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Abstract

Purpose Previous research using numerical methods

suggested that use of a cohort-based model instead of an

individual-based model can result in significant hetero-

geneity bias. However, the direction of the bias is not

known a priori. We characterized mathematically the

conditions that lead to upward or downward bias.

Method We used a standard three-state disease progres-

sion model to evaluate the cost effectiveness of a hypo-

thetical intervention. We solved the model analytically and

derived expressions for life expectancy, discounted quality-

adjusted life years (QALYs), discounted lifetime costs and

incremental net monetary benefits (INMB). An outcome

was calculated using the mean of the input under the co-

hort-based approach and the whole input distribution for all

persons under the individual-based approach. We investi-

gated the impact of heterogeneity on outcomes by varying

one parameter at a time while keeping all others constant.

We evaluated the curvature of outcome functions and used

Jensen’s inequality to determine the direction of the bias.

Results Both life expectancy and QALYs were underes-

timated by the cohort-based approach. If there was

heterogeneity only in disease progression, total costs were

overestimated, whereas QALYs gained, incremental costs

and INMB were under- or overestimated, depending on the

progression rate. INMB was underestimated when only

efficacy was heterogeneous. Both approaches yielded the

same outcome when the heterogeneity was only in cost or

utilities.

Conclusion A cohort-based approach that does not adjust

for heterogeneity underestimates life expectancy and may

underestimate or overestimate other outcomes. Character-

izing the bias is useful for comparative assessment of

models and informing decision making.

Key Points for Decision Makers

Cost-effectiveness analyses are often based on

single-cohort models.

Use of a cohort-based approach that does not adjust

for heterogeneity underestimates benefits when there

is heterogeneity in efficacy and overestimates

benefits when there is heterogeneity in the rates of a

slow-progressing disease.

Depending on the type of heterogeneity being

considered, estimates of cohort-based models failing

to address heterogeneity may lead to the wrong

recommendation regarding the use of a technology.

1 Introduction

Heterogeneity, defined as variation in outcomes between

persons, is common in health and medicine, and arises

from various sources [1, 2]. Some forms of heterogeneity
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can be related to baseline demographic characteristics of

patients, such as age, sex and race. For example, differ-

ences in patients’ ages lead to variability in survival (i.e.

greater life expectancy among younger patients). Various

sources of patient heterogeneity can impact input pa-

rameters used in a cost-effectiveness analysis. Examples

include impacts on treatment effects (e.g. patients’ weight

affecting efficacy), disease factors (e.g. higher incidence

among a given ethnic group), costs (e.g. resource use

varying by disease severity), utilities (e.g. varying by age),

and baseline risk (e.g. changing by observable or unknown

genetic factors at the time of the decision) [1, 3, 4].

Cohort-based, state-transition (also known as Markov)

models are routinely used in cost-effectiveness analysis

(CEA) [5]. Numerous applications of these models make

the assumption that the cohort is homogeneous with respect

to baseline risk and determine the cost effectiveness of an

intervention on the basis of a single set of average pa-

rameter inputs. Some CEAs incorporate heterogeneity

through use of a subgroup analysis and quantify the po-

tential health gains from restricting the use of a given in-

tervention to subgroups of patients in whom the

intervention is cost effective [1, 6, 7]. Others have ex-

tended the concept of subgroup analysis further by

assessing the value of individualized treatment decisions

and have shown that this value can be far greater than the

value of improved decision making at the subgroup level

[8]. Recently, individual-based simulation models have

been increasingly employed, among other things, to in-

corporate heterogeneity in patient characteristics [9].

However, it is not always possible to address hetero-

geneity through these approaches. Sometimes, the analyst

is faced with the task of using a cohort analysis to predict

outcomes and make decisions for a heterogeneous cohort.

There are several situations that represent this decision

context. Examples include situations where (1) hetero-

geneity should not be considered, because of potential

ethical and equity constraints (e.g. equality considerations

may prohibit the use of age as a source of heterogeneity in

decisions) [7]; (2) heterogeneity is related to factors un-

known at the time of the decision either because it is costly

or because it may not be feasible to obtain information on

these factors (e.g. genetic mutations associated with a

particular cancer) [3]; (3) heterogeneity is represented by a

continuous variable for which only broad categories are

available; and (4) there are limited skills or time to build a

detailed individual-based model.

