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Abstract

Purpose Economic evaluation of health services com-

monly requires information regarding health-state utilities.

Sometimes this information is not available but non-utility

measures of quality of life may have been collected from

which the required utilities can be estimated. This paper

examines the possibility of mapping a non-utility-based

outcome, the Sydney Asthma Quality of Life Questionnaire

(AQLQ-S), onto five multi-attribute utility instruments:

Assessment of Quality of Life 8 Dimensions (AQoL-8D),

EuroQoL 5 Dimensions 5-Level (EQ-5D-5L), Health

Utilities Index Mark 3 (HUI3), 15 Dimensions (15D), and

the Short-Form 6 Dimensions (SF-6D).

Methods Data for 856 individuals with asthma were

obtained from a large Multi-Instrument Comparison (MIC)

survey. Four statistical techniques were employed to esti-

mate utilities from the AQLQ-S. The predictive accuracy of

180 regression models was assessed using six criteria: mean

absolute error (MAE), root mean squared error (RMSE),

correlation, distribution of predicted utilities, distribution of

residuals, and proportion of predictions with absolute errors

\0.0.5. Validation of initial ‘primary’ models was carried

out on a random sample of the MIC data.

Results Best results were obtained with non-linear models

that included a quadratic term for the AQLQ-S score along

with demographic variables. The four statistical techniques

predicted models that performed differently when assessed

by the six criteria; however, the best results, for both the

estimation and validation samples, were obtained using a

generalised linear model (GLM estimator).

Conclusions It is possible to predict valid utilities from the

AQLQ-S using regression methods. We recommend GLM

models for this exercise.

Key Points for Decision Makers

The Sydney Asthma Quality of Life Questionnaire

(AQLQ-S) was designed to measure functional

problems in adults who have asthma. However, it is

currently not possible to estimate health utilities

based on the AQLQ-S because of methodological

constraints.

Using regression approaches, our study showed that

it is possible to predict health-state utilities for five

commonly used multi-attribute utility instruments

(MAUIs) from AQLQ-S responses, i.e. the

Assessment of Quality of Life 8 Dimensions (AQoL-

8D), EuroQoL 5 Dimensions 5-Level (EQ-5D-5L),

Health Utilities Index Mark 3 (HUI3), 15

Dimensions (15D), and the Short-Form 6

Dimensions (SF-6D).

The results of this study can be used to inform utility

estimation within future economic evaluations of

interventions targeted at populations of people with

asthma.
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1 Introduction

The global prevalence, morbidity, mortality and economic

burden associated with asthma have been increasing over

the years [1]. Asthma affects between 1 and 18 % of the

population in different countries, with an estimated

300 million individuals affected worldwide [2, 3]. Its effect

on health-related quality of life (HRQoL) is increasingly

being measured to inform patient management and policy

decisions, including decisions relating to the share of the

health budget that should be allocated to the treatment of

asthma [4–9]. Many decision bodies, including the UK

National Institute for Health and Care Excellence (NICE)

and the Australian Pharmaceutical Benefits Advisory

Committee (PBAC) and Medical Services Advisory

Committee (MSAC) recommend the use of cost-utility

analysis (CUA) [10–12], which estimates and compares the

cost per additional quality-adjusted life-year (QALY)

obtained from each service where QALYs are calculated as

life-years times an index of the utility of the relevant health

state measured on a 0–1 (death to full health) scale [13, 14].

Increasingly, utilities have been derived from a limited

number of multi-attribute utility instruments (MAUIs)

[15, 16]; however, MAUIs are often perceived as being less

sensitive to particular conditions than non-utility, condi-

tion-specific quality-of-life (QoL) measures [17].

The Sydney Asthma Quality of Life Questionnaire

(AQLQ-S) is a non-utility-based asthma-specific QoL

instrument that was developed to measure functional

problems in adults who have asthma [18, 19]. A recent

review identified it as one of the most commonly used

asthma-specific QoL measures [6]. Compared with one of

its variants (the McMaster Asthma Quality of Life Ques-

tionnaire [AQLQ-McMaster]), the AQLQ-S has been

shown to have lower respondent burden and is therefore

preferred by researchers and respondents for inclusion as

an asthma-specific QoL measure in broader population

health surveys [9]. A limitation of the AQLQ-S for eco-

nomic evaluation is that it does not have utility weights and

cannot therefore be used to estimate QALYs, as needed for

a CUA.

This limitation may be overcome by creating an algo-

rithm that predicts utility scores from the AQLQ-S. To

date, no such mapping algorithm has been created. Tsu-

chiya et al. [20] employed ordinary least squares (OLS) and

multinomial logistic regression to map the AQLQ-

McMaster onto an MAUI, the EuroQoL 5 Dimension

3-Level (EQ-5D-3L), using a sample of 3000 individuals.

While the authors concluded that it was possible to esti-

mate a robust relationship between EQ-5D-3L utilities and

the AQLQ-McMaster, the study was limited by the

exclusion of sociodemographic variables and by only

mapping to the EQ-5D-3L, which performs less well on

tests of sensitivity and content validity than other MAUIs

[21].

