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Abstract Marginal analysis evaluates changes in a regres-

sion function associated with a unit change in a relevant var-

iable. The primary statistic of marginal analysis is the

marginal effect (ME). The ME facilitates the examination of

outcomes for defined patient profiles or individuals while

measuring the change in original units (e.g., costs, probabili-

ties). The ME has a long history in economics; however, it is

not widely used in health services research despite its flexi-

bility and ability to provide unique insights. This article, the

second in a two-part series, discusses practical issues that arise

in the estimation and interpretation of the ME for a variety of

regression models often used in health services research. Part

one provided an overview of prior studies discussing ME

followed by derivation of ME formulas for various regression

models relevant for health services research studies examin-

ing costs and utilization. The current article illustrates the

calculation and interpretation of ME in practice and discusses

practical issues that arise during the implementation, includ-

ing: understanding differences between software packages in

terms of functionality available for calculating the ME and its

confidence interval, interpretation of average marginal effect

versus marginal effect at the mean, and the difference between

ME and relative effects (e.g., odds ratio). Programming code

to calculate ME using SAS, STATA, LIMDEP, and MAT-

LAB are also provided. The illustration, discussion, and

application of ME in this two-part series support the conduct

of future studies applying the concept of marginal analysis.

Key Points for Decision Makers

Incremental costs are widely reported when

evaluating competing interventions and there is

another statistic that is applicable to decision making

focused on the consequences of a unit (i.e., marginal)

change in a variable (or combination of variables).

Despite its historical availability, flexibility, and

ability to yield useful insights, the marginal effect

(ME) is not widely reported in health services

research studies investigating, for example,

medication use, hospital stays, utilization of other

health services, and survival.

This two-part study reviews prior literature regarding

the use and reporting of ME (Part I) and provides

ME formulas (Part I), statistical code (Part II), and

empirical examples (Part II) to support its use and

interpretation across a variety of models commonly

used in health services research.

1 Introduction

Marginal effect (ME) is an inferential summary statistic that

provides a measure of the impact of a unit change in an
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independent variable or covariate (of a regression model) on

the dependent variable, where the change is measured in the

natural units of the dependent variable [1]. The theoretical

derivation of the ME involves the application of standard

rules for differentiation, and, accordingly, is conceptually

straightforward. However, the practical application of the

concept raises new issues about which guidance is limited.

These issues include: (1) the choice between and interpre-

tation of the average ME (AME) or the ME at the mean

(MEM); (2) the software options and coding for calculating

AME or MEM; (3) the choice of estimator for calculating

confidence intervals from the ME statistic.

This study investigated the practical issues related to the

calculation and reporting of ME in health services research;

this article represents Part two in a two-part series. Part one

presented the theoretical concept and justification for use of

the ME, derivation of ME for a number of statistical

models, and estimators for standard error estimation of

ME. We discuss the empirical issues mentioned above and

include empirical examples designed to illustrate these

points. The empirical examples do not focus on model

specification and assume that the statistical adequacy of the

regression model has already been established in order to

focus specifically on the issues being examined.

Increased use of the ME will provide opportunities for

gaining unique insights into cost and utilization patterns.

These insights will be unique to ME because, unlike odds

ratios and relative risks, the ME is measured in absolute, not

relative terms, and is measured in natural units of the depen-

dent variable (e.g., probability, cost, survival time), facilitat-

ing interpretation and translation for decision making.

2 Interpretation and Use of the Marginal Effect

A researcher faces an array of considerations regarding

which measure of ME to report, which approach to take

when estimating confidence intervals (and standard errors),

and what statistical software to use, which can result in

nuances in the reporting and interpretation of results using

the ME. In discussing these considerations, we place

stronger emphasis on discrete differences because regres-

sion models commonly applied in cost and utilization

studies include categorical independent variables such as

race or disease severity. The empirical examples include a

continuous covariate, age, for which ME are reported as

well. Part one of this two-part series provided derivations

for ME for continuous covariates that enter both in a linear

and nonlinear fashion. The topics discussed in this primer

regarding the use of ME apply to both categorical and

continuous independent variables.

The discussion in this section focuses on calculating ME

using SAS [2], STATA [3], and LIMDEP/NLOGIT [4].

