feature of the calibration target for survival is

that the outcome being calibrated (mean survival) is

calculated outside the model. As constructed, the model

does not produce an estimate for survival; however, this

outcome can be calculated as a function of the relevant

model parameters. The reason for doing this, specifying

an additional model or functional relationship for use in

the calibration, is to obtain better estimates for

parameters used in the main model. While the evidence

on survival could be incorporated into the prior,

including this evidence in the calibration is convenient,

and also ensures that evidence is represented

appropriately.

3.4.4 Non-Sampling Error

The calibration target for current treatment volume is opera-

tionalized in the same way as the calibration target for sur-

vival. However, in this case the uncertainty represents

perceived imperfections in reporting rather than sampling

uncertainty. Non-sampling biases represent a separate con-

sideration to the sampling uncertainty captured in conven-

tional likelihood functions. Failing to consider non-sampling

biases can lead to calibration targets that are overly strong and/

or biased (theTechnicalAppendix provides further discussion

of strong calibration targets). If the bias is poorly understood,

the solutionmay be to arbitrarilyweaken the calibration target

based on some assessment of the magnitude of the bias, as in

the treatment volume example. If the source of bias is well

understood, a more objective solution may be available. For

example, if the diagnostic used in the prevalence likelihood

had imperfect sensitivity and specificity, a likelihood could be

constructed for test positivity (prev� sensitivityþ
1� prevð Þ � 1� specificityð Þ) rather than true prevalence.

Sensitivity and specificity could be incorporated as point

estimates, or given their own priors and treated like the other

model parameters.

3.5 Calibration Approaches

3.5.1 Point Estimates or Full Posterior Distribution

To produce estimates of uncertainty around modeled

results, the calibration will need to produce a distribution

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

Log−Normal
Gamma
Weibull
Truncated Normal

Density function

Outcome value
0 1 2 3 4 5

−8

−6

−4

−2

0

Log−density function

Outcome value

Log−Normal
Gamma
Weibull
Truncated Normal

0 1 2 3 4 5

−4

−2

0

2

Slope of log−density function

Outcome value

Log−Normal
Gamma
Weibull
Truncated Normal

Fig. 2 Density function, Log-density function, and slope of Log-

density function for various non-negative distributions with

mean = 1.0 and variance = 0.5. At the lower tail, the truncated

normal will allow values close to zero, which would be heavily

penalized by the other distributions. At the upper tail, the truncated

normal and Weibull will penalize extreme values more strongly than

the other two distributions. For the log-normal distribution, the slope

of the log-density actually returns towards zero for increasingly

extreme values in the upper tail. As a consequence, the strength of the

calibration target first increases and then declines for increasing

values of the outcome being calibrated. For this reason, the log-

normal (and other ‘fat-tailed’ distributions) can be a problematic

choice for creating calibration targets, unless this behavior is

specifically desired
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of values for model parameters. However, obtaining a

single ‘best fitting’ parameter set can be an important first

step. This can be achieved via optimization routines

available in most statistical software, identifying the

parameter set that maximizes the posterior parameter dis-

tribution (i.e., prior distribution times likelihood function).

This ‘maximum a posteriori’ estimate is not necessarily

equal to the mean or mode of the modeled outcomes, but

will likely be close, and will provide valuable information

on how the calibration performs. For example, examining

the results may show that fitted values for important

parameters are far from the mass of the prior distribution,

or the fitted model may not match the calibration targets.

While not necessarily problematic, examining these

inconsistencies may reveal errors in the way evidence is

summarized, problematic assumptions, or simply pro-

gramming bugs. This process also provides information on

how the main calibration will proceed. If the model runs

too slowly to obtain a reasonable best-fitting parameter set,

this is a signal that steps to improve efficiency may be

needed before continuing. If optimization identifies a dif-

ferent ‘best-fitting’ parameter set from different starting

points, this suggests the posterior is multimodal or other-

wise difficult to sample. Optimization algorithms can also

struggle when some parameters (or functions of parame-

ters) are not identified by the combined evidence in prior

and likelihood. Optimization can pose particular challenges

for stochastic models, for which the modeled outcomes

associated with a particular parameter set are estimated

with Monte Carlo error. In this situation, the likelihood for

a given parameter set will be estimated with error, and can

be computationally expensive to compute. This issue can

also cause problems when estimating the posterior distri-

bution. Special issues for stochastic models are discussed

in Sect. 3.5.5.