Using data from a large Multi-Instrument Comparison

(MIC) study [22], the present paper develops mapping

algorithms that use the AQLQ-S and patient socio-demo-

graphic characteristics to predict utilities for the five most

commonly used MAUIs, which are listed in Fig. 1 along

with their common abbreviation and major reference in the

literature.

2 Methods

We followed the newly developed ‘Mapping onto Prefer-

ence-Based Measures Reporting Standards’ (MAPS)

checklist in conducting this study [23]. The target instru-

ments for mapping were the AQoL-8D, EQ-5D-5L, HUI 3,

15D and SF-6D, while the source instrument was the

AQLQ-S.

2.1 Instruments

2.1.1 Sydney Quality of Life Questionnaire (AQLQ-S)

This 20-item, condition-specific instrument was developed

to measure the functional impairments that are most trou-

blesome to adults (17–70 years) living with asthma

[18, 24], and consists of four domains, some with over-

lapping items: breathlessness (five items), mood distur-

bance (five items), social disruption (seven items), and

concerns for health (seven items). It has shown good

validity when used within asthma populations [19, 25–27].

Results may be reported as average scores for each of the

four domains or as a simple score that may be reduced to a

0–1 (worst–best) scale.

Abbreviation Name   Reference

15D 15 Dimensions Sintonen 2001 [53]

AQoL-8D 
Assessment of Quality of Life 8 

Dimensions 

Questionnaire

Richardson et al. 2012 [30]

AQLQ-S Sydney Asthma Quality of Life Marks et al. 1992 [18]

EQ-5D-5L EuroQol 5 Dimensions Herdman et al. 2011 [37]

HUI 3 Health Utilities Index Mark 3 Feeny et al. 2002 [44]

SF-6D Short-Form 6 Dimensions Brazier et al. 2002 [49]

Fig. 1 AQLQ-S and the multi-attribute utility instruments, along

with their common abbreviation and major reference in the literature
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2.1.2 Assessment of Quality of Life 8 Dimensions (AQoL-

8D)

This is an eight-dimension MAUI designed to assess

HRQoL across health conditions, and is applicable to

individuals aged C16 years [28, 29]. The AQoL-8D mea-

sures the following dimensions: independent living, rela-

tionships, mental health, coping, pain, senses, happiness

and self-worth [30]. Using the time trade-off (TTO)

approach [31], population preference weights were

obtained from the Australian population, resulting in util-

ities ranging from -0.094 to 1 [32]. The validity of the

AQoL-8D has been proven in multiple patient populations

[21, 33–35].

2.1.3 EuroQoL Dimensions 5-Level (EQ-5D-5L)

This is a measure of HRQoL suitable for use on individuals

aged C18 years, and comprised of five single-item

dimensions of health: mobility, self-care, usual activities,

pain/discomfort, and anxiety/depression [36]. It is a mod-

ification of the original EQ-5D-3L and includes five, rather

than three, levels of impairment in each domain: no, slight,

moderate, severe, and extreme problems in the relevant

dimension of health [37]. Using these responses, the EQ-

5D-5L is able to distinguish between 3125 states of health.

A UK-specific algorithm developed using TTO techniques

was used to convert the EQ-5D-5L health description into a

valuation ranging from -0.281 to 1 [38]. Scores less than 0

represent health states that are worse than death [39]. The

EQ-5D-5L has been validated in differentiated clinical

populations [40–42].

2.1.4 Health Utilities Index Mark 3 (HUI3)

The HUI3 is an HRQoL outcome that measures eight

domains, namely vision, hearing, speech, ambulation/mo-

bility, pain, dexterity, emotion, and cognition [43, 44].

Each of these domains has five to six rank-ordered

response options. Utilities were developed using a visual

analogue scale (VAS) and the Standard Gamble (SG)

technique, and ranged from -0.36 to 1 [44]. The HUI3 has

been validated in diverse clinical conditions and is suit-

able for individuals aged 5 years and older [43, 45, 46].

2.1.5 Short-Form 6 Dimensions (SF-6D)

This MAUI was derived from the Short-Form 36 dimen-

sions (SF-36), a 36-item generic HRQoL instrument

designed to measure general health concepts across dif-

ferent ages, diseases and treatment groups [47]. The SF-6D

consists of six dimensions: vitality, physical functioning,

pain, role functioning, social functioning and mental health

[48]. The number of levels per dimension varies from four

to six. Utilities, developed using the SG approach, can be

derived from 11 of the 36 items in the SF-36, and range

from 0.291 to 1 [49]. The validity of the SF-6D has been

demonstrated in differentiated populations with variable

clinical conditions [46, 50–52].

2.1.6 15 Dimensions (15D)

This MAUI is suitable for individuals aged C16 years and

has 15 HRQoL dimensions, namely mobility, vision,

hearing, breathing, sleeping, eating, speech, excretion,

usual activities, mental function, discomfort and symp-

toms, depression, distress, vitality and sexual activity [53].

Each of these dimensions has five ordinal levels of severity

[53]. It is well-validated in various clinical populations

[54–56], and health states defined by the MAUI can be

converted into utilities (ranging from 0 to 1) that were

derived as a weighted average of VAS scores for the 15

dimensions [48, 53].