Because of the non-linear relationship between some

model inputs and outcomes, the choice of the modelling

technique (cohort versus individual-based simulation) can

influence the outcomes of interest in the presence of

heterogeneity [10]. The literature provides little guidance

on how to investigate the impact of heterogeneity on CEA

results. Previous research using numerical methods has

shown that the choice of the modelling technique—cohort

versus individual—can result in significant bias in model

outcomes [11, 12]. However, the direction of the bias is not

known a priori. In reviewing the small literature that has

compared the two approaches, Briggs et al. [13] observed

that the comparison was limited by differing model struc-

tures and inputs, and they concluded that more research of

this type is needed.

In this paper, we studied the impact of ignoring

heterogeneity in patient characteristics on model outcomes,

using a standard disease prevention model. Our purpose

was to compare health outcomes predicted by a single-

cohort model (which does not capture baseline hetero-

geneity) with outcomes from an individual-based model

(which does capture baseline heterogeneity) and to derive

analytically (i.e. mathematically) the conditions that lead to

upward or downward heterogeneity bias.

2 Methods

We used a standard three-state (Well, Disease and Dead)

transition model to estimate the clinical benefits and cost

effectiveness of a hypothetical intervention to prevent

disease progression [14, 15]. Briefly, the model can be

described as follows (Fig. 1). In the absence of interven-

tions, the disease progresses at rate p per year, which re-

sults in disease-specific death at rate d per year, costs

$c per year and degrades the quality of life of a sick person

by q. We assumed that the hypothetical intervention has

efficacy h and costs $I. All-cause mortality is given by the

constant m per year. We used the continuous-time version

of the model and assumed all transition rates are constant

over time [16]. We assumed all parameters are positive and

imposed the following additional restrictions on q and h:

0\ q\ 1 and 0 B h B 1. The last two restrictions imply

that the disease results in a proportionate reduction in the

quality of life of a healthy person and that the efficacy

ranges from the intervention working in all persons to it

working in none of them, respectively.

We represented the model by a system of ordinary dif-

ferential equations (see the ‘‘Appendix’’). We solved the

model analytically to determine the number of persons in

each health state over time, and we derived expressions for

life expectancy, discounted (at rate r per year) quality-

adjusted life years (QALYs), discounted (at rate r per year)

lifetime disease costs, the incremental cost-effectiveness

ratio (ICER) and incremental net monetary benefits

(INMB) [17].

Next, we assumed that there is heterogeneity in all-cause

mortality (i.e. m), disease progression (i.e. p), disease-

specific death (i.e. d), efficacy (i.e. h), costs (i.e. c) and
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utilities (i.e. q). We investigated analytically the impact of

heterogeneity on outcomes by varying one parameter at a

time (e.g. p) while keeping all others constant (e.g. h, m, d,

q and c). An outcome was calculated using the mean of the

input under the cohort-based approach and the whole input

distribution for all persons under the individual-based

approach.

To determine whether a cohort model under- or over-

estimated a heath outcome, we used Jensen’s inequality,

which relates the value of a concave or convex function

evaluated at the mean to the expected value of the function

[18, 19]. Suppose f(.) is a real-valued concave function

relating an outcome function f(X) to an input parameter

X. We assumed that both X and f(X) have finite expecta-

tions. Jensen’s inequality states that f(E[X]) C E[f(X)],

where E denotes the expected value operator (or expecta-

tion operator). Thus, if an outcome f is concave in a

heterogeneity parameter X, then a single-cohort-based

model, which uses the mean value E(X) to calculate

f(E[X]), overestimates the outcome compared with an in-

dividual-based model, which computes E[f(X)]. In this

case, by ignoring heterogeneity in X, a cohort-based model

results in an upward heterogeneity bias in the estimates of

outcome f(X). Jensen’s inequality is reversed for a convex

function (Fig. 2), in which case ignoring heterogeneity

could result in a downward bias in the estimates of

outcomes.

To apply Jensen’s inequality, we evaluated the curvature

of each outcome function with respect to each hetero-

geneity parameter. Because all outcome functions in this

example are twice differentiable, we took the second

derivative of each outcome function with respect to the

heterogeneity variable and evaluated its sign (positive or

negative). A positive sign of the second derivative indicates

that the function is convex, signifying a downward

heterogeneity bias. All mathematical expressions were

derived by hand and validated using Mathematica� 9.0

(Wolfram Research, Champaign, IL, USA).