Before presenting specifics about the software, it is

important to understand the difference in interpretation

between relative and absolute effects as well as the dif-

ferent types of ME that can be estimated. Studies investi-

gating health services utilization and costs utilize models of

categorical outcomes, time to event data, or rates. Effects

are often represented in relative terms (i.e., ratios) as odds

ratios (ORs), risk ratios (RRs), or hazard ratios (HRs). The

origin of these measures is 1 while the origin of ME is 0 in

the case of a linear difference. In addition, the ratios are

always positive while the ME may span the entire real

number line to include positive and negative values. The

ratios quantify the relative differences between defined

groups while the ME quantifies the incremental difference

in outcomes between defined groups. The relative differ-

ence adjusts for baseline differences between patient

groups. At the same time, the relative difference is unitless

and does not convey a sense of magnitude.

The ME is an appropriate measure of association when

the goal is to convey the size of a change in the outcome.

An OR of 1.7 associated with an indicator for receipt of

drug X in a model for the probability of a serious adverse

event (SAE) indicates that the odds of an SAE in the

treated group are 1.7 times higher than the odds of an SAE

in the control group. This result confirms the direction of

the association but does not convey the magnitude of the

impact at the patient level. An ME of 0.13 indicates that

there is a 13 % point increase in the probability of expe-

riencing an SAE associated with receipt of drug X. Com-

pared to changes in the odds of an SAE, changes in the

probability of an SAE are easier to understand and explain

when considering the effect of a policy that would provide

access to drug X. Similarly, if the outcome of interest was

the total 12-month expenditure among patients experienc-

ing an SAE, a payer faced with a formulary decision

regarding drug X would be more interested in a measure

that conveyed the magnitude of the effect (e.g., a $2,500

increase in total expenditure associated with receipt of drug

X) compared to a relative effect estimate (e.g., a cost ratio

of 1.13 which depicts a 13 % increase in average costs

comparing the treated group to the control group).

There are two types of ME that can be estimated: (i)

MEM and (ii) AME. The MEM estimates are produced

using the sample means of the data, while AME estimates

are obtained by estimating the ME separately for each

observation and then averaging over the individual ME [5].

The AME is also known as an average partial effect [5],

predictive margin [6], and an ME estimated using the

method of recycled predictions [7]. The difference in AME

and MEM estimates will depend on the parameter esti-

mates and variability in the data [8]. The MEM approach

provides the ME for an individual with average charac-

teristics or could be calculated at other specific values of
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the independent variables, providing ME estimates for

different representative individuals. This approach may be

of interest to obtain stratified results for the ME. The AME

estimates what the ME will be on average for the indi-

viduals in the sample; that is, the quantity of interest here is

Ex MEið Þ [5]. Another benefit of using the AME is the

availability of ME for each individual in the sample.

In theory, the AME is preferred to the MEM because the

mean values specified for the MEM may not always be

realistic across all variables included in the regression

model and there may be no data points that represent the

specified mean values. For example, the Charlson comor-

bidity index (CCI) is often entered into regression models

as a categorical variable. Whether based on the categorical

version or the original index values of the CCI, the mean

value is likely to be a noninteger. Because the variable can

only take on integer values, there would be no individual

represented at the specified mean value of the CCI. Con-

ceptually, the calculation of the MEM value is not desir-

able with a binary independent variable because, as noted

by Dowd et al. [9], ‘‘no one in the dataset will be 60 %

female or 20 % pregnant’’. As an alternative to calculating

the ME at the mean of the independent categorical vari-

ables, researchers can set the categorical variable at its

mode, or the value that occurs most often. The approaches

for calculating AME and MEM are discussed in the soft-

ware packages described below.

SAS: The SAS software package has two primary pro-

cedures that produce ME estimates. PROC QLIM can model

and provide ME estimates for models of categorical

dependent variables. The procedure provides a vector of

individual ME that can be used to calculate AME for each

covariate (by specifying the ‘‘marginal’’ option in the

‘‘OUTPUT’’ statement of the procedure), but standard errors

for the AME must be calculated separately. PROC

NLMIXED can model and provide AME estimates for user-

specified nonlinear regression models. The user must

explicitly code the formulas for the relevant ME of interest

within the procedure and the procedure will provide stan-

dard error estimates for the AME using the delta method [5].

