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Abstract

Purpose The Pediatric Quality of Life InventoryTM

(PedsQLTM) General Core Scales (GCS) were designed to

provide a modular approach to measuring health-related

quality of life in healthy children, as well as those with

acute and chronic health conditions, across the broadest,

empirically feasible, age groups (2–18 years). Currently, it

is not possible to estimate health utilities based on the

PedsQLTM GCS, either directly or indirectly. This paper

assesses different mapping methods for estimating EQ-5D

health utilities from PedsQLTM GCS responses.

Methods This study is based on data from a cross-sec-

tional survey conducted in four secondary schools in

England amongst children aged 11–15 years. We estimate

models using both direct and response mapping approa-

ches to predict EQ-5D health utilities and responses. The

mean squared error (MSE) and mean absolute error

(MAE) were used to assess the predictive accuracy of the

models. The models were internally validated on an

estimation dataset that included complete PedsQLTM GCS

and EQ-5D scores for 559 respondents. Validation was

also performed making use of separate data for 337

respondents.

Results Ordinary least squares (OLS) models that used

the PedsQLTM GCS subscale scores, their squared terms

and interactions (with and without age and gender) to

predict EQ-5D health utilities had the best prediction

accuracy. In the external validation sample, the OLS

model with age and gender had a MSE (MAE) of 0.036

(0.115) compared with a MSE (MAE) of 0.036 (0.114) for

the OLS model without age and gender. However, both

models generated higher prediction errors for children in

poorer health states (EQ-5D utility score \0.6). The

response mapping models encountered some estimation

problems because of insufficient data for some of the

response levels.

Conclusion Our mapping algorithms provide an empiri-

cal basis for estimating health utilities in childhood when

EQ-5D data are not available; they can be used to inform

future economic evaluations of paediatric interventions.

They are likely to be robust for populations comparable to

our own (children aged 11–15 years in attendance at

secondary school). The performance of these algorithms

in childhood populations, which differ according to age or

clinical characteristics to our own, remains to be

evaluated.
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Key points for decision makers

The Pediatric Quality of Life InventoryTM

(PedsQLTM) General Core Scales (GCS) were

designed to provide a modular approach to

measuring health-related quality of life in healthy

children, as well as those with acute and chronic

health conditions, across the broadest, empirically

feasible age groups (2–18 years).

It is not currently possible to estimate health utilities

based on the PedsQLTM GCS. More broadly, a

number of methodological constraints limit the

estimation of health utilities across the childhood

spectrum.

Our study uses a number of direct and response

mapping approaches to predict EQ-5D health

utilities from PedsQLTM GCS responses.

The results of this study can be used to inform utility

estimation within future economic evaluations of

paediatric interventions.

1 Introduction

The measurement of health-related quality of life (HRQoL)

has become an integral component of studies aimed at

measuring the health benefits of healthcare interventions,

and there are a large number of specific and generic

instruments available for the task [1].

Generic HRQoL measures may either be non-preference

based or preference based. Preference-based HRQoL

measures generate health state preference values or utilities

that can be used in the calculation of quality-adjusted life

years (QALYs) [1]. The QALY is a composite measure

that combines the length and HRQoL following a health-

care intervention [2], where ‘quality’ of life is commonly

measured in terms of health state utility values estimated

using a preference-based technique or measure of health.

Health state utility values, and by extension QALYs, can

also be useful for assessing cost effectiveness as they

translate outcomes for different interventions across dis-

parate conditions into a common metric. Many decision

makers, such as the National Institute for Health and Care

Excellence (NICE) in England and Wales, recommend the

use of the QALY as a standard measure of benefit for

economic evaluation purposes and the EQ-5D as the inte-

gral preference-based measure of HRQoL [3].

Despite the diffusion of preference-based HRQoL mea-

sures, a number of methodological concerns have con-

strained their development in children and, in particular,

young children. Methodological concerns that are specific to

this age group include issues surrounding the relevant attri-

butes to incorporate into measurement instruments, appro-

priate respondents for measurement exercises (for example,

children, parents or other proxies), potential sources of bias

in the description and valuation processes, and the psycho-

metric properties of existing measures [4–6]. Faced with

these methodological constraints, several analysts conduct-

ing economic evaluations within the paediatric context have

applied health state utility values derived for adult popula-

tions to childhood health states [7]. This ignores concerns by

child development and other specialists that rapid develop-

mental change throughout childhood makes it difficult to

identify a common set of health attributes relevant to all age

groups, and by extension a common set of utility values for

health states applicable across all age groups [8]. In the light

of these methodological concerns, there is clearly a pressing

need for new approaches to measuring preference-based

HRQoL outcomes in children and, in particular, young

children. This has been recognised by the UK Medical

Research Council-NICE scoping project for identifying

methodological research priorities in the health sciences [9].