3 Results

The model solution and the derivations are shown in the

‘‘Appendix’’. Lifetime outcomes as functions of parameters

are presented in Table 1. We present the solution and cu-

mulative outcomes in terms of mathematical expressions

relating model outcomes (e.g. life expectancy) to model

inputs (e.g. progression rate). Such analytic solutions de-

scribe relationships between inputs and outputs under dif-

ferent conditions, which otherwise cannot be easily

obtained from numerical results. Table 2 shows the cur-

vature of lifetime outcomes as functions of heterogeneity

variables and the direction of bias when using a cohort

model that ignores heterogeneity in this parameter. The

derivations are given in the Electronic Supplementary

Material.

3.1 Heterogeneity in Disease Progression

As a function of the disease progression rate, discounted

QALYs is convex, whereas discounted cost is concave.

This implies that a single-cohort model that fails to in-

corporate heterogeneity in disease progression will result in

a downward bias (i.e. underestimation) in QALYs and an

upward bias (i.e. overestimation) in cost (Table 2). Be-

cause persons exiting the Well state and entering the Dis-

ease state experience higher mortality over time, we would

expect QALYs to decrease at an increasing rate when the

disease progression rate increases. A single-cohort analysis

uses the average progression rate to calculate QALYs,

which would be less than the weighted average values of

QALYs computed using the corresponding individual

values of the progression rate.

For low (high) values of the disease progression rate, the

incremental cost function is convex (concave), whereas

both the incremental QALYs and INMB functions

are concave (convex). Therefore, use of a single-cohort

model results in an upward heterogeneity bias (i.e.

Well (W)
Initial cost: $I

Recurring costs: $0
QoL: 

Disease (S)
Initial cost: $0

Recurring costs: $c
QoL: −q

Dead (D)
Initial cost: $0

Recurring costs: $0
QoL: 0

p( − h)

m

d+m

Evolution of persons over time

Fig. 1 Transition diagram and

ordinary differential equations

of the continuous-time, state-

transition model of disease

progression—Well (W),

Disease (S) and Dead (D).

d transition rate to the Dead

state due to the disease,

h probability of intervention

halting disease progression,

m all-cause death rate,

p transition rate to the Disease

state, QoL quality of life
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overestimation) in INMB for slow-progressing diseases

and a downward heterogeneity bias (i.e. underestimation)

in INMB for fast-progressing diseases.

Using specific parameter values (k = 100,000, c = 500,

d = 0.05, h = 0.4, I = 10,000, m = 0.10, q = 0.05,

r = 0.03, and p follows a beta distribution with a mean of

p and variance of 0.04), Fig. 3 depicts INMB using indi-

vidual- and cohort-based models as a function of the mean

progression rate, p. It shows the direction and magnitude of

bias for slow- and fast-progressing diseases. The magni-

tude of the heterogeneity bias (defined as the difference

between the INMB obtained with the cohort-based models

and that under the individual-based model) is positive and

high for slow-progressing diseases and is negative and

small for fast-progressing diseases (see Fig. A5 in the

Electronic Supplementary Material).

Figure 3 also illustrates the case where the results of a

cohort model suggest that intervention is cost effective

over the entire range of progression rates, as evidenced by

the positive INMB. However, the individual-based model

clearly indicates that the intervention is not cost effective

when the mean progression rate is less than 10 % per year.

X
( )/2

f(E[X])

E[f(X)]

f(X)

X2X1

f(X1)

f(X2)

•

•

(a)

X
( )/2

E[g(X)]

X2X1

g(X1)

g(X2)

•

•

g(X)

g(E[X])

(b)

Fig. 2 Geometric illustration of

Jensen’s inequality. The grey

curve along each horizontal axis

is an arbitrary discrete

distribution of X. a The solid

black curve shows a function

f(X) that is concave in X. The

two values X1 and X2

correspond to the values f(X1)

and f(X2). Halfway between X1

and X2 is their average, E[X].