A comparison between the dimensions of the AQLQ-S

and those of the five MAUIs shown in Fig. 2 depicts the

conceptual overlap between these instruments.

2.2 Data

A large MIC survey was carried out in six countries:

Australia, Canada, Germany, Norway, the UK and the US,

details of which are provided elsewhere [34]. The online

survey was administered by a global company (CINT Pty

Ltd), to a demographically representative group of the

healthy population in each country and to patients in seven

major disease areas. Quotas were applied to obtain a target

number of respondents in each of the chronic disease areas.

Only patients with asthma were included in the present

study. Data collected included age, gender, educational

level, country of residence, ethnicity, marital status,

occupational status, income level, body mass index (BMI),

smoking status and responses to the six instruments

described above. Data were collected between October

2011 and January 2014, and all participants gave their

informed consent prior to inclusion in the study. Ethical

approval was granted by the Monash University Human

Research Ethics Committee (MUHREC) [CF11/

3192–2011001748].

2.3 Statistical Analysis

All analyses were conducted in STATA version 14.1 [57],

and the analysis was conducted in two stages. In the first

stage, the correlation between the AQLQ-S scores and the

five MAUIs was assessed using scatter diagrams and

Spearman’s rank correlation coefficients.
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In the second stage, independent variables were chosen

for inclusion in the regression models. Highly correlated

independent variables (r[ |0.7|) [58] were identified using

Spearman’s rank correlation, and a decision was made with

respect to which variables to include in the analysis. The

independent variables, including the AQLQ-S, were map-

ped onto each of the five MAUIs using the nine models

described in Table 1. Specific patient characteristics were

included when they improved the predictive ability of the

models (see Sect. 2.5 for measures of predictive ability).

The effect of including dummy variables (representing

each of the six countries in the MIC study) in all of the nine

models was also tested within a sensitivity analysis. The

following regression model families were used in the

mapping:

• OLS regression models These have been the most widely

used models in mappings [17]; however they have a

potential limitation, i.e. the presence of a data ceiling can

lead to inconsistent coefficient estimates [59, 60].

Instrumentsb

AQLQ-S AQoL-8D EQ-5D-5L HUI3 SF6D 15D

                                        C
om

parable D
im

ensions

Breathlessness Independent  
living 

Mobility;  
Self-care Ambulation Physical 

functioning 
Mobility; usual 
activities; Breathing 

Mood 
Mental health; 
Coping; 
Happiness 

Anxiety/ 
depression Emotion 

Mental 
health; 
Vitality 

Depression; distress; 
Sleep; Mental function; 
Depression; Distress; 
Vitality 

Social Relationships;  
Coping 

Usual 
activities 

Social 
functioning 
Role 
Limitation 

Usual activities 

Concerns 
Mental health;  
Self-worth; 
Coping  

Anxiety/ 
Depression; Mental health 

Depression; distress; 
Mental function; 
Distress 

Incom
parable 

dim
ensions

Pain; Senses  Pain/ 
Discomfort 

Vision; 
Pain; 
Hearing; 
Speech; 
Dexterity; 
Cognition 

Bodily pain Vision; hearing; Speech 

a Based on discussions within the team. MAUI = multi attribute utility instrument 
b AQLQ-S= Sydney Asthma Quality of Life Questionnaire, AQoL-8D = Assessment of Quality of Life 8 Dimensions; EQ-5D-5L = 

EuroQoL 5 Dimensions 5 Level; HUI3 = Health Utilities Index Mark 3; SF-6D = Short Form 6 Dimensions and 15D = 15 Dimensions

Fig. 2 Comparisons between the dimensions of the AQLQ-S and the

MAUIs. AQLQ-S Sydney Asthma Quality of Life Questionnaire,

AQoL-8D Assessment of Quality of Life 8 Dimensions, EQ-5D-5L

EuroQoL 5 Dimensions 5-Level, HUI3 Health Utilities Index Mark 3,

SF-6D Short-Form 6 Dimensions, 15D 15 Dimensions, MAUIs multi-

attribute utility instruments
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• Censored least absolute deviations (CLAD) This tech-

nique takes the ceiling effect into account and is also

robust to heteroscedastic and skewed data [61]. It is

consistent and asymptotically normal for a wide class

of error distributions [62].

• The generalised linear model (GLM) This family of

models is also robust to heteroscedasticity and skew-

ness [63]. The choice of the GLM distribution and link

was guided by the modified park test suggested by

Manning [64].

• The Beta Binomial (BB) regression model The BB

model can estimate unimodal or bimodal utilities while

being robust to skewness [65, 66]. A limitation of the

model is that it restricts utilities to a 0 to 1 range [66].

However, utilities in our data set were positive, except

for a small number of observations for the EQ-5D-5L

(0.7 %) and HUI3 (1.05 %). As done elsewhere, these

data were set equal to 0 [67].

2.4 Estimation and Validation of Primary Models

We used an approach similar to previous studies to esti-

mate ‘primary’ or ‘estimation’ models from a subset of the

data, and validated these with the remaining data [68–71].