One solution to this problem is to derive a preference-based

HRQoL measure de novo, such as the Child Health Utility

9D (CHU9D), a new measure developed for children aged

7–11 years [10]. Another solution is to apply a mapping (or

‘crosswalk’) function to convert non-preference-based

HRQoL data into one of the generic preference-based mea-

sures where relevant data are available. ‘Mapping’ involves

the development and use of an algorithm (or algorithms) to

predict health-state utility values using data on other indi-

cators or measures of health [11]. Mapping has proved a

popular solution as it enables health state utility values to be

predicted when no preference-based measure has been

included in a study [11], but has not to our knowledge been

used to predict health state utility values that are potentially

applicable across the childhood spectrum.

This paper reports the results of a regression-based

exercise that maps responses to the Pediatric Quality of

Life InventoryTM 4.0 Generic Core Scales (hereafter

PedsQLTM GCS for brevity), a generic non-preference-

based HRQoL measure widely used in childhood, onto the

EuroQol EQ-5D. To our knowledge, this is the first study

that estimates conversion algorithms between the two

measures.
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2 Methods

2.1 Data

The data were obtained from a study that investigated the

relationship between HRQoL, physical activity, diet and

overweight status in children aged 11–15 years. A cross-

sectional survey of four secondary schools in England was

carried out using the PedsQLTM GCS, the youth version of

the EQ-5D (EQ-5D-Y), the self-completed Western Aus-

tralian Child and Adolescent Physical Activity and Nutri-

tion Survey (CAPANS) and a food intake screener

questionnaire. Self-reported demographic information

including age, sex and ethnicity was also collected from the

children that completed the survey. The schools were

selected on the basis of a close match in examination

results, percentage of children on free school meals and

percentage of children with special educational needs.

2,858 children were asked to participate in an anonymous

survey on two occasions, once in winter and again in

summer. There were 869 respondents to the winter survey

and 1,000 respondents to the summer survey and so the full

dataset comprised 1,869 sets of responses. The study is

described in detail elsewhere [12]. Because the data were

collected anonymously, it is not possible to identify how

many children completed the survey twice, once in the

winter and then again in summer. This led us to focus on

data collected at one time point for the purpose of the

mapping exercises reported here. It was decided to use the

1,000 respondents to the summer survey for the modelling

reported here as this constituted the larger sample, and to

split this sample by geographical area to provide the esti-

mation (children from two schools in north-west England)

and validation (children from two schools in south-west

England) samples.

2.2 Outcome Measures

The EQ-5D [13] is the most widely used generic prefer-

ence-based measure of health outcomes [14]. It consists of

two principal measurement components, a descriptive

system and a visual analogue scale. This study concentrates

on mapping using the information provided by the

descriptive system, which is comprised of five dimensions

of health: mobility, self-care, usual activities, pain/dis-

comfort and anxiety/depression. Each dimension is asses-

sed by a single question on a three-point ordinal scale (no

problems, some or moderate problems, severe or extreme

problems). This generates a total number of 243 (35) pos-

sible EQ-5D health states. In the UK, utility valuations for

the 243 EQ-5D health states are commonly based on time

trade-off valuations by 3,337 members of the general

public [15]. Alternative tariffs have been developed for

other countries [16], but in this study the UK (York A1)

tariff set was applied. This study used the youth version of

the EQ-5D, the EQ-5D-Y, which has been especially

adapted in terms of language for children aged 8–11 years

and for adolescents aged 12–18 years [17, 18]. Utility

valuations in the York A1 tariff set range from no problems

on any of the five dimensions in the EQ-5D descriptive

system (value = 1.0) to severe or extreme impairment on

all five dimensions (value = -0.594).