The average, E[f(X)], is halfway

between f(X1) and f(X2):

E f Xð Þ½ � ¼ f ðX1½ Þ þ f X2ð Þ�=2.
Thus, f(E[X])[E[f(X)]. b The

solid black curve shows a

function g(X) that is convex in

X. The two values X1 and X2,

corresponding to g(X1) and

g(X2), have an average of E[X].

The average of g(X1) and g(X2)

is E g Xð Þ½ � ¼ gðX1½ Þ þ g X2ð Þ�=2.
Thus, g(E[X])\E[g(X)]
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It should be noted that although the parameter values used

in this example are realistic, they are chosen for illustration

only and may not be generalizable to all situations.

3.2 Heterogeneity in Treatment Effects

Both the cost and incremental cost functions are concave

with respect to efficacy. However, the relationship between

efficacy and QALYs, incremental QALYs and INMB is

given by a convex function. Therefore, use of a single-

cohort model when treatment effects vary between persons

results in an upward heterogeneity bias in the estimates of

cost and incremental cost, and a downward heterogeneity

bias (i.e. underestimation) in QALYs, incremental QALYs

and INMB (Table 2).

3.3 Heterogeneity in All-Cause Mortality

The relationship between all-cause mortality and QALYs,

cost and incremental QALYs is given by a convex function

(Table 2). Thus, by failing to account for heterogeneity in

all-cause mortality, use of a single-cohort model results in

a downward heterogeneity bias in the estimates of cost,

QALYs and incremental QALYs. The curvature of incre-

mental cost and INMB with respect to all-cause mortality

cannot be determined for all cases. For the special cases

where disease-specific mortality is low (i.e. d approaches

0) or efficacy is high (i.e. h approaches 1), the incremental

cost function is concave and the INMB function is convex

in the all-cause mortality rate. Therefore, a single-cohort

model that ignores heterogeneity in all-cause mortality

results in an upward heterogeneity bias (i.e. overestima-

tion) in incremental cost and a downward heterogeneity

bias (i.e. underestimation) in INMB when disease-specific

mortality is low or efficacy is high.

3.4 Heterogeneity in Disease-Specific Mortality

The relationship between disease-specific mortality and

QALYs and cost is given by a convex function (Table 2).

Both incremental QALYs and incremental cost functions are

concave in the disease-specific mortality rate. For low (or

Table 2 Curvature of lifetime outcomes as functions of parameters and direction of bias

Parameter Life

expectancy

Discounted

QALYs

Discounted

costs

Incremental QALYs Incremental costs Incremental net

monetary benefits

Disease

progression, p

Convex (-) Convex (-) Concave

(?)

Concave (?) for p\ p*;

convex (-) otherwise

Convex (-) for p\ p*;

concave (?) otherwise

Concave (?) for p\ p*;

convex (-) otherwise

Efficacy, h Convex (-) Convex (-) Concave

(?)

Convex (-) Concave (?) Convex (-)

All-cause

mortality, m

Convex (-) Convex (-) Convex (-) Convex (-) Convex (-) or concave

(?)

Convex (-) or concave

(?)

Disease-specific

mortality, d

Convex (-) Convex (-) Convex (-) Concave (?) Concave (?) Convex (-) for k\ k*;
concave (?) otherwise

Quality of life

decrement, q

Independent Linear Independent Linear Independent Linear

Disease cost, c Independent Independent Linear Independent Linear Linear

(?) indicates that the heterogeneity bias is upward (i.e. the single-cohort model overestimates outcomes), whereas (-) indicates that the

heterogeneity bias is downward (i.e. the single-cohort model underestimates outcomes). p� ¼ mþrð Þ 1�hþ 1�hð Þ
2
3

� �

1�hð Þ
4
3

; k� ¼ c
1�q

(see the Electronic

Supplementary Material)

k willingness to pay for a QALY, c disease cost per period, d disease-specific death rate per year, h efficacy, I intervention cost, m all-cause

mortality rate per year, p disease progression rate per year, q quality of life loss, QALY quality-adjusted life-year, r discount rate per year