Procedures for obtaining AME estimates for the logistic

regression model and more details concerning PROC QLIM

and PROC NLMIXED can be found in the SAS Help Menu

and on the SAS website [10]. A benefit of manually coding

the ME is that it encourages an understanding of the ME

concept before using it in analysis. On the other hand, the

need to manually code the ME leaves the analysis open to

errors due to mistakes in coding. This latter possibility is

reduced with automated procedures in STATA.

STATA: To estimate the MEM or AME in STATA, a

modeler can use the post-estimation command ‘‘margins’’.

This command provides both MEM and AME estimates for

a wide range of regression models in STATA, including the

models discussed in Parts one and two of this series. By

default, the ‘‘margins’’ command estimates AME, but

MEM estimates can be obtained by including ‘‘atmeans’’ in

the options part of the command. Standard errors for ME

are estimated using the delta method, but a linearization

method is available that allows for heteroskedasticity,

violation of distributional assumptions, and correlation

among observations (e.g., from sampling). More informa-

tion can be found in the STATA manual [11].

LIMDEP/NLOGIT: The LIMDEP/NLOGIT software

package may be less familiar to health services researchers

and is useful to discuss due to the functionality it brings to

the analysis of categorical dependent variables. There are

two methods available in LIMDEP/NLOGIT to obtain ME

estimates [4]. The first method is to specify the option

‘‘marginal effects’’ or ‘‘partial effects’’ within the specified

regression command. This will provide MEM estimates

calculated using analytical derivatives for each covariate,

along with standard errors estimated using the delta

method. The second method is to use the post-estimation

‘‘partial effects’’ command. By default, this command will

provide the AME estimates for each covariate, along with

standard errors estimated using the delta method. MEM

estimates can be obtained using the command by specify-

ing the ‘‘Means’’ option.

The functions and estimation of interaction ME in all of

the above software packages will have to be explicitly

coded to be estimated. In addition, depending on the

method employed, the calculation of the confidence inter-

val may require manual coding. In the AME approach, the

gradient will need to be calculated for each observation and

then the sample average of the gradient used to calculate

the standard error [5]. Other methods for standard error

estimation include the bootstrap, delete-d jackknife, and

the method of Krinsky and Robb [5]. It should be

emphasized that when computing standard errors for AME,

the standard error of interest is the standard error of the

estimator for the AME; that is, Ex MEið Þ, and not the

standard deviation across the individual ME estimates used

in computing the AME. This latter method is adopted by Li

and Mahendra [7], and, as seen in the empirical example,

leads to incorrect confidence intervals associated with an

increased Type II error.

3 Empirical Examples

The following examples utilize regression models appli-

cable to cost and utilization studies to illustrate the
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differences between AME and MEM, the comparison

between software packages, the estimation of confidence

intervals on the ME, and insights unique to the ME.

3.1 Example 1: Factors Impacting the Probability

of Treatment with Metformin Using a Logistic

Regression

The results from the logistic regression are traditionally

presented in terms of ORs (or RRs under certain condi-

tions). For the discrete choice regression models, the esti-

mated ME will often range from -1 to 1, as the conditional

mean is a conditional probability with range (0,1). If the

estimated ME falls outside this range, the researcher may

want to re-examine performance during model estimation,

data, and estimation code. This example shows how to

calculate the AME and MEM for a logistic regression. The

interaction term is included and the results are presented

and interpreted. This empirical application examines the

factors that influence the likelihood of a type-2 diabetic

patient being prescribed metformin instead of all other oral

hypoglycemic agents (OHAs). The study population con-

sisted of a Maryland population covered by a large private

insurance group. Only adult patients (over 18 years of age)

who were continuously enrolled between 1 January 2005

and 30 November 2007 with both medical and pharmacy

benefits and at least one pharmacy claim for OHAs were

included. Patients were excluded if they used insulin or any

injectable (e.g., exenatide) or newer agents (e.g., sitagliptin

alone or in combination). The model included demographic

variables, type of insurance, and observable risk factors for

myocardial infarction and heart failure measured within

12 months prior to the index date. The 95 % confidence

intervals for AME and MEM were derived using the

bootstrap technique for 1,000 resamples.

