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Abstract Multi-criteria decision analysis (MCDA) is

increasingly used to support decisions in healthcare

involving multiple and conflicting criteria. Although

uncertainty is usually carefully addressed in health eco-

nomic evaluations, whether and how the different sources

of uncertainty are dealt with and with what methods in

MCDA is less known. The objective of this study is to

review how uncertainty can be explicitly taken into account

in MCDA and to discuss which approach may be appro-

priate for healthcare decision makers. A literature review

was conducted in the Scopus and PubMed databases. Two

reviewers independently categorized studies according to

research areas, the type of MCDA used, and the approach

used to quantify uncertainty. Selected full text articles were

read for methodological details. The search strategy iden-

tified 569 studies. The five approaches most identified were

fuzzy set theory (45 % of studies), probabilistic sensitivity

analysis (15 %), deterministic sensitivity analysis (31 %),

Bayesian framework (6 %), and grey theory (3 %). A large

number of papers considered the analytic hierarchy process

in combination with fuzzy set theory (31 %). Only 3 % of

studies were published in healthcare-related journals. In

conclusion, our review identified five different approaches

to take uncertainty into account in MCDA. The determin-

istic approach is most likely sufficient for most healthcare

policy decisions because of its low complexity and

straightforward implementation. However, more complex

approaches may be needed when multiple sources of

uncertainty must be considered simultaneously.

Key Points for Decision Makers

Multi-criteria decision analysis is increasingly used

in healthcare, but guidance is lacking on how to

quantify and incorporate uncertainty.

This review identified five commonly used

approaches to quantify and incorporate uncertainty:

deterministic sensitivity analyses, probabilistic

sensitivity analyses, Bayesian frameworks, fuzzy set

theory, and grey theory.

A simple approach that will most likely be sufficient

for most decisions is deterministic sensitivity

analysis, although more complex approaches may be

needed when multiple sources of uncertainty must be

considered simultaneously.

1 Introduction

Over the last decade, researchers in outcomes research

have increasingly suggested multi-criteria decision analysis

(MCDA) as an approach to support healthcare decisions

[1]. MCDA is an extension of decision theory that supports

decision makers (policy makers, regulators, managers) who

have multiple (possibly conflicting) objectives by
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decomposing the decision objectives into criteria [2]. These

criteria are given a numeric importance weight and deci-

sion alternatives such as drugs or treatments are scored on

each of the criteria. The criteria weights and performances

scores are then aggregated into an overall score, which is

used to rank the alternative treatments. For a more detailed

overview of the subsequent steps in MCDA, the reader is

referred to Belton and Steward [2] and Hummel et al. [3].

MCDA is considered to be a transparent and flexible

approach [4–7]. It has been used to support a wide range of

decisions, such as in portfolio optimization, benefit-risk

assessment, health technology assessment, and shared

decision making [8–13]. Although the objectives differ,

these decisions share three characteristics. First, they are

characterized by possibly conflicting decision criteria

where trade-offs between criteria influence the decision.

Second, the criteria to operationalize can be qualitative,

quantitative, or a combination of both. Finally, these

decisions and underlying criteria weights and performance

scores are characterized by uncertainty.

In principle, several sources of uncertainty can be dis-

tinguished and have been clearly described by different

authors [14, 15]. In their comprehensive taskforce report,

Briggs et al. [15] define four types of uncertainty: sto-

chastic uncertainty, parameter uncertainty, heterogeneity,

and structural uncertainty. Although their report discusses

uncertainty in decision analytic models in general, this

classification is almost identical for MCDA. However, in

MCDA, the four types of uncertainty are relevant to con-

sider for both the weighting of criteria and the scoring of

alternatives. Criteria weights are always elicited from

decision makers, and stochastic uncertainty in weighting is

therefore random variability in weights as assigned by

otherwise identical persons. Parameter uncertainty refers to

the estimation error of an estimated quantity, for example,

the mean weight given by a group of decision makers to a

criterion. Heterogeneity is explainable variation in weights,

for example owing to a person’s background characteris-

tics. Finally, structural uncertainty occurs when decision

makers are unsure if all relevant decision criteria are

included and how these criteria are structured [14].