The PedsQLTM is an instrument that was designed to

measure HRQoL in healthy children, as well as those with

acute and chronic health conditions, covering an age

spectrum in the range of 2–18 years [19]. The PedsQLTM

GCS comprise parallel child self-report [age 5–7 years

(young child), 8–12 years (child) and 13–18 years (ado-

lescent)] and parent proxy-report [age 2–4 years (toddler),

5–7 years (young child), 8–12 years (child) and 13–18

years (adolescent)] formats. The PedsQLTM GCS were

specifically designed to measure the core dimensions of

health as delineated by the World Health Organisation, as

well as role (school/day care) functioning. It contains 23

items that are grouped to create four sub-scales of (1)

Physical Functioning (PF: 8 items), (2) Emotional Func-

tioning (EF: 5 items), (3) Social Functioning (SF: 5 items)

and (4) School Functioning (Sch F: 5 items). A 5-point

response scale is applied across each item (0 = never a

problem; 1 = almost never a problem; 2 = sometimes a

problem; 3 = often a problem; 4 = almost always a

problem). Items are reverse scored and linearly trans-

formed to a 0–100 scale (0 = 100, 1 = 75, 2 = 50,

3 = 25, 4 = 0) with higher scores indicating better

HRQoL. For scale and total scores, the mean is computed

as the sum across all items divided by the number of items

answered, thereby accounting for missing data if present

[19].

2.3 Statistical Methods

To estimate EQ-5D-Y utility scores based on the Peds-

QLTM GCS, we employed two conversion techniques,

namely direct and response mapping. We first estimated

direct mapping models by regressing the PedsQLTM GCS

scores directly onto the EQ-5D-Y utility scores. The direct

mapping approach makes use of regression equations to

predict the values of one outcome measure using scores/

values from a second measure as regressors. The coeffi-

cients of the models can then be used to carry out the

conversion from the source measure to the target measure

in the required dataset. The following functional forms

were used for the direct mapping:

• Ordinary least squares (OLS) regression with any

utilities predicted to be [1 set to one.
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• Generalized linear modelling (GLM) [20], which

accommodates for skewness via variance weighting

rather than through transformation and re-transforma-

tion. More specifically, such models explicitly specify a

distribution that reflects the relationship between the

mean and the variance, and a link function between the

linear part x0b and the mean l ¼ Eðy=x0Þ on the original

scale of the dependent variable. The modified Parks test

[21] was used to identify the preferred distributional

family based on the lowest v2 value. For each

prediction model, tests were carried out to identify

the link function (including identity, square root, and

log) using the Pearson correlation test [22], the

Pregibon link test [23] and the modified Hosmer–

Lemeshow test [24]. Where all three tests yield non-

significant p values, the link function is said to fit well

[25].

• Two-part logit-OLS regression was also used to deal

with the high proportion of respondents having EQ-5D-

Y utility scores of one (representing full health).

Because OLS would not always predict a discrete

score of one, a two-part model was formulated to be

able to predict full-health states. The first part com-

prised a logistic regression model estimated on the

entire estimation sample to predict which participants

had perfect health, while the second part comprised

an OLS model predicting EQ-5D-Y utility scores for

those participants with utility scores \1. Utility

predictions for the two-part model were estimated

using an expected value method as follows:

Pr(U = 1) ? (1 - Pr(U = 1)) 9 U, with Pr(U = 1)

indicating the predicted probability of being in full

health obtained from the first part of the model, and

U the predicted utility conditional on imperfect health

estimated from the second part of the model.

• Additional estimators, including Censored Least Abso-

lute Deviations (CLAD) [26, 27] and Tobit [28], have

been used in the broader literature for direct mapping

purposes [29], and were also applied in this study for

comparative purposes despite theoretical concerns and

evidence to suggest that CLAD and Tobit estimators

generate biased results when the true utility is concep-

tually bounded above at 1.0 [30, 31]. Another potential

model, the Fractional Logistic regression (FLOGIT)

estimator [32, 33] has not been extensively used in the

modelling utility data literature and a recent application

did not generate promising results [34].