There were 6,697 patients with an average age of

56.6 ± 9.9 years; 53 % were male (Table 1). Based

on the AME, we found that men were 9.4 % points

(95 % CI -11.7 to -7.2 %) less likely than women to be

prescribed metformin (Table 1). In addition, the likelihood

of being prescribed metformin was 0.8 % points lower

(95 % CI -0.94 to -0.64 %) for every 1-year increase in

age. Results based on the MEM were similar. The ME

estimates for the MEM and AME of each covariate and the

interaction effects are close in value but not identical.

These differences are caused by the differences in the

parameter estimates and the variability in the data [8].

These differences will be more pronounced in small to

medium-sized samples [5]. Using Li and Mahendra’s code

for CI estimation resulted in confidence intervals for the

MEs that were too narrow, which could lead a modeler to

wrongly conclude that the MEs for some independent

variables were statistically significant when they were not.

3.2 Example 2: Race Differences in Initial Costs Using

a Generalized Linear Model

A generalized linear model was used to investigate initial

costs among men experiencing skeletal complications

following a diagnosis of prostate cancer (PCa), compar-

ing non-Hispanic African American (AA) and white men.

The skeletal-related events (SREs) of interest were

pathological fracture (PF), spinal cord compression

(SCC), or bone surgery (BS). Understanding initial cost

patterns could be important for investigating cost accu-

mulation after the development of SREs. The application

utilizes linked cancer registry and Medicare claims data

for men aged 66 years and older diagnosed with incident

PCa between 2000 and 2007 and with associated claims

from 1999 to 2009. Cases were limited to those diag-

nosed with stage III, stage IV, or unstaged PCa, as

identified by the American Joint Committee on Cancer

Tumor-Node-Metastasis stage, sixth edition [12]. Addi-

tional inclusion criteria were: (1) continuous enrollment

in Medicare Parts A and B during the 12 months prior to

and including the month of diagnosis; (2) survived

6 months post-diagnosis of PCa; (3) utilization associated

with PF, SCC, or BS. Exclusion criteria were: (1) health

maintenance organization enrollment during the

12 months prior to and including the month of diagnosis;

(2) history of other cancers within 5 years prior to PCa

diagnosis; and (3) diagnosis of PCa during autopsy. The

ME were estimated using the AME approach and 95 %

confidence intervals were derived using the bootstrap

technique for 1,000 resamples.

Application of study inclusion and exclusion criteria

resulted in a sample of 5,342 men with SREs. The sample

was 89 % white non-Hispanic and 7 % AA with a mean

age of 77 years. The median follow-up was 1,347 days and

the median times to a PF, SCC, or BS were 721, 915, and

1,105 days, respectively. The relationship between AA

race and total costs was investigated for the 6-month post-

diagnosis period. The AME was manually coded in SAS

and calculated using Li and Mehandra’s [7] code. The

AME was calculated in STATA using the margins com-

mand. The CI on the AME was reported using the delta

method (STATA) and the bootstrap method (SAS). Addi-

tional information on calculating the confidence intervals is

available from published work [5, 9]. Codes for calculating

the results reported in Table 2 are available in the

Appendix.

The consistent result across all approaches was that the

initial treatment costs for AA men were higher than the

treatment costs for non-Hispanic white men, after con-

trolling for demographic factors, clinical status, and pred-

iagnosis costs from the 6 months prior to the cancer

diagnosis (Table 2). Treatment costs were $9,678 higher
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among AA men than for white men (95 % CI $3,994–

$15,553; p \ 0.01). From Table 2, the CI associated with

the AME was larger using the bootstrap method than for

the delta method. The CI calculated based on the t-test was

narrow compared with the CI obtained via either the

bootstrap or delta method. As seen in Table 2, the CI based

on the t-test provided in Li and Mehandra [7] is too narrow

because it is based on variation in the individual-level ME

estimates (used when calculating the AME) rather than on

variation in the AME estimate itself. It is recommended

that analysts utilize either the delta method or a data-based

method such as the bootstrap to estimate CIs for the

AME.