Like criteria weights, the performance scores of alter-

natives can be obtained through elicitation. Alternatively,

performance scores can be obtained from other data sour-

ces such as registries or clinical trials. If performance

scores are elicited from decision makers, generally the

same sources of uncertainty apply as in the weighting step.

If data are obtained from other data sources (such as an

odds ratio comparing two drugs derived from a clinical

trial), stochastic uncertainty, parameter uncertainty, and

heterogeneity stems from variation or uncertainty in the

source data. Structural uncertainty, however, is relevant to

consider in these instances as it refers to how the outcomes

are measured and how the data are transformed to a per-

formance score in the MCDA. Often, performance scores

are assigned based on a structured appraisal of available

evidence. In that case, both elicitation- and data-specific

uncertainties are relevant, of which the mix depends on the

amount of available evidence. An overview of the types of

uncertainty and their source in MCDA is presented in

Table 1.

A recent systematic review by Marsh et al. identified 41

applications of MCDA in healthcare and found that deci-

sion makers are positive about the possibilities of MCDA

but that guidance on its application is lacking [16].

Twenty-two studies considered uncertainty, predominantly

with deterministic sensitivity analysis. Previous studies

outside the area of healthcare reviewed approaches to take

into account uncertainty in MCDA-supported decisions.

Durbach and Stewart [17] reviewed different approaches to

take into account uncertainty in the scoring of alternatives.

They identified: probability-based approaches, fuzzy

Table 1 Overview of types and sources of uncertainty in the context

of MCDA-supported decision making. On the left are the types of

uncertainty, as introduced by Briggs et al. [15]. In MCDA,

uncertainty is related to both the determination of criteria weights

and performance scores. Criteria weights are always elicited from

stakeholders or decision makers while performance scores can either

be elicited from stakeholders or derived from other data sources such

as registries and clinical trials

Definition of Briggs et al. [15] MCDA-specific definition

Type of uncertainty

Stochastic

uncertainty

Random variability in outcomes between identical

patients

Random variability in criteria weights or performance scores as assigned

by identical persons

Parameter

uncertainty

The uncertainty in estimation of the parameter of

interest

The uncertainty in estimation of the parameter (criterion weight or

performance score) of interest

Heterogeneity The variability between patients that can be

attributed to characteristics of those patients

Variability in criteria weights or performance scores that can be

attributed to a person’s characteristics

Structural

uncertainty

The assumptions inherent in the decision model Uncertainty about if all relevant criteria are included, if they are

properly structured and which transformations are used

MCDA multi-criteria decision analysis
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numbers, risk-based approaches, and scenario analysis.

Finally, a review by Kangas and Kangas [18] in the field of

forestry identified the frequentist, Bayesian, evidential

reasoning, fuzzy sets, probabilistic, and possibility theory

approaches.

Although the use of MCDA is emerging and uncertainty

clearly is a relevant issue in MCDA models, there currently

is no guidance on how uncertainty should be taken into

account. To account for uncertainty in MCDA, three sep-

arate steps are proposed: (1) first, the sources of uncertainty

need to be identified, followed by (2) an assessment of the

magnitude of the uncertainty, and finally (3) by an evalu-

ation whether the uncertainty would eventually lead to a

different decision.

The objective of the present study is threefold. First, the

study aims to identify common approaches to account for

uncertainty. The second objective is to classify the identi-

fied approaches according to their mathematical approach

and according to how the estimates for uncertainty are

derived. Finally, the approaches will be compared, and

their applicability for healthcare decisions will be dis-

cussed. In this discussion, the focus will be on approaches

that deal with elicitation-related uncertainty.

2 Methods

2.1 Identification of Studies

A literature search in the SCOPUS and PubMed databases

was performed for the period between 1960 and 2013 using

the following search terms: (MCDA OR multi criteria

decision analysis) AND (methodological OR parameter OR

structural OR stochastic OR subjective OR *) uncertainty,

multi criteria decision analysis AND (sensitivity OR

robustness OR scenario) analysis, uncertainty AND X, and

sensitivity analysis AND X. In these strings, an asterisk

represents a wildcard that can be matched by any word, and

X was replaced with each of the individual MCDA method

names, written both in full as well as in an abbreviated

form (see also Table 3). In addition to the database search,

reference lists were also searched. Non-English studies,

studies that did not apply or discuss MCDA, and studies

with an application of MCDA where uncertainty was not

taken into account were excluded.