We then used response mapping to predict the responses

to the EQ-5D-Y dimensions as opposed to predicting the

summary utility score directly [35]. A logistic regression

model can be used to estimate the probabilities that each

set of PedsQLTM GCS responses would correspond to a

response level for each EQ-5D-Y dimension. A multi-

nomial logistic model can be used or an ordered logistic

model if it is believed that the responses to the EQ-5D-Y

questions are ordered. The models were estimated by fitting

a separate multinomial logistic regression (MLOGIT) or

ordinal logistic regression (OLOGIT) model for each EQ-

5D-Y dimension, as described elsewhere [35]. Predictions

for the response mapping model were generated using the

expected value method, which is equivalent to the Monte

Carlo approach given a large number of repeated Monte

Carlo draws [36].

For each of the functional forms, eight models were

estimated that differed in their predictors (or independent

variables): The first model predicted the EQ-5D-Y utility

score from the PedsQLTM total scale score (model 1); the

second model had the same specification as the first model

but also included age and gender (model 2); the third model

used the PedsQLTM sub-scale scores (model 3); the fourth

model had the same specification as the third model but

also included age and gender (model 4); the fifth model

used the PedsQLTM sub-scale scores, their squared terms

and interaction terms to formulate predictions (model 5);

the sixth model had the same specification as the fifth

model but also included age and gender (model 6); in the

seventh model, the explanatory variables were 92 dummy

variables (23 questions each with five possible responses,

‘never’ used as reference) indicating whether or not par-

ticipants had a particular response level on each PedsQLTM

GCS question (model 7); and the eighth model had the

same specification as the seventh model but also included

age and gender (model 8). All were estimated in Stata

version 11 (Stata-Corp, College Station, TX, USA).

2.4 Assessing Model Performance

In line with external guidance [11, 29], the mean squared

error (MSE) and the mean absolute error (MAE) were used

to measure the goodness of fit of the models. The MSE

equals the mean of squared differences between the

observed EQ-5D-Y utility score and the EQ-5D-Y utility

score predicted from the model, whilst the MAE is the

mean of absolute differences between observed and pre-

dicted EQ-5D-Y utility scores.

Models were initially selected on the basis of the MSE

in the validation sample. To compare the models further, a

number of analyses were carried out using the results from

the validation sample. First, the distributions of the pre-

dicted and observed EQ-5D-Y utility scores were examined

to see how closely the predicted values matched the

observed scores [37], and the proportions of predictions

deviating from observed values by \0.10 or \0.25 were

also calculated because these indicate the distribution of

errors and how often the models fail to produce useful
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predictions [1]. This was followed by plotting the histo-

grams of the residuals (observed minus predicted EQ-5D-Y

utility scores) to ascertain the bias in the predicted EQ-5D-

Y utility scores. Finally, the errors were reported across

subsets of the EQ-5D-Y utility score range, as this is useful

for indicating whether or not there is systematic bias in the

predictions [11]. The best fitting model(s) were then re-

estimated using data for the entire summer sample.

3 Results

3.1 Study Sample Characteristics

There were a total of 1,000 respondents to the summer

survey and of these 896 had complete PedsQLTM GCS and

EQ-5D-Y data, from here referred to as the whole sample.

Table 1 presents descriptive statistics for the whole, esti-

mation and validation samples. Pairs of complete Peds-

QLTM GCS and EQ-5D responses were needed to estimate

the mapping models, therefore the estimation sample

included 559 children whereas the validation sample

comprised 337 children. Just over one half (54.0 %) of the

respondents in the whole sample were boys, the average

age of the respondents was 13.3 years (standard deviation

(SD) 1.3) and approximately 40 % of the respondents were

non-white. There were no differences between the

respondents who completed the HRQoL assessments and

those who declined to complete the HRQoL assessments by

body mass index (BMI), fruit intake and receipt of free

school meals. However, those who did not complete the

HRQoL assessments were more likely to be girls, of a

younger age, and of white ethnicity. There were significant

differences in the characteristics of the estimation and

validation samples across all variables except for whether

or not the child had achieved the target level of physical

activity per day.

Table 2 shows the summary characteristics of the out-

come measures across the whole, estimation and validation

samples. The proportion of responses to each level of the

five EQ-5D-Y dimensions was similar across the samples

for all but the anxiety/depression dimension. The mean

EQ-5D-Y utility score and total PedsQLTM GCS score for

the whole sample were 0.89 (SD 0.21) and 85.4 (SD 14.3),

respectively. The mean total PedsQLTM GCS scores dif-

fered between the estimation and validation samples as did

the physical functioning, emotional functioning and school

functioning sub-scale scores. Figure 1 shows the distribu-

tion of the outcome measures across the data sets. Both the

EQ-5D-Y utility scores and PedsQLTM GCS total scores

are negatively skewed with a large mass of values at full

health, and the EQ-5D-Y utility scores are bi-modally

distributed.