In this ‘hold-out’ approach, data were split into two parts:

an ‘estimation sample’ consisting of two-thirds of the data

(793 observations) that were used to construct the primary

models, and a ‘validation sample’ consisting of the

remaining third (396 observations) that were used for

validation. A total of 180 primary models were estimated

(four model families 9 nine model specifications 9 five

MAUI-dependent variables). These primary models were

then tested on the validation sample to assess their pre-

dictive ability.

2.5 Assessment of Predictive Ability

Predicted utilities from each of the 180 models were esti-

mated using STATA’s inbuilt post-estimation commands.

The predictive ability of the models was primarily assessed

using two measures of predictive error [72]: the root mean

squared error (RMSE) and the mean absolute error (MAE),

with lower values of the measures implying a better per-

forming predictive model. To calculate the RMSE, the

difference between the observed and predicted values of

the MAUIs was squared and then summed over all obser-

vations. The RMSE was then estimated as the square root

of the mean of these summed values. The MAE was cal-

culated by summing the absolute difference between the

observed and predicted values of the MAUIs and the

estimated mean of these summed values. Where the RMSE

and MAE indicated different results in the validation

sample, and as recommended in the literature [73], more

weight was placed on the RMSE, particularly when the

distribution of the error from the model was Gaussian.

Performance of the models was further assessed using four

Table 1 Variables used in regression models

Model specification Independent variables

1 AQLQ-S total scorea only

2 AQLQ-S total scorea and ageb

3 AQLQ-S total scorea and genderc

4 AQLQ-S total scorea, ageb and genderc

5 AQLQ-S domain scoresd only

6 AQLQ-S domain scoresd, ageb and genderc

7 AQLQ-S total scorea, AQLQ-S total scoreb squared, ageb and genderc

8 AQLQ-S domain scoresd, AQLQ-S domain scoresd squared, ageb and genderc

9 AQLQ-S domain scoresd, AQLQ-S domain scoresd squared, interactionse, ageb and genderc

Model specification Dependent variables

1–9 AQoL-8D, EQ-5D-5L, HUI3, 15D and SF-6D utilities

AQLQ-S Sydney Asthma Quality of Life Questionnaire, AQoL-8D Assessment of Quality of Life 8 Dimensions, EQ-5D-5L EuroQoL 5

Dimensions 5-Level, HUI3 Health Utilities Index 3, SF-6D Short-Form 6 Dimensions, 15D 15 Dimensions
a AQLQ-S calculated as a continuous variable with a 0–1 range
b Age: dummy = 1 if\65 years, and 0 if 65? years
c Gender: dummy = 1 if male, and 0 if female
d Four AQLQ-S domains, each calculated as a continuous variable with a 0–1 range: breathlessness, mood disturbance, social disruption and

concerns for health
e Interactions between all AQLQ-S domains
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additional criteria estimated using the validation sample,

namely (1) the ranges of, and Spearman’s rank correlations

between, the predicted and observed utilities; (2) an

examination of the distributions of the predicted and

observed utilities to determine how closely predicted val-

ues matched observed scores [74]; (3) assessment of the

distribution of the residuals (observed minus predicted

utilities) to determine bias in the predicted utilities [75];

and (iv) assessment of the proportion of predicted utilities

deviating from observed values by\0.03 or 0.05 [76]. A

breakdown of which regression model family, model

specification (among the nine models) and MAUI predic-

tion (AQoL-8D, EQ-5D-5L, HUI3, SF-6D or 15D) per-

formed best according to the six selection criteria (RMSE,

MAE and the four additional criteria) is also presented. The

best-fitting models overall, based primarily on the perfor-

mance of their measures of predictive error, were re-esti-

mated using data from the entire sample.

Complete data sets were available for all of the instru-

ments and demographic data analysed.

3 Results

3.1 Demographic and Other Characteristics

Table 2 presents summary statistics for 856 study partici-

pants. No significant differences in the instrument scores

were observed between the estimation and validation

samples. Mean utilities were highest for the 15D (mean

0.85) and lowest for the AQoL-8D (mean 0.69). The

majority of individuals in the sample were \45 years of

age (58 %), female (62 %), married or living with a partner

(59 %), non-smokers (77 %), educated beyond high school

(71 %), and had a good or very good standard of living

(88 %). There were no statistically significant differences

between the estimation and validation sample in terms of

patient characteristics. All six countries were fairly repre-

sented in the dataset.

3.2 Bivariate Relationship between AQLQ-S

and Multi-Attribute Utility Instruments

(MAUIs)

The dimensions of the AQLQ-S and MAUIs are compared

in Fig. 2. When contrasted against the dimensions of the

AQLQ-S, the 15D had the greatest number of overlapping

dimensions (12/15), followed by the SF-6D (5/6), AQoL-

8D (6/8), EQ-5D-5L (4/5) and HUI3 (2/8). Figure 3 depicts

the relationship between the AQLQ-S total scores and

utilities for each of the five MAUIs. The plots show

moderate to strong correlation for all comparisons, with the

lowest being between the AQLQ-S and the HUI3 (0.458),

and the highest being between the AQLQ-S and the 15D

(0.544).