2.2 Classification

Following the identification, all included studies were

classified by research area. This was done by coding the

publications (journals and conference proceedings) in

which the studies were published with their top-level All

Science Journal Classification (ASJC). If publications were

associated with multiple classifications, all were used for

the coding. To examine applications in healthcare, sub-

level ASJC codes related to healthcare were used (available

from authors on request).

Second, the studies were classified by the MCDA

method used. Only MCDA methods that were identified

twice or more were put in separate categories, all methods

that were used only once were put in the ‘‘other’’ category.

MCDA methods were separated into: value-based, out-

ranking, reference-based, or other/hybrid methods. Value-

based methods construct a single overall value for each

decision alternative. Low scores on one criterion can be

compensated by higher scores on another criterion. In

outranking methods, low scores on one criterion may not

be compensated by higher scores on another criterion.

Furthermore, incomparability between the performance

scores of alternatives is allowed. Reference-based methods

calculate the similarity of alternatives to an ideal and anti-

ideal alternative. The categorization was performed inde-

pendently by three reviewers (HB, CG, MH) and dis-

agreements were resolved through discussion. Full-text

articles were accessed when the used MCDA method could

not be identified from the abstract alone or in case of

continued disagreement between reviewers.

Third, two reviewers (HB, CG) independently classified

the studies by their approach to take into account uncertainty.

An initial list of approaches was defined based on the

authors’ past experiences. On this initial list were the

deterministic, probabilistic, Bayesian, and fuzzy set

approaches. Newly identified approaches were added to the

list. For every unique combination of an MCDAmethod and

an uncertainty approach, the most recent full-text article was

read. If needed, references of these articles were also read to

find methodological details or to identify textbooks.

3 Results from the Literature Review

3.1 Identification and Classification of Studies

A total of 569 studies were identified that were published

between 1986 and 2013. The number of published studies

increases sharply after the year 2000 (Fig. 1). Top-level

ASJC research areas that accounted for more than 10 % of

the included studies are engineering (21 %), computer sci-

ence (17 %), and environmental science (12 %), as pre-

sented in Table 2. Only 3 % of the included studies are

published in a publication with an ASJC related to health-

care. Most studies (88 %) use one MCDA method while

11 % use two and 1 % uses three. As seen in Table 3, the

analytic hierarchy process (AHP) was used most often

(52 %), followed by the technique for order of preferences

by similarity to ideal solution (TOPSIS) (9 %) and the
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preference ranking organization method for enrichment

evaluation (PROMETHEE) (7 %). For 15 % of studies, the

MCDAmethod used could not be identified from the abstract

alone and therefore required full-text reading.

3.2 Description of Identified Approaches

for Uncertainty Analysis

Following the identification of studies, five distinctly dif-

ferent approaches were identified: deterministic sensitivity

analysis, probabilistic sensitivity analysis, Bayesian

frameworks, fuzzy set theory, and grey theory. Fuzzy set

theory was most commonly identified (45 % of studies).

The frequency with which the identified approaches were

used in various research and application fields is presented

in Table 2, and Table 3 presents how often the uncertainty

approaches were combined with various MCDA methods.

For a comprehensive demonstration of the different

approaches, please refer to the Excel file in the electronic

supplementary material.

Table 2 Research areas of publications in which identified studies were published, as coded with the All Science Journal Classification (ASJC),

and the division of identified approaches over the research areas. Note that a publication can be associated with more than one ASJC

ASJC research area Bayesian

framework

Deterministic sensitivity

analysis

Fuzzy set

theory

Grey

theory

Probabilistic sensitivity

analysis

n (%)

Agricultural and biological

sciences

– 8 4 – 5 17 (2 %)

Business, management, and

accounting

4 27 31 3 15 80 (8 %)

Chemical engineering – 4 3 – 3 10 (1 %)

Chemistry – 1 4 – 4 9 (1 %)