Figure S1 shows fitted values for model parameters and

calibration targets obtained via ‘maximum a posteriori’

estimation. It is good practice to undertake the optimization

in log space, that is, to use the optimizer to identify the sum

of logged priors plus logged calibration targets, as this can

minimize numerical errors. The results shown below were

obtained using the Broyden–Fletcher–Goldfarb–Shanno

algorithm from R’s optim function [21]. In practice, it is

useful to try different algorithms to find one that works

well for a particular problem.

3.5.2 Whether to Include All Parameters

in the Optimization

Parameters that are fixed (e.g., a and lB in Table 1) can be

excluded from the calibration. At a theoretical level, it is

unproblematic to include all uncertain parameters in the

calibration, but it can be useful to omit some parameters, as

often the optimization routine (or algorithm used to sample

the posterior distribution) will perform better with a

reduced number of parameters. An obvious case where a

parameter (or parameters) can be omitted is where the

parameters are statistically independent from (1) other

model parameters in the prior distribution and (2) the cal-

ibration targets. The first condition holds if all prior dis-

tributions are independent. The second condition holds if

the parameters to be omitted have no mathematical rela-

tionship with the calibrated outcomes. This will typically

be true for parameters such as unit costs and utility

weights. In the worked example, the annual treatment cost

(cT) meets both criteria, and was excluded from the cali-

bration. It may be advantageous to exclude parameters

from the calibration in situations where the independence

conditions only hold qualitatively, but subjective judg-

ments must be made about whether it is reasonable to do

so. For omitted parameters, the ‘maximum a posteriori’

point estimate is equal to the prior mode, and to obtain

random samples one simply samples from the prior.

3.5.3 Sampling from the Posterior Distribution

Bayesian statistics is a growing field, and methods for

sampling from the posterior parameter distribution are the

subject of active development. The first method described

below, an application of sampling importance resampling

(SIR) [22], is straightforward to implement and explain,

and aspects of this algorithm will be familiar to those with

knowledge of probabilistic sensitivity analysis (steps 1 and

2 are identical). This algorithm can provide reasonable

results when calibration targets are not overly strong rela-

tive to the prior. The steps of the algorithm are as follows:

Step 1 Draw a large number of parameter sets from the

prior distribution.

Step 2 For each parameter set (hi), run the model and

estimate modeled outcomes.

Step 3 Using these modeled outcomes, estimate the

likelihood for the parameter set, L hið Þ, and retain this

value.

Step 4 Resample from the original parameter sample

with replacement, using the likelihood values as sampling

weights.

To implement SIR with the worked example, a sample

size of 100,000 was used for the initial sample as well as

the resample. The resample included 797 unique parameter

sets. The reduction in the number of unique parameter sets

(three orders of magnitude) occurs because some parameter

sets have much higher likelihoods relative to others, and

are sampled many times over in step 4. The effective

sample size (ESS) is a useful metric for understanding the

information value of a weighted sample, describing the size

of a simple random sample that would produce a mean with
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equivalent variance to the weighted sample [23]. ESS is

calculated as the squared sum of the sampling weights

divided by the summed squares of these weights:

ESS ¼
P

i L hið Þ
� �2	P

i L hið Þ2: ð5Þ

In this example, ESS = 88, and this low ESS indicates

non-trivial Monte Carlo error in the study results. This

highlights the major drawback of SIR, that it is inefficient.

Efficiency will be worse when the prior is very dispersed

compared with the likelihood, or covers a different area of

the parameter space.