Table 1 Formula of lifetime outcomes as functions of parameters

Outcome Formulaa

Life expectancy p 1� hð Þ þ d þ m

d þ mð Þ p 1� hð Þ þ m½ �
Discounted QALYs p 1� hð Þ 1� qð Þ þ d þ mþ r

d þ mþ rð Þ p 1� hð Þ þ mþ r½ �
Discounted disease

costs

cp 1� hð Þ
d þ mþ rð Þ p 1� hð Þ þ mþ r½ �

Incremental

discounted

QALYs

hp d þ q mþ rð Þ½ �
d þ mþ rð Þ mþ pþ rð Þ p 1� hð Þ þ mþ r½ �

Incremental

discounted total

costs

I � chp mþ rð Þ
d þ mþ rð Þ mþ pþ rð Þ p 1� hð Þ þ mþ r½ �

Incremental net

monetary benefits

ph k d þ q mþ rð Þ½ � þ c mþ rð Þf g
pþ mþ rð Þ d þ mþ rð Þ p 1� hð Þ þ mþ r½ � � I

k willingness to pay for a QALY, c disease cost per period, d disease-

specific death rate per year, h efficacy, I intervention cost, m all-cause

mortality rate per year, p disease progression rate per year, q quality

of life loss, QALY quality-adjusted life-year, r discount rate per year
a Outcomes in the absence of the intervention are obtained by setting

h = I = 0
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high) values of the maximumwillingness to pay (WTP) for a

QALY gained, the INMB function is convex (or concave).

Thus, failure to incorporate heterogeneity in disease-specific

mortality results in downward bias (i.e. underestimation) in

INMB when WTP is low (i.e. below a specific threshold

value) and positive bias when WTP is high.

3.5 Heterogeneity in Cost and Utilities

The relationship between outcomes and quality of life

decrement q and disease cost c is either linear or does not

exist (Table 2). Thus, there will be no heterogeneity bias in

measures of cost and effectiveness when there is hetero-

geneity only in disease costs or health state utilities.

4 Discussion

A single-cohort model, by using average measures of cost

and effectiveness, can mask important sources of hetero-

geneity. In this paper, we derived mathematically the

conditions under which a single-cohort model (which does

not capture baseline heterogeneity) will result in an upward

(i.e. overestimated) or downward (i.e. underestimated)

heterogeneity bias in the estimates of health outcomes. To

our knowledge, this is the first study that shows, using a

simple model, that it is feasible to determine a priori (i.e.

before building and solving a model) the direction of

heterogeneity bias in cohort-based models. Earlier studies

only established the bias by numerically comparing the

outcomes of cohort and individual-level models.

We found that when there is heterogeneity in rates of

disease progression, use of a single-cohort model leads to

overestimation in INMB of slow-progressing diseases and

underestimation in INMB of fast-progressing diseases.

Therefore, reliance on single-cohort models may increase

the likelihood of erroneously devoting more resources to

slow-progressing diseases and denying funding to fast-

progressing diseases.

Our results suggest that a single-cohort model that does

not incorporate heterogeneous treatment effects overesti-

mates cost and incremental cost, and underestimates

QALYs, incremental QALYs and INMB. The implication of

this finding is that by failing to incorporate heterogeneity in

treatment effects, single-cohort models undervalue the

benefits of the interventions and may lead to erroneous re-

jection of interventions that are cost effective.We also found

that failure to incorporate heterogeneity in disease-specific

mortality results in underestimation of INMB when WTP is

low and overestimation of INMB when WTP is high,

thereby raising the likelihood of rejection of worthwhile

interventions or acceptance of worthless interventions.

In addition to being analytical, rather than numerical,

our method for characterizing bias is general and does not

require specification of the distribution function of the

underlying heterogeneity parameter. The heterogeneity can

be represented by any appropriate discrete distribution (e.g.

binomial) or continuous distribution (e.g. gamma). All that

is required of the distribution function is for it to have a

finite expected value. This follows directly from the ap-

plication of Jensen’s inequality [18, 19].

It is worth mentioning that our definition of an indi-

vidual-level analysis is different from the regular use of the

term where a large number of patients are evaluated

stochastically using first-order Monte Carlo simulation.

The analytical solution and results from our individual-

based analysis (which is akin to conducting a deterministic

analysis) would be similar to the results of an individual-

level simulation with a very large number of patients.