Computer science 11 35 103 4 12 165 (17 %)

Decision sciences 8 33 30 2 27 100 (10 %)

Earth and planetary sciences 3 3 5 – 2 13 (1 %)

Economics, econometrics,

and finance

– 8 11 1 1 21 (2 %)

Energy – 20 5 1 4 30 (3 %)

Engineering 9 56 121 8 17 211 (21 %)

Environmental science 3 43 42 1 26 115 (12 %)

Materials science – 9 10 – 1 20 (2 %)

Mathematics 8 26 43 2 22 101 (10 %)

Medicine 1 10 8 – 4 23 (2 %)

Physics and astronomy – 1 3 1 2 7 (1 %)

Social sciences 3 13 19 – 9 44 (4 %)

Other – 6 7 1 3 17 (2 %)

Fig. 1 Distribution of identified

studies by their year of

publication and divided into the

approach in which they were

categorized
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3.2.1 Deterministic Sensitivity Analysis

Three types of deterministic sensitivity analyses were

identified: simple sensitivity analysis, threshold analysis,

and analysis of extremes [19]. In simple sensitivity ana-

lysis, one model parameter (a criteria weight or a perfor-

mance score) is varied at a time, and the impact of variation

on the rank order of alternatives is observed. If the induced

variation does not change the rank order of alternatives (i.e.

the preference of one alternative over the other), the

decision is considered robust [20, 21]. Both threshold

analysis and analysis of extremes are aimed at determining

how much model parameters need to change before a dif-

ferent rank order of alternatives is obtained [22].

3.2.2 Probabilistic Sensitivity Analysis

Probabilistic sensitivity analysis requires decision makers

to define probability distributions for model parameters.

For assigning probability distributions for performance

scores, decision makers can refer to descriptive statistics or

patient-level data from patient registries or clinical trials

[23, 24]. Methods to formally elicit probability distribu-

tions from (clinical) experts are also available [25]. For

model parameters for which there is little or no evidence,

non-informative distributions such as a uniform distribu-

tion can be used [26]. After propagating the uncertainty

through the MCDA model with Monte Carlo simulations,

probability distributions are obtained for each alternative’s

Table 3 Identified uncertainty approaches combined with existing

MCDA methods, the total number of abstracts per approach, and the

total number of abstracts per MCDA method. A single reference to a

relevant textbook is added next to each one of the MCDA method

names (if available, or a paper is cited). Some studies applied more

than one MCDA method and were counted for each method. aThe

name of this MCDA method was used in the search strategy. The

(English) meanings of the MCDA method abbreviations are as

follows. DRSA dominance-based rough set approach, ELECTRE

elimination and choice translating reality method, PROMETHEE

preference ranking organization method for enrichment evaluation,

AHP analytic hierarchy process, ANP analytic network process,

MACBETH measuring attractiveness by a categorical-based evalua-

tion technique, MCDA multi-criteria decision analysis, MAUT multi-

attribute utility theory, MAVT multi-attribute value theory, OWA

ordered weighted average, SAW simple additive weighting, SMAA

stochastic multi-criteria acceptability analysis, SMART simple multi-

attribute rating technique, WSM weighted sum method, ER evidential

reasoning, TOPSIS technique for order preference by similarity to an

ideal solution, VIKOR multicriteria optimization and compromise

solution, DMCE deliberative multi-criteria evaluation, TODIM inter-

active and multicriteria decision making

MCDA method Bayesian

framework

Deterministic sensitivity

analysis

Fuzzy set

theory

Grey

theory

Probabilistic sensitivity

analysis

n (%)

Outranking

DRSAa [77] – – – – 2 2 (0 %)

ELECTREa [72] 1 10 9 – 3 23 (3 %)

PROMETHEEa

[72]

1 17 14 1 17 50 (7 %)

Value based

AHPa [72] 18 116 174 6 34 348 (52 %)

ANP [72] – 7 10 – – 17 (3 %)

MACBETHa [72] 1 1 – – 1 3 (0 %)

MAUTa [72] 1 8 – – 5 14 (2 %)

MAVTa [2] – 6 – – 5 11 (2 %)