Modern algorithms improve efficiency by concentrating

sampling in regions of the parameter space with higher

posterior density. One approach developed specifically for

mechanistic models is incremental-mixture importance

sampling (IMIS) [24]. Using IMIS, we obtained a posterior

sample of 10,000 parameter sets including 6372 unique

parameter sets, with ESS = 4713. The algorithm evaluated

the model 27,600 times, and using the ratio of ESS to total

samples as a measure of efficiency, IMIS was 150–200

times more efficient than SIR. SIR may be adequate when

the model can be evaluated easily and when the calibration

targets are not very strong, otherwise more efficient tech-

niques will be needed.

Other estimation approaches use Markov chain Monte

Carlo methods [25, 26]. Where the simulation model is

relatively simple, these methods can be implemented using

Bayesian modeling packages such as WinBUGS [27] or

Stan [28], where the model is specified in the package’s

modeling language and the software takes care of the

estimation details [18, 19]. In situations where the likeli-

hood is intractable or computationally expensive to esti-

mate (commonly in microsimulation models), the

likelihood can be replaced by summary statistics calculated

from simulated data, and the posterior approximated using

approximate Bayesian computation methods [29, 30].

3.5.4 Evaluating Model Fit

Once a sample of fitted parameter sets has been

obtained, it is important to evaluate the model fit (this is

in addition to reviewing the convergence diagnostics

appropriate to the fitting algorithm used [24, 31, 32]).

This step involves reviewing the posterior distribution of

model parameters against their priors, and model pre-

dictions against calibration targets. Figure 3 compares

marginal prior and posterior distributions for the cali-

brated parameter sets produced by IMIS, showing the

extent to which the prior and the posterior overlap. In

particular, it can be seen that for parameters q and b the

distribution of the posterior is substantially narrower than

the prior, indicating that these parameters are primarily

identified through the calibration targets. Figure 4 com-

pares model predictions with calibration targets, allowing

the consistency of the model predictions with the cali-

bration targets to be evaluated graphically. For all of

these outcomes, the model predictions closely match the

calibration targets. This figure also shows results for

several other modeled outcomes for which no calibration

target was available, and it is good practice to review all

outcomes for which there might be some prior under-

standing about what appropriate values might be, even if

this evidence has not been included in the calibration. In

some cases, comparing model predictions with calibra-

tion targets can be achieved by using the model to

generate simulated data, which can be compared with the

data used to construct the calibration likelihood (poste-

rior predictive checks [33, 34]). Diagnostics have also

been developed for assessing parameter identifiability in

the fitted model [35].

Where discrepancies are observed they should be

investigated, and the knowledge this generates may lead to

revisions to priors, likelihood, or model. However, iterative

tweaking of these components for the sole purpose of

maximizing calibration fit should be avoided. For those

models able to predict a long list of outcomes, it is

unreasonable to expect perfect fit with all available

empirical data, as the model is invariably a simplification

of a very complicated reality. Pursuing this goal can simply

result in overfitting, risking overconfidence in model pre-

dictions and biased estimates for the outcomes of interest.

Assessing the influence of individual parameters can be

difficult in the context of a calibrated model, and for this

task, partial rank correlation coefficients can be used

[36, 37].

3.5.5 Special Issues for Stochastic Models

Several of the calibration approaches described in the

preceding sections become more difficult to apply in the

context of stochastic models, such as stochastic

microsimulations or agent-based models. One issue is

computing time, as the methods described here require

the model to be evaluated a large number of times, and

stochastic models can be computationally expensive to

evaluate. Another issue arises from the fact that the

results from these models are estimated with Monte

Carlo error. This issue will likely pose the greatest

problems in the context of optimization, as Monte Carlo

error around modeled outcomes will produce random

error in the likelihood estimated for a given parameter

set. In this situation, gradient-based optimization methods

may struggle. An optimization approach that is robust to

stochastic uncertainty (such as simulated annealing) may

be needed, though these approaches can be less efficient.
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Stochastic uncertainty may be less problematic when

calculating the full posterior, as methods for sampling from

the posterior distribution can be more robust to random

error in the likelihood estimate. However, even in these

situations it can be advantageous to reduce the magnitude

of the Monte Carlo error. For example, to calibrate a

microsimulation model of colorectal cancer, Rutter et al.