When using the GLM estimator, the Poisson family with

log link was identified as appropriate for modelling the

data. For the response mapping approach, when using the

mlogit we found that that four of the eight model specifi-

cations did not converge. A requirement for using an

ordered logistic model is that the parallel regression

assumption holds. A likelihood ratio test was used to assess

whether this assumption held, but it did not in all but one

model. However, the results obtained using these models

have been presented for information purposes only to show

how the results from using the response mapping approach

compare with those using the direct utility mapping

approach. There were convergence issues with several of

the CLAD models and therefore no results have been

presented in Table 3 for the CLAD estimator.

3.2 Validation

The performance of all of the models using different

groups of independent variables was assessed using the

estimation sample and, separately, the validation sample.

Table 3 shows summary performance indicators for each

model using both the estimation and validation samples.

The results show that most of the models were able to fairly

accurately predict the mean EQ-5D-Y utility score in the

validation sample (0.88) with predicted mean EQ-5D-Y

utility scores in the range of 0.87–0.90. A number of

models were able to predict utility scores into the negative

range; the models predicting the largest negative value

closest to the actual one for the validation sample were the

GLM 1 (-0.72), two-part 7 (-0.43) and two-part 8

(-0.35) models in the external validation sample. Table 3

also shows that some of the OLS and two-part models over

predicted the highest EQ-5D-Y utility score. The models

were ranked according to their MSE, the primary measure

of prediction accuracy, in the validation sample to shortlist

the two best performing models. Based on the MSE, the

two models that gave the best predictions were the OLS 6

(MSE 0.0363) and OLS 5 (MSE 0.0364) models. However,

the ranking of the two best models was not the same by the

MAE with the models ordered as OLS 5 (MAE 0.1140) and

OLS 6 (MAE 0.1151).

3.3 Performance of Best Models

When considering the use of a mapping algorithm, its

ability to accurately predict the mean EQ-5D-Y utility

score is important but should not be the only consideration.

For the two best models, in addition to assessing how

accurately the models estimated the mean EQ-5D-Y utility

score, we also examined the distributions of the predicted

scores. Table 4 contains results from analyses carried out

using either the estimation sample or the validation sample,
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but we only focus on the results for the validation sample in

the narrative. Table 4 shows that, on average, the OLS 6

model gave the widest range of predicted scores and the

OLS 5 model gave the narrowest range of predictions. Both

models (OLS 6 and OLS 5) were able to predict negative

values for the EQ-5D-Y utility score, but only came within

0.465 and 0.482 of the lowest observed EQ-5D-Y utility

score, respectively. Both models reported lower variability

across predicted utility values with SDs at 51 and 50 % of

the magnitude of the observed EQ-5D-Y scores, on aver-

age, for the OLS 6 and OLS 5 models, respectively.

If we compare the 25th percentile, median and 75th

percentile predicted scores to the respective observed EQ-

5D-Y utility scores, the OLS 6 model has the closest

matching score for the 25th percentile, and the OLS 5

model has the closest matching score for the median and

75th percentile. Both models achieved around 65 and 94 %

of individual estimations within 0.10 and 0.25 of the

observed values, respectively. The plots of residuals for the

two best performing models are shown in Fig. 2 and they

are very similar for both preferred models.

Table 5 shows the MSE and MAE across the range of

EQ-5D-Y utility scores for the two best performing mod-

els. Although the prediction accuracy for the mean EQ-5D-

Y utility scores was similar across models, the level of

accuracy was not uniform across the full range of scores. If

we first look at the MSE for the models, both models were

better predictors at the upper end of the EQ-5D-Y range.