OWA [78] 3 1 12 – 2 18 (3 %)

SAW [78] – 4 2 1 2 9 (1 %)

SMAA [66] – – – – 10 10 (1 %)

SMARTa [79] – 2 – – 1 3 (0 %)

WSM [78] – 4 – – 3 7 (1 %)

Reference based

ER [77] 7 4 17 5 6 39 (6 %)

TOPSIS [72] – 6 45 2 4 57 (9 %)

VIKOR [80] – 2 5 – – 7 (1 %)

Other/hybrid

DMCE [81] – 2 1 – – 3 (0 %)

TODIM [82] – 1 1 – – 2 (0 %)

Other 5 9 16 8 8 46 (7 %)

n (%) 37 (6 %) 200 (30 %) 306 (46 %) 23 (3 %) 103 (15 %) 669 (100 %)
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overall score, and probabilistic statements such as the

probability of a particular rank order of alternatives can be

made [26–28].

3.2.3 Bayesian Framework: Bayesian Networks

and Dempster–Shafer Theory

Both Bayesian networks and Dempster–Shafer theory use

the Bayesian framework to estimate the impact of

uncertainty on the outcome of an MCDA-supported

decision. Bayesian networks allow decision makers to

explicitly model the interdependency of decision-related

elements (for example, patient characteristics that may

impact treatment performance) as a directed acyclic

graph. Associated with each node in the graph are edges

(arrows between nodes) that show the conditional rela-

tionships between the node and its parents. If there is no

information about the conditional probabilities, prior dis-

tributions can be assumed. With more evidence, these

prior probabilities can be updated using Bayes’ theorem

[29, 30].

Dempster–Shafer theory is an evidential reasoning-

based method, which is an extension of the Bayesian

framework [31–33]. The five basic elements of Dempster–

Shafer theory are: the frame of discernment, probability

mass assignments, belief functions, plausibility functions,

and Dempster’s rule of combination. The frame of dis-

cernment is a set of hypotheses from which one hypothesis

with the most evidential support has to be chosen. In the

context of MCDA, choice alternatives can be considered as

the hypotheses; and the aim becomes to select the choice

alternative for which the most evidential support for being

the best choice (either for the whole decision or for a

specific criterion) exists [34]. The first step in such an

elicitation process consists of decision makers assigning a

probability mass to (sets of) hypotheses in the frame of

discernment, for example by indicating that there is evi-

dential support for treatment A and B being the best per-

forming treatments on a particular criterion. Then, lower

and upper bounds of evidential support (termed belief and

plausibility) are calculated per hypothesis, for example ‘the

evidential support for this hypothesis is between 50 and

80 %’. Finally, probability mass assignments from differ-

ent evidence sources (for example, different decision

makers) can be combined with Dempster’s rule of combi-

nation. An agreement metric between decision makers can

also be calculated.

3.2.4 Fuzzy Set Theory

In fuzzy set theory, elements have a degree of membership

to a set [35, 36]. The degree of an element’s membership to

a fuzzy set is expressed as a number between zero (not a

member of the fuzzy set) and one (completely a member of

the fuzzy set). Degrees of memberships between zero and

one indicate ambiguous set membership. Consider as

examples of fuzzy sets the sets of ‘‘very important criteria’’

or of ‘‘low criteria weights’’. If all memberships are equal

to either zero or one, fuzzy set theory reduces to conven-

tional set theory. When applying fuzzy set theory for

MCDA, decision makers first have to identify ambiguous

elements (such as particular criteria weights) in their

decision problem. They then have to define fuzzy sets and

the membership functions to capture the identified ambi-

guity. For example, the pairwise comparisons to establish

criteria weights in the AHP are conventionally numbers

between 1 (‘‘equivalence’’) and 9 (‘‘extreme preference’’)

[37]. When decision makers use AHP in combination with

fuzzy sets, statements such as ‘‘extreme preference’’ can be

ambiguous. The ambiguity in such statements can be rep-

resented with fuzzy sets [38, 39].