3.3 Example 3: Factors Impacting Post-Stroke Hospital

Discharge Disposition Using a Multinomial Model

This application of the multinomial model illustrates the

calculation of AME and interaction ME. The dependent

variable was post-stroke hospital discharge disposition and

explanatory variables included demographic and clinical

factors. The analysis used discharge data from non-Federal

short-stay hospitals in the state of Maryland. Study inclu-

sion criteria were as follows: (1) hospital admissions with a

discharge diagnosis of stroke as identified by the Interna-

tional Classification of Diseases, Ninth Revision, Clinical

Modification (ICD-9-CM) codes 431.XX-434.XX and

Table 1 Marginal effect estimates for the logistic regression model of treatment receipt

Variable Mean ± SD/% Average marginal effect (AME) Marginal effect at the mean

(MEM)

Estimate Lower CIe Upper CI Estimate Lower CI Upper CI

Age* 56.65 ± 9.9 years -0.008 -0.009 -0.007 -0.009 -0.010 -0.007

1 if male* 53 % -0.094 -0.117 -0.072 -0.099 -0.123 -0.076

1 if HMO* 45.2 % 0.074 0.031 0.121 0.078 0.032 0.127

1 if PPO* 34.3 % 0.082 0.040 0.126 0.086 0.042 0.132

1 if POS* 10.5 % 0.086 0.037 0.135 0.090 0.039 0.141

1 if historya of HFb 21.7 % 0.012 -0.016 0.039 0.013 -0.017 0.042

1 if historya of MIc 30.4 % 0.006 -0.021 0.033 0.007 -0.022 0.034

1 if history of hypertensiond 49.8 % -0.004 -0.027 0.020 -0.004 -0.028 0.021

Interaction effects

Variation in ME of AGE by sex (male vs female) NA 0.001 -0.001 0.004 0.001 -0.001 0.004

* Statistically significant at 5 %
a Other than hypertension
b ICD9 diagnosis codes: aortic and mitral valve disease 394.xx–396.xx; aortic coarctation 747.10, cardiac dysrhythmias 427.xx, pulmonary

hypertension 416.0x, tricuspid valve disease 397.0x, pulmonary valve disease 746.xx, ischemic heart disease 410.xx–414.xx, cardiomyopathy

425.xx
c ICD9 diagnosis codes: high blood cholesterol 272.0x–272.4x
d ICD9 diagnosis codes: hypertension 401.xx, 459.3x
e Confidence interval (95 %)

Table 2 Marginal effect estimates from a generalized linear regression model of short-term post-diagnosis costs (reimbursed Medicare costs)

6-month costs

AMEa 95 % CI

SAS (GENMOD)

AA vs white (point estimate from manual coding) $9,678 NA

AA vs white (bias-corrected bootstrap mean and CI) $9,775 $3,994–$15,553

AA vs white (using Li and Mahendra codeb) $9,678 $9,627–$9,729

STATA (margins)

AA vs white (CI using delta method) $9,678 $5,830–$13, 525

AA African American, NA not applicable
a AME calculated from model adjusting for clinical (e.g., cancer stage) and demographic (e.g., age) measures as well as prediagnosis costs
b See Li and Mahendra [7], available at: http://support.sas.com/resources/papers/proceedings10/272-2010.pdf. Accessed 3 June 2014
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436.XX-438.XX [13]; (2) patients discharged alive; and (3)

at least 18 years old at admission. Discharges were

excluded for the following reasons: nature of admission is

listed as ‘‘Delivery’’; in-hospital death; no information on

patient disposition; invalid or missing identifier. The

dataset consisted of 69,921 hospital admissions for stroke

between 2000 and 2005. Categories of discharge disposi-

tion included home (N = 7,730), home healthcare

(N = 525), rehabilitation (N = 9,997), nursing home

(including intermediate care) (N = 7,323), discharges

against medical advice (N = 4,755), and all other

(N = 39,591).

A multinomial logistic regression model was estimated.

The predictor or log odds function was assumed to be

linear in the variables with the addition of three interaction

terms: (i) age 9 race; (ii) insured status 9 race; and (iii)

hemorrhagic stroke 9 race. The first and third interaction

terms reflect the potential for variation across age groups in

the racial disparity in discharge outcomes [14] and the

potential of a differential impact on discharge outcomes

associated with the increased risk of hemorrhagic stroke

among AA patients relative to Caucasians [15, 16]. The

second interaction term was included to account for any

differential effect on discharge outcome due to lower rates

of insurance coverage for non-Caucasians compared to

Caucasians [17]. Standard errors were estimated using a

delete-d jackknife estimator with d equal to 10 % of the

data selected randomly without replacement over 5,000

pseudo-random samples. The size of the datasets may task

computer memory during simulations, so the delete-

d jackknife method was selected. Model and ME

estimation were accomplished using SAS, LIMDEP, and

MATLAB. Codes are available in the Appendix.