We made several simplifying assumptions to obtain ana-

lytical results. First, we did not allow transition rates to vary

by time. This may not be realistic in several situations. For

example, all-cause mortality changes according to the age of

the person. Second, we used only a three-state model and

assumed that the disease is progressivewithout the possibility

of recovery. Preliminary tests showed that our results are

generalizable to alternative model structures that (1) allow

recovery from disease; (2) include age-dependent all-cause

mortality, using a Gompertz model; or (3) analyse a pro-

gressive disease model with any arbitrary number of stages.

However, our results may not be generalizable to other state-

transition models with different structures. Considering a

more flexible model structure that allows recovery from
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Fig. 3 Differences in incremental net monetary benefits (INMB)

using individual- and cohort-based models as a function of the mean

progression rate. Parameter values: k = 100,000, c = 500, d = 0.05,

h = 0.4, I = 10,000, m = 0.10, q = 0.05, r = 0.03. c cost of disease

per year, d transition rate (per year) to the Dead state due to the

disease, h probability of intervention halting disease progression,

I one-time cost of the intervention, m all-cause death rate per year,

p rate of disease progression per year, q quality of life decrement due

to disease, r discount rate per year. INMB of the individual-based

model was computed assuming that heterogeneity in the rate of

disease progression follows a beta distribution with a mean of p and

variance of 0.04
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disease and additional health states may be one of the logical

extensions of this framework and is left for future research.

Finally, we investigated the impact of heterogeneity on

outcomes by varying one parameter at a time while keeping

all others constant. For some decision problems, hetero-

geneity may manifest itself in more than one parameter and

may necessitate consideration of heterogeneity in all pa-

rameters simultaneously. To the extent that an outcome

function has the same curvature with respect to all

heterogeneity parameters, the results of our study hold.

However, if the curvature of the outcome function varies

by parameter (e.g. convex in some parameters and concave

in others), it will not be possible to determine the direction

of the heterogeneity bias without a numerical analysis.

5 Conclusion

Use of a cohort-based approach that does not adjust for

heterogeneity with this three-stateMarkov chain structure (1)

underestimates life expectancy and QALYs; (2) underesti-

mates INMBwhen there is only heterogeneity in efficacy; (3)

yields the same outcomes when there is only heterogeneity in

disease management cost or health state utilities; (4) over-

estimates total costs and QALYs gained, underestimates in-

cremental costs and overestimates INMB when there is

heterogeneity in rates of a slow-progressing disease; (5)

overestimates incremental cost and underestimates INMB of

diseases with low fatality rates or high-efficacy intervention

when there is heterogeneity in all-cause mortality; and (6)

underestimates (or overestimates) INMB when WTP is low

(or high) in the presence of heterogeneity in disease-specific

mortality. Our results imply that estimates of cohort-based

models failing to address heterogeneity may overstate or

understate the potential benefits of interventions, depending

on the type of heterogeneity considered.
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Appendix

The model can be represented by a system of ordinary

differential equations and solved analytically to determine

the number of persons in each state and the overall ex-

pected value of each outcome. The transition matrix Q and

the transition probability matrix B of a continuous-time

Markov chain are related according to the Kolmogorov

forward differential equations:

dB tð Þ
dt

¼ B tð ÞQ;B 0ð Þ ¼ I:

The matrices B and Q in this case are given by:

B tð Þ ¼
B11 tð Þ B12 tð Þ B13 tð Þ
0 B22 tð Þ B23 tð Þ
0 0 1

2

4

3

5

Q ¼
� 1� hð Þpþ m½ � 1� hð Þp m

0 � mþ dð Þ d þ m

0 0 0

2

4

3

5;

where p denotes the disease progression rate per year, h

denotes efficacy, d denotes the disease-specific death rate

per year and m denotes the all-cause mortality rate per year.

The two matrices, B and Q, are related to each other

according to:

B tð Þ ¼ expQt;

where exp denotes the matrix exponential.

The state probability distribution of the Markov chain at

time t, x tð Þ ¼ B11 tð Þ; B12 tð Þ; B13 tð Þ½ � ¼ W tð Þ; S tð Þ; D tð Þ½ �;
satisfies the following equation:

dx tð Þ
dt

¼ x tð ÞQ; x 0ð Þ ¼ x0;

where x0 is the initial distribution [20].