3.2.5 Grey theory

In grey theory, uncertainty can be represented with ran-

ges termed black, white, or gray numbers [40]. The

‘shade’ of a number indicates the magnitude of uncer-

tainty. Black numbers represent a complete lack of

knowledge (range is from minus infinity to plus infinity),

whereas white numbers represent complete knowledge

(range is a single number). Gray numbers are between

these extremes, for example a gray number with a lower

bound of 1 and an upper bound of 5. Like fuzzy sets,

gray numbers can be described by verbal statements: for

example, a performance score between 0 and 0.3 on a

particular criterion may be defined as ‘‘low’’ [41]. In an

MCDA context, grey theory requires decision makers to

provide lower and upper bounds for criteria weights or

performance scores. These yield bounds on the overall

treatment scores.

3.3 Applications in Healthcare

Nineteen applications of the approaches in healthcare-

related publications were identified. Of these, seven are

related to healthcare policy decisions. Nine studies in

healthcare used the deterministic approach [5, 42–49]. Of

these, four studies were in the context of (research) port-

folio optimization [42, 46, 47, 49], early health technology

assessment [46], and benefit-risk assessment [5]. The other

studies applying the deterministic approach were in emer-

gency management [43] and drinking water systems [44,

45]. Four studies in healthcare were categorized as prob-

abilistic [9, 23, 50, 51], of which two focus on benefit-risk

450 H. Broekhuizen et al.



assessments [9, 51], one on infectious diseases [23], and

one on water transport (safety) [50]. Four fuzzy set theory

studies considered environmental health issues [52–55],

while one considered diagnostics [56]. Finally, one study

applied a Bayesian framework for diagnostics [57].

4 Discussion

4.1 Comparison of Approaches

The present review was performed to identify and classify

the different approaches to quantify uncertainty in MCDA.

Five distinct approaches were identified: deterministic sen-

sitivity analysis, probabilistic sensitivity analysis, Bayesian

frameworks, fuzzy set theory, and grey theory. To guide our

discussion on the advantages and disadvantages of these

approaches for healthcare applications, we will discuss them

with respect to six criteria that are derived from earlier

studies that assessed the applicability of uncertainty

approaches for: operations research [58], forestry [18],

engineering [59], and health economic models [60]. Criteria

relating to what extent approaches can represent uncertainty

are inputs and outputs (how can decision makers assign

uncertainty to model parameters and what additional infor-

mation does the approach then yield) and the number of

uncertainty sources that can be taken into account. More

practical considerations are the versatility of the approaches

with regard to combining them with MCDA methods, time

considerations, and prerequisite knowledge.

Deterministic sensitivity analysis implies that weights

are varied as a single value and is therefore easy applicable

to both uncertainty in performance scores [20] and uncer-

tainty in criteria weights [61, 62]. If there is heterogeneity

in criteria performance scores and/or criteria weights,

scenario analysis can be used to compare the outcomes for

relevant subgroups [46, 63]. Drawbacks of deterministic

sensitivity analysis are that the range over which weights or

performance scores are varied is usually arbitrarily chosen

and that it is assumed that all parameter values in the range

are equally probable. These drawbacks may lead to a

biased view of the impact of uncertainty on the decision.

Probabilistic sensitivity analysis can address these partic-

ular drawbacks by allowing decision makers to assign

probability distributions estimating both stochastic and

parameter uncertainty.

Bayesian networks are especially relevant when there

are conditional relations in the evidence sources, which

obviously is present if confounded clinical endpoints

obtained from clinical studies are transformed to a per-

formance score. Bayesian networks seem therefore mostly

useful as a method to investigate the evidence before the

scoring step of alternatives in an MCDA. Dempster–Shafer

theory is most useful when little or no evidence is available

and an elicitation method is used to gather expert opinion

on the performance scores of treatments. Because human

judgment is often characterized by ambiguity [35, 64],

decision makers may accept fuzzy set theory more readily

than approaches that denote variation in criteria weights as

uncertain using terms like ‘deviation’ and ‘error’ [35]. In

grey theory, ranges can be defined for both criteria weights

and performance scores easily. However, this gives infor-

mation only about the bounds of model parameters such as

overall treatment scores and does not give insight into the

likelihood of values in between the bounds.