Estimation results for the ME are reported in Table 3.

Many of the individual and interaction ME were significant

at a 10 % level of significance. A category of particular

interest was the discharge against medical advice (AMA).

Individual ME indicated that the likelihood of a discharge

AMA was 0.6, 0.3, and 1.8 % points higher among patients

who were, respectively, a transfer admission, male, or

uninsured. The example also provided estimation of

interaction ME. Non-Caucasian patients who were older

and who were uninsured were less likely to discharge AMA

than Caucasian patients. Compared to Caucasians, the

likelihood of being sent home following a stroke was

32.7 % points lower among non-Caucasians, while the

likelihood of receiving nursing/intermediate care was

22.5 % points higher among non-Caucasians. According to

the interaction ME, the results depended on the patients’

insurance status. Among uninsured non-Caucasians, the

likelihood of being sent home was 17 % points higher, the

likelihood of receiving nursing/intermediate care was

6.8 % points lower, and the likelihood of receiving home

healthcare was 1.4 % points lower compared to insured

non-Caucasians and Caucasians.

4 Conclusion

With regards to the use and reporting of ME in cost and

utilization studies, we have illustrated that: (1) the choice

between MEM and AME may not result in material

Table 3 Marginal effect estimates for the multinomial regression model of hospital discharge disposition

Variable/discharge category Home Home healthcare Rehabilitation Nursing/intermediate care AMA discharge

Individual effects

Patient age -0.0086* (0.0001) 0.0014* (0.0000) -0.0002* (0.0000) 0.0063* (0.0000) -0.0002* (0.0000)

Transfer admission -0.0746* (0.0017) 0.0010 (0.0009) -0.0069* (0.0010) 0.0488* (0.0013) 0.0060* (0.0004)

Male 0.0158* (0.0013) -0.0101* (0.0007) 0.0090* (0.0008) -0.0105* (0.0009) 0.0032* (0.0002)

Married 0.0952* (0.0013) -0.0006 (0.0007) -0.0163* (0.0008) -0.0569* (0.0010) -0.0044* (0.0002)

US -0.0102 (0.0069) 0.0082* (0.0042) -0.0282* (0.0037) 0.0001 (0.0067) 0.0183* (0.0017)

NC -0.3269* (0.0053) 0.0317* (0.0044) 0.0273* (0.0039) 0.2254* (0.0085) 0.0012 (0.0009)

Hemorrhagic stroke -0.2312* (0.0026) -0.0051* (0.0014) 0.0889* (0.0022) 0.0601* (0.0022) -0.0014* (0.0005)

Interaction effects

Patient age 9 NC 0.0031* (0.0001) -0.0004* (0.0001) -0.0005* (0.0001) -0.0012* (0.0001) -0.0000* (0.0000)

US 9 NC 0.1720* (0.0086) -0.0138* (0.0051) -0.0573* (0.0040) -0.0678* (0.0075) -0.0003 (0.0020)

Hemorrhagic stroke 9 NC 0.0793* (0.0043) -0.0071* (0.0023) -0.0400* (0.0033) -0.0035 (0.0036) -0.0036* (0.0006)

Individual marginal effects were estimated as the marginal effect averaged across respondents following Greene [5]. Estimates of marginal

effects for interactions were calculated following Ai and Norton [18] and calculated as the marginal effect averaged across respondents. Standard

errors for all estimates are in parentheses and were estimated using a delete-d jackknife estimator with d equal to 10 % of the data selected

randomly without replacement over 5,000 pseudo-random samples (Efron and Tibshirani [19])

AMA against medical advice, US uninsured/self pay, NC non-Caucasian, HS hemorrhagic stroke

* Statistical significance at the 10 % level or above

102 E. Onukwugha et al.



differences in the point estimate or its confidence interval;

(2) the choice of estimator for calculating confidence

intervals for the ME statistic results in meaningful differ-

ences in the width of the interval, with the t-test approach

underestimating variation in the ME; (3) the ME and

interaction ME provide unique insights regarding hetero-

geneity in health services utilization; (4) software packages

differ with respect to the functionality for calculating ME

and its confidence interval. This two-part primer reviewed

the theory and application of ME to support its use and

interpretation across a variety of models used in health

services research.
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