Assuming the Markov chain starts in the Well health

state, x 0ð Þ ¼ 1; 0; 0½ �; the number of persons in a given

health state at time t evolves over time according to:

dW tð Þ
dt

¼ � 1� hð Þpþ m½ �W tð Þ ðA:1Þ

dS tð Þ
dt

¼ 1� hð ÞpW tð Þ � mþ dð ÞS tð Þ ðA:2Þ

dD tð Þ
dt

¼ mW tð Þ þ mþ dð ÞS tð Þ ðA:3Þ

W 0ð Þ ¼ 1; S 0ð Þ ¼ D 0ð Þ ¼ 0

where W is the number of persons in the Well state, S is the

number of persons in the Disease state and D is the number

of persons in the Dead state.

This is a block-recursive system, which can be solved as

follows (see reference [21], Chapter 14, Section 14.1).

Equation (A.1) can be rewritten as:

dW tð Þ=dt
W tð Þ ¼ d lnW tð Þ

dt
¼ � 1� hð Þpþ m½ �

Using standard integration methods, we obtain ln

W tð Þ � lnW 0ð Þ ¼ � 1� hð Þpþ m½ �t; noting that lnW 0ð Þ ¼
ln 1 ¼ 0; we have:
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W tð Þ ¼ e� 1�hð Þpþm½ �t ðA:4Þ

Substituting Eq. A.4 into Eq. A.2 yields:

dS tð Þ
dt

¼ 1� hð Þpe� 1�hð Þpþm½ �t � mþ dð ÞS tð Þ ðA:5Þ

This is a nonhomogeneous equation with a variable

coefficient whose general solution is given by reference

[21], Chapter 14, Section 14.3.

S tð Þ ¼ e
�
R

mþdð Þdt
Aþ

Z
1� hð Þpe� 1�hð Þpþm½ �te

R
mþdð Þdt

dt

� �

¼ e� mþdð Þt Aþ
Z

1� hð Þpe� 1�hð Þp�d½ �tdt

� �

¼ e� mþdð Þt Aþ 1� hð Þpe� 1�hð Þp�d½ �t

d� 1� hð Þp

� �
;

where the arbitrary constant A can be determined from the

initial condition, S(0) = 0, as:

A ¼ � 1� hð Þp
d � 1� hð Þp

Substituting the value of A, we obtain:

S tð Þ ¼
1� hð Þp e� mþdð Þt � e� mþ 1�hð Þp½ �t� �

1� hð Þp� d
ðA:6Þ

The number of persons in the Dead state can be

recovered from Eqs. (A.4) and (A.6), using the equation:

D tð Þ ¼ 1�W tð Þ � S tð Þ ðA:7Þ

Assuming a lifetime horizon (i.e. infinite time),

discounted (at rate r per year) the QALYs are:

QALY hð Þ ¼
Z1

0

e�rt W tð Þ þ 1� qð ÞS tð Þ½ �dt

¼ p 1� hð Þ 1� qð Þ þ d þ mþ r

d þ mþ rð Þ p 1� hð Þ þ mþ r½ �

where q denotes the decrement in the quality of life of a

sick person.

Undiscounted life expectancy is obtained from the

above expression by setting r = q = 0. The discounted

disease cost is:

COST hð Þ ¼
Z1

0

e�rtcS tð Þdt

¼ cp 1� hð Þ
d þ mþ rð Þ p 1� hð Þ þ mþ r½ � ;

where c denotes the cost of disease per year.

The incremental discounted QALYs are:

DQALY hð Þ ¼ QALY hð Þ � QALY 0ð Þ

¼ hp d þ q mþ rð Þ½ �
d þ mþ rð Þ mþ pþ rð Þ p 1� hð Þ þ mþ r½ �

Similarly, the incremental discounted disease costs are:

DCOST hð Þ ¼ COST hð Þ � COST 0ð Þ

¼ � chp mþ rð Þ
d þ mþ rð Þ mþ pþ rð Þ p 1� hð Þ þ mþ r½ �

Denoting the maximum WTP for a QALY by k (also

referred to as the cost-effectiveness threshold), the

intervention has an INMB of:

INMB ¼ k� DQALY hð Þ � COST hð Þ � I

¼ ph k d þ q mþ rð Þ½ � þ c mþ rð Þf g
pþ mþ rð Þ d þ mþ rð Þ p 1� hð Þ þ mþ r½ � � I;

where I denotes the one-time cost of the intervention.
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