4.2 Widening the Application of Uncertainty Analysis

in MCDA for Healthcare

In an attempt to develop guidance for practitioners of

MCDA, the five approaches can be compared in terms of

how the required input is elicited and what additional

information the approaches yield about the magnitude and

impact of uncertainty. Three input modes are defined:

changing values, specifying ranges, and specifying distri-

butions. In ‘‘changing values’’, decision makers simply

take other values for the criteria weights and performance

scores. Although theoretically this can be done with any

approach, it is what deterministic sensitivity analysis was

designed specifically for. The output of such an analysis

can give decision makers more insight in the impact of the

induced variation on the overall treatment scores and on the

rank order of treatments. In ‘‘specifying ranges’’, decision

makers have to specify lower and upper bounds of model

parameters. This can be done with the probabilistic, gray,

and fuzzy set approaches. Grey theory was specifically

designed for this input mode. In probabilistic sensitivity

analysis, a uniform distribution between the lower and

upper bounds can be assigned. In fuzzy set theory, uniform

fuzzy sets can be defined between the lower and upper

bounds. The outputs yielded by the approaches differ when

using the ‘‘specifying ranges’’ input mode. The grey theory

approach will only provide insight into bounds for treat-

ment overall scores while the probabilistic and fuzzy

approaches also yield the distribution of overall treatment

scores between the bounds. Finally, by ‘‘specifying distri-

butions’’, decision makers state how values are distributed

over a range. Distributions can be specified in probabilistic

sensitivity analysis, Bayesian networks and fuzzy set the-

ory. As output the decision makers will gain insight into

the distribution of overall treatment scores. The overlap

between the distributions of overall treatment scores can be

used to assess the impact of uncertainty on the rank order

of treatments. In the probabilistic and Bayesian approa-

ches, this is operationalized as the probability of particular

rankings occurring.
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Deterministic sensitivity analysis is the only approach

that cannot take into account a larger number of uncertain

model parameters simultaneously and thus does not con-

sider the cumulative impact of uncertainty in multiple

model parameters. The probabilistic and Bayesian network

approaches can simultaneously take into account uncer-

tainty from multiple sources of uncertainty with Monte

Carlo simulations. In Dempster–Shafer theory, Dempster’s

rule of combination is used to combine the probability

mass assessments of multiple decision makers. Fuzzy sets

and gray numbers can be combined using the known

mathematical operations on sets and ranges [35, 65].

In this review, approaches to take into account uncer-

tainty are identified and classified according to their ability

to capture and represent uncertainty in the elicitation of

criteria weights and performance scores. However, the

applicability of these approaches are sometimes strictly

dependent on the specific form of MCDA used. Some

MCDA methods such as stochastic multi-criteria accept-

ability analysis are very closely tied to one specific

uncertainty approach (in this case, the probabilistic

approach). Some other MCDA methods allow the use of

multiple approaches for uncertainty while AHP and

PROMETHEE can be used with all approaches. It is yet

unclear whether other gaps in combinations are due to

fundamental methodological mismatches or if the combi-

nations are theoretically possible when there is more

familiarity with the MCDA methods and/or uncertainty

approaches.

With regard to time considerations, little time is required

for simple deterministic sensitivity analysis (assuming only

one or two parameters are changed simultaneously). The

process of assigning probability distributions in the prob-

abilistic approach can be time consuming for analysts

(when a large amount of data has to be modeled) and

decision makers (when distributions are elicited from

them). This duration can be reduced by assigning distri-

butions only to specific parameters. An example of when

this is relevant is when clinical data are available but

decision makers are unable or unwilling to provide criteria

weights [9, 27, 51, 66]. Time requirements in Bayesian

framework are more demanding because of the assignment

of not only probability distributions but also of dependence

relations in the form of conditional probabilities. Fuzzy set

theory requires the definition of fuzzy sets, which takes

time. Yet, when these are agreed upon they can be used

over multiple decisions. Grey theory is straightforward to

use in a group discussion setting [67]. If there is dis-

agreement about the value of model parameters in the

group, the lowest and highest of those can be used as

bounds for the gray number.