3.3 Assessment of Model Predictive Ability

Selection criteria statistics for assessing the predictive

ability of the 180 models are presented in electronic sup-

plementary Table 1 for both the estimation and validation

samples. These were used to rank each model, resulting in

rankings that were sufficiently consistent to permit the

selection of a ‘shortlist’ of 10 best-fitting models. The short

list for each MAUI, as well as for all MAUIs combined, is

shown in electronic supplementary Table 2. A total of nine

regression algorithms were candidates for best predicting

models as they were the best-fitting models based on the

selection criteria statistics: AQoL-8D – OLS (9), AQoL-8D

– GLM (9), 15D – OLS (9), 15D – GLM (9), 15D – OLS

(9) and 15D – CLAD (8) in the estimation sample, and

AQoL-8D – GLM (8), 15D – GLM (8), and 15D – CLAD

(5) in the validation sample. Selection criteria statistics

estimated using these models ranged from (figures given

for the estimation and validation samples) 0.0950 to 0.0973

and 0.0834 to 0.0866 (RMSE), 0.0730 to 0.0740 and

0.0645 to 0.0665 (MAE), 0.6120 to 0.6420 and 0.6370 to

0.6610 (correlation), and 43–49 % and 43–46 % (propor-

tion of predictions with absolute errors\0.0.5). In addition,

the ‘minimum to maximum’ range of the predicted prob-

abilities for all nine models was narrower than that for the

observed utilities, while the distribution of the residuals for

both samples all appear close to being normally distributed

(supporting our decision to put more weight on the RMSE

for selecting the best-fitting model [67]). Below, these nine

regression models are now analysed in order to give a

breakdown of which regression model family, model

specification and MAUI prediction performed best

according to the selection criteria.

With respect to the performance of the regression model

families, there were some mixed results. Overall, however,

the OLS and GLM performed best on correlation, MAE

and RMSE and the CLAD on the proportion of predicted

utilities deviating from mean observed utilities by \0.05

(electronic supplementary Table 2). The OLS and GLM

predicted mean utilities whose values were closest to those

of the observed utilities; however, the CLAD predicted

more utilities whose distribution ‘mimicked’ that of the

observed values. Fewer CLAD-predicted utilities also

deviated from the mean utilities by[0.05. Based on best

performance on the most criteria, the OLS and GLM were

deemed to have been better models.

In terms of model specification, electronic supplemen-

tary Table 2 shows that, regardless of the MAUI predicted,

model specifications (8) and (9) performed the best. Model

(8) was a non-linear model that included a quadratic term
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Table 2 Descriptive statistics of estimation and validation samplesa

Characteristic Whole sample

[N = 856]

Estimation sampleb

[n = 642]

Validation sampleb

[n = 214]

Test of differencec

Instruments [mean (SD); median (IQR)]

AQLQ-S 0.82 (0.19); 0.89

(0.74–0.98)

0.82 (0.20); 0.89

(0.74–0.98)

0.82 (0.19); 0.88

(0.75–0.98)

Z = 0.302,

p = 0.763d

AQoL-8D 0.69 (0.20); 0.72

(0.54–0.86)

0.69 (0.20); 0.72

(0.55–0.86)

0.69 (0.20); 0.72

(0.52–0.86)

Z = 0.162,

p = 0.872d

EQ-5D-5L 0.84 (0.17); 0.88

(0.79–0.94)

0.84 (0.17); 0.88

(0.79–0.94)

0.83 (0.18); 0.87

(0.77–0.94)

Z = 1.163,

p = 0.245d

HUI3 0.76 (0.24); 0.85

(0.66–0.93)

0.76 (0.24); 0.85

(0.66–0.93)

0.75 (0.25); 0.85

(0.67–0.92)

Z = 0.221,

p = 0.825d

SF-6D 0.71 (0.13); 0.70

(0.61–0.81)

0.71 (0.13); 0.70

(0.61–0.81)

0.70 (0.13); 0.70

(0.62–0.81)

Z = 0.331,

p = 0.741d

15D 0.85 (0.12); 0.88

(0.79–0.94)

0.85 (0.12); 0.88

(0.79–0.94)

0.85 (0.11); 0.87

(0.78–0.93)

Z = 0.855,

p = 0.392d

Age, years

18–24 116 (14) 92 (14) 24 (11) V2 = 2.054,

p = 0.84225–34 177 (21) 128 (20) 49 (23)

35–44 200 (23) 148 (23) 52 (24)

45–54 154 (18) 117 (18) 37 (17)

55–64 135 (16) 102 (16) 33 (15)

65? 74 (9) 55 (9) 19 (9)

Gender

Females 534 (62) 406 (63) 128 (60) V2 = 0.803,

p = 0.370Males 322 (38) 236 (37) 86 (40)

Married or living with partner?