estimated the parameters of the data likelihood by simu-

lation, that is, estimating a large number of individual

disease courses and using this sample to calculate a max-

imum likelihood estimator for the parameters of the cali-

bration likelihood [26, 38]. The Monte Carlo error in these

values will be inversely proportional to the square root of

the size of this simulated sample, and thus a larger sample

size reduces the magnitude of the error in the estimated

likelihood. Another approach involves first estimating a

smooth function (such as a spline or Gaussian process) to

emulate the model and then using this function (which

should be much quicker to evaluate) to calibrate the

parameters [39]. Given differences in model complexity

and computing resources, users of stochastic models may

need to investigate a solution tailored to their situation.

3.6 Analytic Results Following Calibration

Having obtained a sample of calibrated parameter sets, the

analysis proceeds as a conventional Monte Carlo simula-

tion—the model is evaluated for the sample of calibrated

parameter sets, and quantities of interest calculated from

the distribution of modeled outcomes that are produced. As

the treatment cost (cT) was omitted from calibration, the

sample of 10,000 parameter sets from IMIS was augmented

by a sample of 10,000 values drawn from the prior for cT.

Using the parameter sets produced by IMIS, incremental

life-years lived were estimated to be 130,000 [64, 228], and

incremental costs were estimated to be US$123 million [-

4, 312]. The ICER is calculated to be US$947 per life-year

saved. This is lower than the ICER obtained from the

uncalibrated model (US$1300) and uncertainty is sub-

stantially reduced, as shown in Fig. 5, which plots cost-

effectiveness acceptability curves for uncalibrated and

calibrated models.

4 Discussion

Calibrating simulation models to fit empirical data can

improve the quality of model predictions and increase

confidence among the consumers of study results [1, 40].

Bayesian methods provide a powerful approach for cali-

brating health policy models, with the model enabling a

Bayesian evidence synthesis of many different sources of

information relevant to the policy question [18]. These

methods must be applied and interpreted thoughtfully, and

the best approach for a particular application will depend

on the model structure, purpose of the analysis, and

availability/characteristics of calibration data. However,

the general concepts described in this tutorial are
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applicable to a wide variety of models, and the underlying

theory is agnostic to model structure provided the model is

an adequate approximation of the system it was designed to

represent. The worked example describes several tech-

niques that can be employed for calibration, but does not

cover the universe of algorithms and software that might be
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employed. Given the proliferation of Bayesian methods,

this list is large and expanding, with contributions from

fields such as engineering and machine learning [41, 42].

For regression-type models and relatively simple mecha-

nistic models, available software can automate many

aspects of calibration [27, 28]. Conversely, for models that

are computationally expensive, or which involve substan-

tial stochastic uncertainty, it may be difficult to identify an

adequate approach. In these situations, individualized

solutions may be required, and new methods tailored to

these situations are needed [26, 39].

5 Conclusions

The theory underlying the Bayesian approach provides a

principled framework for making analytic choices. How-

ever, in the course of specifying priors, likelihood, and

model for a complicated policy problem, the analyst must

make many decisions for which the underlying theory

provides only general guidance. To the extent possible, the

impact of these decisions should be investigated to assess

their impact on study conclusions, and any disagreement

between different sources of evidence examined. It may not

be possible to resolve all disagreements in the evidence

base, or reject all analytic options apart from the one

chosen. Yet, invariably, the policy choice will not wait on

all potential issues to be resolved. In this context, calibra-

tion should be considered an exercise in creating a rea-

sonable model that produces valid evidence for policy—

subject to ongoing scrutiny, revision, and improvement—

rather than as a technique for identifying a unique theo-

retically optimal summary of the evidence [43].
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