A final practical consideration is the knowledge required

to implement an uncertainty approach or to interpret its

results. Deterministic sensitivity analysis requires no

additional knowledge apart from knowledge about the

MCDA method that is used. Grey theory requires decision

makers to be able to give, define, and interpret ranges of

values. Probabilistic sensitivity analysis requires that

decision makers are familiar with probability distributions.

This is also the case with Bayesian frameworks, which in

addition require knowledge about Bayesian statistics.

Analysts applying the Bayesian framework need knowl-

edge about Bayesian programming languages such as

WINBUGS. Decision makers should be familiar with set

theory to be able to understand and apply fuzzy set theory.

When there is a disparity between the decision maker’s

current knowledge and the knowledge required from the

approach, there is a knowledge gap. This gap may lead to a

lack of confidence in the results of an (uncertainty) analysis

[68, 69], and bridging the gap can be time consuming.

Apart from the required knowledge, visual representations

of uncertainty are important factors for ease of interpreta-

tion. Decision makers applying deterministic sensitivity

analysis can obtain a tornado diagram, which ranks model

parameters on their ability to change the overall scores of

alternatives. For probabilistic and Bayesian approaches,

scatter plots or density plots can be used and Bayesian

networks can also be shown. Fuzzy sets can be visualized

through membership function plots similar to probabilistic

density plots. Because the outcomes of Dempster–Shafer

theory and grey theory analysis are the lower and upper

bounds of overall scores of treatments, graphs may be less

useful.

4.3 Limitations

Although the present review identified many applications,

the list is unlikely to be exhaustive owing to the large

amount of work on MCDA in different fields. Furthermore,

studies that did not mention uncertainty in their title or

abstract may have been missed. Although these are

potential limitations, the sample of studies provides suffi-

cient information to stimulate a discussion about the use of

approaches for uncertainty assessment. Approaches that

our review did not classify as such but that were mentioned

in the earlier reviews are risk-based approaches [17] and

possibility theory [18]. In risk-based approaches, an alter-

native’s performance score on a criterion will become

lower when that performance is uncertain (‘more risky’).

Possibility theory combines fuzzy set theory and evidential

reasoning [70]. Although these approaches were classified

as distinct approaches in the earlier reviews, there is con-

siderable overlap with our classification.

The aspects on which we compared the uncertainty

approaches are based on earlier literature, yet it is impor-

tant to acknowledge that for real-world decision making

452 H. Broekhuizen et al.



other aspects, depending on the specific decision and

decision maker(s), may be relevant. Further empirical

research with decision makers is needed to better assess the

usefulness and specific requirements of the approaches for

real-world decision making.

Following the classification of sources of uncertainty, all

approaches that were identified can be used to assess

uncertainty in the criteria weights and performance scores

as assigned by decision makers. However, no approaches

were identified to deal with structural uncertainty [2, 71–

73]. One explanation for this is that MCDA already facil-

itates an informed discussion and that this addresses

structural uncertainty. However, further work is recom-

mended to identify approaches to take into account struc-

tural uncertainty and ways to develop MCDA models to

incorporate these approaches [74, 75].

5 Conclusions and Recommendations

To our best knowledge, our review is the first to give an

overview of approaches to take into account uncertainty

in MCDA-supported decisions with a focus on the

approaches’ applicability to the context of healthcare

decision making. The review identified five approaches

to take into account uncertainty in MCDA-supported

decisions. In conclusion, the deterministic approach

seems most appropriate if the criteria weights or per-

formance scores are varied as a single value. The gray

approach seems most appropriate if only lower and upper

bounds are elicited. The other approaches can be used

flexibly across all three input modes. In a group decision

process where the opinions of several decision makers

are combined, the distribution input mode seems most

relevant, and this would argue for the probabilistic and

fuzzy set approaches that allow distributions [76]. From

the review it is concluded that deterministic sensitivity

analysis will likely be sufficient for most decisions

because it has the advantage of a straightforward

implementation. It also is an intuitive approach and

applicable for multiple MCDA approaches. Although

deterministic sensitivity analysis is useful in many

applications, the more complex approaches are especially

useful when uncertainty in multiple parameters has to be

taken into account simultaneously, when dependence

relations exist, or when there are no prohibitive time

constraints for uncertainty modeling.
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