Yes 509 (59) 377 (59) 132 (62) V2 = 0.583,

p = 0.445No 347 (41) 265 (41) 82 (38)

Ethnicity

Oceanic 74 (9) 53 (8) 21 (10) V2 = 5.279,

p = 0.809Northwest European 264 (31) 199 (31) 65 (30)

African and Middle

Eastern

5 (1) 4 (1) 1 (0)

Southeast Asian 17 (2) 13 (2) 4 (2)

Northeast Asian 5 (1) 5 (1) 0 (0)

South and Central Asian 4 (0) 4 (1) 0 (0)

Americas 174 (20) 128 (20) 46 (22)

Sub-Saharan Africa 4 (0) 4 (1) 0 (0)

South and Eastern

European

32 (4) 23 (4) 9 (4)

Missing 277 (32) 209 (33) 68 (32)

No. of cigarettes smoked per day

I do not smoke 660 (77) 489 (76) 171 (80) V2 = 1.599,

p = 0.6601–10 95 (11) 73 (11) 22 (10)

11–20 76 (9) 61 (10) 15 (7)

21 or more 25 (3) 19 (3) 6 (3)
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of the AQLQ-S, as well as demographic characteristics as

independent variables. Interaction terms were added to

these independent variables in model (9).

With respect to prediction of specific MAUIs (electronic

supplementary Table 2), the prediction of 15D was the

strongest when assessed using the RMSE, MAE and pro-

portion of predicted utilities deviating from mean observed

utilities by\0.05, while that for the AQoL-8D was stron-

gest when correlation was assessed. There was mixed

performance from the ‘AQLQ-S to AQoL-8D’ and

‘AQLQ-S to EQ-5D-5L’ predictions. Therefore, based on

best performance on the most criteria the ‘AQLQ-S to

15D’ prediction was, on average, the strongest, followed by

the ‘AQLQ-S to SF-6D’, while the ‘AQLQ-S to HUI3’

prediction was the weakest.

3.4 Best-Performing Models Overall for All MAUIs

When the regression model families and model specifica-

tions are considered together, GLM (8) performed best on

the RMSE and MAE (except for the HUI3 and SF-6D

predictions where CLAD (8) performed best on the MAE).

In the estimation sample, GLM (8) was ranked within the

top four best-performing models for all MAUI predictions

in terms of the RMSE and MAE (except for the EQ-5D-5L

prediction, where it was ranked outside the top 10 on the

MAE, and for the HUI3 prediction, where it was ranked

fifth on both the RMSE and MAE). In the validation

sample, GLM (8) overpredicted mean utilities whose range

(minimum to maximum) was also narrower than that of the

observed utilities (Table 3). Although the range of utilities

predicted by GLM (8) was again narrower than that of the

observed utilities in the estimation sample, the mean pre-

dicted and observed utilities were the same (Table 3).

However, an examination of the measures of spread (par-

ticularly the 25th percentile, median and 75th percentile)

shows that the distributions of predicted utilities in both

samples were similar to those for the observed utilities.

Spearman’s rank correlations between GLM (8) predicted

and observed utilities in both samples all showed moderate

correlation (range 0.51–0.66). Finally, the plots of residuals

for GLM (8) (Fig. 4) for comparable predictions in the

estimation and validation samples look significantly dif-

ferent but appear close to being normally distributed.

Including country dummies in all model specifications

within the sensitivity analysis did not result in better-per-

forming models (predictive accuracy results of the 10 best-

fitting models across all MAUIs are shown in electronic

Table 2 continued

Characteristic Whole sample

[N = 856]

Estimation sampleb

[n = 642]

Validation sampleb

[n = 214]

Test of differencec

MIC country

Australia 141 (16) 104 (16) 37 (17) V2 = 3.618,

p = 0.606USA 150 (18) 115 (18) 35 (16)

UK 150 (18) 118 (18) 32 (15)

Canada 138 (16) 96 (15) 42 (20)

Norway 130 (15) 98 (15) 32 (15)

Germany 147 (17) 111 (17) 36 (17)

Highest level of education

High school 242 (28) 182 (28) 60 (28) V2 = 3.023,

p = 0.221Diploma/certificate/trade 336 (39) 261 (41) 75 (35)

University 278 (32) 199 (31) 79 (37)

Standard of living

Very good 233 (27) 175 (27) 58 (27) V2 = 0.053,

p = 0.997Good 525 (61) 394 (61) 131 (61)

Poor 91 (11) 68 (11) 23 (11)

Very poor 7 (1) 5 (1) 2 (1)

AQLQ-S Sydney Asthma Quality of Life Questionnaire, AQoL-8D Assessment of Quality of Life 8 Dimensions, EQ-5D-5L EuroQoL 5

Dimensions 5-Level, HUI3 Health Utilities Index 3, SF-6D Short-Form 6 Dimensions, 15D 15 Dimensions, SD standard deviation, IQR

interquartile range, MIC multi-instrument comparison
a Data are expressed as figures are frequency (%) unless otherwise stated
b Estimation sample is made up of two-thirds of the dataset; validation sample is made up of one-third of the dataset
c Test of difference between estimation and validation samples. All tests were Chi-square tests unless otherwise stated
d Test of difference between estimation and validation samples, Mann–Whitney U test
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supplementary Table 3). On this basis, and in order to have

parsimonious prediction models, preference was given to

models without country dummies. In particular, GLM (8)

was chosen as relatively best-fitting in both samples, and

then re-estimated using data from the entire sample. The

regression model coefficients for predicting the five

MAUIs using GLM (8) are shown in Table 4. To predict

15D utilities from the AQLQ-S, for instance, the following

equation would have to be used:

15D Utility ¼ �0:473� 0:462� Breath domain

þ 0:168�Mood domainþ 0:4038

� Social domainþ 0:065

� Concerns domainþ 0:306

� Breath domainð Þ2þ 0:081

� Mood domainð Þ2� 0:205

� Social domainð Þ2þ0:024

� Concerns domainð Þ2þ 0:013

� Age \65 yearsþ 0:019

� Female Genderð Þ

4 Discussion

The AQLQ-S is a non-preference-based measure of QoL

for people with asthma, frequently used in clinical and

epidemiological studies in Australia and internationally [6].