Table 1 Descriptive statistics for the whole, estimation and validation samples

Characteristic Whole sample

n = 896

Estimation sample

n = 559

Validation sample

n = 337

p Value�

n (%) n (%) n (%)

Gender

Male 484 (54.02) 347 (62.08) 137 (40.65) \0.001

Female 412 (45.98) 212 (37.92) 200 (59.35)

Age (years)

11 76 (8.48) 47 (8.41) 29 (8.61) \0.001

12 246 (27.46) 176 (31.48) 70 (20.77)

13 81 (9.04) 53 (9.48) 28 (8.31)

14 328 (36.61) 202 (36.14) 126 (37.39)

15 165 (18.42) 81 (14.49) 84 (24.93)

Ethnicity

White 541 (60.38) 217 (38.82) 324 (96.14) \0.001

Non-white 355 (39.62) 342 (61.18) 13 (3.86)

Free meals

Yes 738 (82.37) 438 (78.35) 300 (89.02) \0.001

No 157 (17.52) 121 (21.65) 36 (10.68)

Missing 1 (0.11) 1 (0.30)

Weight

Under weight 59 (6.58) 45 (8.05) 14 (4.15) 0.038

Normal 296 (33.04) 185 (33.09) 111 (32.94)

Over weight 34 (3.79) 16 (2.86) 18 (5.34)

Very over-weight 22 (2.46) 15 (2.68) 7 (2.08)

Missing 485 (54.13) 298 (53.31) 187 (55.49)

Achieving 60 min of moderate/vigorous physical activity per day

No 620 (69.20) 380 (67.98) 240 (71.22) 0.309

Yes 276 (30.80) 179 (32.02) 97 (28.78)

Optimal fruit/vegetable intake

No 386 (43.08) 274 (49.02) 112 (33.23) \0.001

Yes 510 (56.92) 285 (50.98) 225 (66.77)

Underweight, below 2nd percentile; normal, 2nd percentile up to the 91st percentile; overweight, 91st percentile up to 98th percentile; very

overweight, 98th percentile or higher
� Comparisons of estimation and validation samples carried out using the Student’s t tests for continuous variables and v2 test for categorical

variables
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For EQ-5D-Y utility scores above 0.6, the models had

MSEs between 0.010 and 0.022 whereas for predicted

values below 0.6 the MSE was in the range of 0.117–1.03.

The OLS 6 model reported the lowest MSE in more EQ-

5D-Y utility range categories than the OLS 5 model, but

the OLS 5 model reported the smallest errors for the 0.8–1

category of the EQ-5D-Y utility score range. The results

for the MAEs followed a similar pattern to those of the

MSE with models predicting more accurately at the upper

end of the EQ-5D-Y utility score range. This result can also

be seen in the quantile-quantile plot in supplementary

Fig. 1, which shows the over predictions for the lower end

of the EQ-5D-Y range. Model coefficients for the two best-

performing models are presented in Table 6.

Table 2 Summary characteristics of outcome measures across the samples

Characteristic Whole sample

n = 896

Estimation sample

n = 559

Validation sample

n = 337

p value�

EQ-5D domain

Mobility, n (%) 0.589

Level 1 849 (94.75) 533 (95.35) 316 (93.77)

Level 2 36 (4.02) 20 (3.58) 16 (4.75)

Level 3 11 (1.23) 6 (1.07) 5 (1.48)

Self-care, n (%) 0.476

Level 1 872 (97.32) 546 (97.67) 326 (96.74)

Level 2 13 (1.45) 6 (1.07) 7 (2.08)

Level 3 11 (1.23) 7 (1.25) 4 (1.19)

Usual activities, n (%) 0.124

Level 1 838 (93.53) 530 (94.81) 308 (91.39)

Level 2 47 (5.25) 23 (4.11) 24 (7.12)

Level 3 11 (1.23) 6 (1.07) 5 (1.48)

Pain/discomfort, n (%) 0.359

Level 1 686 (76.56) 423 (75.67) 263 (78.04)

Level 2 196 (21.88) 129 (23.08) 67 (19.88)

Level 3 14 (1.56) 7 (1.25) 7 (2.08)

Anxiety/depression, n (%) \0.001

Level 1 695 (77.5) 464 (83.01) 231 (68.55)

Level 2 177 (19.75) 81 (14.49) 96 (28.49)

Level 3 24 (2.68) 14 (2.50) 10 (2.97)

EQ-5D VAS score, mean (SD) (range), (IQR) 78.09 (17.12)

(10, 100), 20

77.53 (17.49)

(10, 100), 22

79.07 (16.43)

(25, 100), 20

0.0961

EQ-5D utility score, mean (SD) range, (IQR) 0.89 (0.21)

(-0.59, 1.00), 0.19

0.90 (0.20)

(-0.59, 1.00), 0.20

0.88 (0.23)

(-0.59, 1.00), 0.15

0.0693

PedsQL score, mean (SD) range, (IQR)

Total scale score 85.39 (14.25)

(0.00, 100.00), 18.75

86.26 (13.94)

(0.00, 100.00), 17.03

83.95 (14.64)

(10.00, 100.00), 22.50

0.0182

Physical functioning 90.39 (14.20)

(0.00, 100.00), 15.63

90.57 (13.91)

(0.00, 100.00), 15.63

90.09 (14.68)

(0.00, 100.00), 15.63

0.6188

Emotional functioning 82.71 (19.65)

(0.00, 100.00), 30.00

84.01 (18.99)

(0.00, 100.00), 25.00

80.56 (20.55)

(0.00, 100.00), 30.00

0.0110

Social functioning 88.53 (17.66)

(0.00, 100.00), 20.00

89.46 (17.86)

(0.00, 100.00), 15.00

86.97 (17.22)

(0.00, 100.00), 25.00

0.0408

School functioning 79.94 (19.80)

(0.00, 100.00), 35.00

81.01 (19.22)

(0.00, 100.00), 30.00

78.16 (20.64)

(0.00, 100.00), 40.00

0.0368

� Comparisons of estimation and validation samples carried out using the Student’s t tests for continuous variables and v2 test for categorical

variables

IQR interquartile range, SD standard deviation, VAS visual analogue scale
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(a) Distribution of  EQ-5D Whole Sample (b) Distribution of PedsQL Whole Sample

(c) Distribution of EQ-5D Estimation Sample (d) Distribution of PedsQL Estimation Sample

(e) Distribution of EQ-5D Validation Sample (f) Distribution of PedsQL Validation Sample 
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Table 3 Model performance

Estimation method Estimation sample (n = 559) Validation sample (n = 337)

Mean (SD) Min Max MSE MAE Mean (SD) Min Max MSE MAE

Observed

EQ-5D

0.90 (0.20) -0.59 1.00 – – 0.88 (0.23) -0.59 1.00 – –

OLS (1) 0.90 (0.09) 0.34 0.99 0.0329 0.1000 0.89 (0.10) 0.40 0.99 0.0409 0.1149

OLS (2) 0.90 (0.09) 0.33 1.01 0.0327 0.0994 0.88 (0.10) 0.40 1.01 0.0409 0.1166

OLS (3) 0.90 (0.10) 0.28 0.99 0.0320 0.0968 0.89 (0.10) 0.30 0.99 0.0389 0.1116

OLS (4) 0.90 (0.10) 0.27 1.01 0.0318 0.0967 0.89 (0.10) 0.28 1.01 0.0388 0.1134

OLS (5) 0.90 (0.11) -0.30 1.05 0.0291 0.1006 0.89 (0.10) -0.11 1.07 0.0364 0.1140

OLS (6) 0.90 (0.11) -0.31 1.05 0.0290 0.1000 0.89 (0.10) -0.13 1.06 0.0363 0.1151

OLS (7) 0.90 (0.13) -0.27 1.15 0.0232 0.0870 0.89 (0.15) -0.19 1.18 0.0372 0.1120

OLS (8) 0.90 (0.13) -0.26 1.15 0.0230 0.0868 0.89 (0.15) -0.20 1.18 0.0371 0.1126

Tobit (1) 0.90 (0.11) -0.14 0.97 0.0309 0.1020 0.89 (0.11) 0.02 0.97 0.0380 0.1153

Tobit (2) 0.90 (0.11) -0.13 0.98 0.0308 0.1003 0.88 (0.11) 0.02 0.98 0.0384 0.1179

Tobit (3) 0.90 (0.12) -0.17 0.97 0.0302 0.0982 0.89 (0.12) -0.10 0.97 0.0368 0.1128

Tobit (4) 0.90 (0.12) -0.20 0.98 0.0300 0.0977 0.89 (0.12) -0.13 0.98 0.0372 0.1154

Tobit (5) 0.90 (0.12) -0.21 1.00 0.0292 0.0960 0.89 (0.11) 0.02 1.00 0.0371 0.1134