As it is not a utility instrument, it cannot be used for

comparisons between interventions for disparate services.

This limitation is overcome by mapping the AQLQ-S onto

an MAUI. The estimated utilities from the mappings may

then be used to calculate QALYs, and for the conduct of

CUA. The present study has provided such mapping

functions for each of the major MAUIs. As there were

slight differences in the estimated utilities, the choice of

which MAUIs to map onto must be guided by whether the

health-state classification system of each MAUI reflects the

domains deemed most important for the condition under

consideration.

The AQLQ-S demonstrated strong positive association

with all the MAUIs, implying good convergent validity

between them. In the preliminary analysis, correlation was

highest between the AQLQ-S and the 15D, and lowest

between the AQLQ-S and the HUI3. The strong correlation

with the 15D is a reflection of the close correspondence of

the conceptualisation of the dimensions of health in the two

instruments [77].

There were some mixed results among the regression

algorithms for the best-predictive models (assessed

according to correlation, RMSE, MAE and percentage of

absolute differences between predicted and observed utili-

ties of\0.05). The range of these statistics (0.0834–0.0973,

RMSE; 0.0645–0.0740, MAE; 0.6420–0.6610, correlation;

and 46–49 % of absolute differences between predicted and

observed utilities of\0.05) for these models were all within

acceptable ranges of published estimates [17], making the
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Fig. 3 Scatter plots between

the AQLQ-S total scores and

utilities of each of the MAUIs,

as well as corresponding

correlation coefficients. AQLQ-

S Sydney Asthma Quality of

Life Questionnaire, MAUIs

multi-attribute utility

instruments, AQoL-8D

Assessment of Quality of Life 8

Dimensions, EQ-5D-5L

EuroQoL 5 Dimensions

5-Level, HUI3 Health Utilities

Index Mark 3, SF-6D Short-

Form 6 Dimensions, 15D 15

Dimensions
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selection of the optimal algorithms for each MAUI difficult;

however, differences between these models were small. It

was not possible to compare our results with those of

comparable analyses as our study was the first to map the

AQLQ-S onto MAUIs, and the first to provide mappings for

all of the major MAUIs. However, the RMSE estimates

obtained in this study were substantially lower than those

reported by Tsuchiya et al. [20] for the mapping of the

AQLQ-McMaster onto the EQ-5D-3L (range

0.2024–0.2775).

Table 3 Predictive ability of the best-fitting models

Estimation method Mean (SD) Min P.25 Median P.75 Max Corr RMSEa MAEa %\0.03 %\0.05

Estimation sample

AQoL-8D

Observed 0.692 (0.204) 0.158 0.553 0.724 0.858 1.000 – – – – –

GLM (8) 0.692 (0.131) 0.374 0.587 0.705 0.817 0.917 0.64 0.1570 0.1263 16 24

EQ-5D-5L

Observed 0.844 (0.169) 0.001 0.792 0.878 0.942 1.000 – – – – –

GLM (8) 0.844 (0.089) 0.581 0.786 0.864 0.918 0.967 0.52 0.1443 0.1013 21 36

HUI3

Observed 0.756 (0.240) -0.189 0.658 0.854 0.931 1.000 – – – – –

GLM (8) 0.756 (0.124) 0.416 0.676 0.786 0.867 0.941 0.51 0.2068 0.1560 12 21

SF-6D

Observed 0.708 (0.132) 0.319 0.614 0.697 0.810 1.000 – – – – –

GLM (8) 0.708 (0.080) 0.512 0.647 0.720 0.783 0.827 0.61 0.1041 0.0851 19 33

15D

Observed 0.850 (0.119) 0.388 0.790 0.879 0.937 1.000 – – – – –

GLM (8) 0.850 (0.071) 0.612 0.805 0.864 0.909 0.939 0.59 0.0960 0.0733 24 43

Validation sample

AQoL-8D

Observed 0.689 (0.204) 0.200 0.519 0.716 0.864 1.000 – – – – –

GLM (8) 0.688 (0.121) 0.426 0.589 0.712 0.796 0.926 0.66 0.1531 0.1240 14 24

EQ-5D-5L

Observed 0.832 (0.176) 0.001 0.767 0.866 0.942 1.000 – – – – –

GLM (8) 0.844 (0.080) 0.607 0.797 0.861 0.910 0.957 0.57 0.1459 0.0971 23 34

HUI3

Observed 0.753 (0.247) -0.196 0.671 0.854 0.919 1.000 – – – – –

GLM (8) 0.758 (0.114) 0.410 0.682 0.783 0.855 0.916 0.57 0.2043 0.1495 14 21

SF-6D

Observed 0.704 (0.126) 0.355 0.618 0.696 0.81 1.000 – – – – –

GLM (8) 0.708 (0.071) 0.521 0.651 0.722 0.766 0.826 0.63 0.0982 0.0781 25 43

15D

Observed 0.848 (0.109) 0.485 0.784 0.871 0.931 1.000 – – – – –

GLM (8) 0.851 (0.063) 0.630 0.812 0.863 0.901 0.939 0.65 0.0834 0.0645 29 50

The dependent variables in all regression models were the AQoL-8D, EQ-5D 5L, HUI 3, 15D and SF-6D utilities, and the independent

variable(s) were: Model (8): AQLQ-S domain scores, AQLQ-S domain scores squared, age and gender; Model (9) AQLQ-S domain scores,

AQLQ-S domain scores squared, interactions, age and gender
a Model performance assessed using the two primary goodness-of-fit statistics—RMSE and MAE

AQLQ-S Sydney Asthma Quality of Life Questionnaire, AQoL-8D Assessment of Quality of Life 8 Dimensions, EQ-5D-5L EuroQoL 5

Dimensions 5-Level, HUI3 Health Utilities Index 3, SF-6D Short-Form 6 Dimensions, 15D 15 Dimensions, GLM generalised linear model,

RMSE root mean squared error, MAE mean absolute error, SD standard deviation, min minimum, max maximum, P.25 25th percentile, P.75 75th

percentile, Corr Spearman correlation, %\0.03 and %\0.05 proportion of predicted utilities whose absolute values deviate from the mean of

the observed utility values by\0.03 or\0.05, respectively
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For economic evaluation, mean estimates are of great

importance [75, 78, 79]. Using this criterion, our results

show that the OLS and GLM performed best as they pre-

dicted mean scores that were closest to the mean observed

utilities. However, if an analyst is also interested in accu-

rate prediction across the whole distribution of utilities,

then the performance of the CLAD was the best because,

compared with the OLS and GLM, CLAD models pre-

dicted mean utilities that had a wider range (minimum to

maximum) that more closely described the variation of

observed utilities, implying that CLAD-predicted utilities

had a better spread of predicted values than the OLS and

GLM models. This result has also been seen elsewhere

[74, 75]. Generally though, all three model families pre-

dicted utilities with narrower ranges than those of observed

utilities, a result seen in other research [68, 74, 79], and

may have been due to few patients having scores or utilities

at the lower or upper scales of the instruments used in this

study.

Some limitations in our data and analysis need to be

noted. First, no suitable out-of-sample dataset was avail-

able and therefore in-sample validation of mapping algo-

rithms, successfully used in a number of other mapping

studies [68–71], was applied; However, it is desirable that

the algorithms should be validated on an external dataset.

Second, asthma status was self-reported and therefore

subject to reporting biases. Third, our sample may not be

fully representative of the asthma population as we used a

self-selected sample of respondents, namely people who

used the internet and were part of the online database of

CINT Pty Ltd; however, there are no strong prior reasons

for believing that this should skew the functional rela-

tionships reported here. The sample included a wide rep-

resentation across six countries, and the study participants

were reflective of a broad range of sociodemographic

characteristics. Finally, the same preference weights were

used regardless of the nationality of the respondents as

national weights do not exist for all of the MAUIs. How-

ever, it has been shown that the content of MAUIs has a

greater impact on utilities than the difference in inter-

country preference weights [34].

5 Conclusions

Directly collecting data on utilities will always be the

best way of measuring QoL for the purpose of con-

ducting a CUA. When this has not been done, our

0
10

20
30

-. 5 0 .5

Estimation sample

Estimation sample

Estimation sample

Estimation sample

Estimation sample
AQ oL-8 D - GLM (8) AQ oL-8 D - GLM (8)

0
10

20
30

-. 4 -. 2 0 .2 .4

Validation sample

Validation sample

Validation sample

Validation sample

Validation sample

0
10

20
30

-1 -. 5 0 .5

EQ -5 D-5L - GLM (8) EQ -5 D-5L - GLM (8)

0
10

20
30

-1 -. 5 0 .5

0
10

20
30

-1 -. 5 0 .5

HUI3 - GLM (8) HUI3 - GLM (8)

0
10

20
30

-1 -. 5 0 .5

0
10

20
30

-. 4 -. 2 0 .2 .4

0
10

20
30

-. 3 -. 2 -. 1 0 .1 .2

SF_6D - GLM (8)SF_6D - GLM (8)

0
10

20
30

-. 4 -. 2 0 .2 .4

15 D - GL M (8) 15 D - GL M (8)

0
10

20
30

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

P
er

ce
nt

-. 3 -. 2 -. 1 0 .1 .2
Residual (Actual - Predicted utilities)Residual (Actual - Predicted utilities)

Residual (Actual - Predicted utilities)

Residual (Actual - Predicted utilities) Residual (Actual - Predicted utilities)

Residual (Actual - Predicted utilities) Residual (Actual - Predicted utilities) Residual (Actual - Predicted utilities)

Residual (Actual - Predicted utilities)Residual (Actual - Predicted utilities)
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results demonstrate the possibility of predicting utilities

if data on the AQLQ-S have been collected. We rec-

ommend using a GLM (8) mapping function for this

exercise.
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