Tobit (6) 0.90 (0.12) -0.24 1.00 0.0292 0.0955 0.88 (0.12) -0.03 0.99 0.0373 0.1156

Tobit (7) 0.90 (0.15) -0.34 1.00 0.0240 0.0820 0.88 (0.21) -0.50 1.00 0.0462 0.1235

Tobit (8) 0.90 (0.15) -0.34 1.00 0.0240 0.0818 0.87 (0.21) -0.46 1.00 0.0472 0.1263

2 Part (1) 0.90 (0.10) 0.35 0.98 0.0327 0.1022 0.89 (0.10) 0.40 0.98 0.0401 0.1169

2 Part (2) 0.90 (0.10) 0.32 0.98 0.0328 0.1014 0.88 (0.10) 0.36 0.98 0.0403 0.1183

2 Part (3) 0.90 (0.10) 0.29 0.98 0.0315 0.0983 0.89 (0.11) 0.27 0.98 0.0378 0.1125

2 Part (4) 0.90 (0.10) 0.24 0.98 0.0316 0.0982 0.89 (0.11) 0.21 0.98 0.0382 0.1150

2 Part (5) 0.90 (0.11) -0.33 1.06 0.0293 0.0996 0.90 (0.10) -0.04 1.00 0.0377 0.1150

2 Part (6) 0.90 (0.11) -0.36 1.07 0.0294 0.0996 0.89 (0.10) -0.07 1.00 0.0378 0.1162

2 Part (7) 0.92 (0.10) 0.33 1.22 0.0234 0.0812 0.90 (0.16) -0.43 1.21 0.0443 0.1231

2 Part (8) 0.92 (0.10) 0.32 1.20 0.0232 0.0804 0.90 (0.15) -0.35 1.26 0.0433 0.1204

GLM (1) 0.90 (0.17) -1.58 0.96 0.0374 0.1091 0.89 (0.12) -0.72 0.96 0.0373 0.1151

GLM (2) 0.89 (0.21) -2.80 0.97 0.0490 0.1121 0.88 (0.16) -1.49 0.97 0.0405 0.1215

GLM (3) 0.90 (0.18) -1.68 0.96 0.0383 0.1071 0.89 (0.16) -1.43 0.96 0.0401 0.1170

GLM (4) 0.89 (0.24) -3.42 0.97 0.0572 0.1108 0.87 (0.25) -2.91 0.97 0.0582 0.1267

GLM (5) 0.90 (0.18) -1.55 1.00 0.0379 0.1068 0.89 (0.09) 0.35 1.00 0.0414 0.1205

GLM (6) 0.89 (0.18) -2.00 1.00 0.0409 0.1085 0.88 (0.11) 0.12 1.00 0.0411 0.1248

GLM (7) Convergence not achieved

GLM (8) Convergence not achieved

MLOGIT (1) 0.89 (0.10) 0.01 0.95 0.0311 0.1092 0.88 (0.10) 0.10 0.95 0.0382 0.1207

MLOGIT (2) 0.89 (0.11) -0.07 0.97 0.0316 0.1095 0.87 (0.10) 0.01 0.97 0.0383 0.1222

MLOGIT (3) 0.89 (0.11) -0.02 0.96 0.0306 0.1056 0.88 (0.11) -0.12 0.96 0.0368 0.1169

MLOGIT (4) 0.89 (0.11) -0.12 0.97 0.0309 0.1062 0.87 (0.12) -0.23 0.97 0.0372 0.1193

MLOGIT (5) Convergence not achieved

MLOGIT (6) Convergence not achieved

MLOGIT (7) Convergence not achieved

MLOGIT (8) Convergence not achieved

OLOGIT (1) 0.89 (0.11) -0.16 0.95 0.0310 0.1089 0.88 (0.10) -0.01 0.95 0.0379 0.1202

OLOGIT (2) 0.89 (0.11) -0.17 0.97 0.0310 0.1075 0.87 (0.11) -0.03 0.97 0.0385 0.1235

OLOGIT (3)a 0.89 (0.11) -0.20 0.96 0.0302 0.1051 0.88 (0.12) -0.17 0.96 0.0370 0.1170

OLOGIT (4) 0.89 (0.11) -0.23 0.97 0.0300 0.1046 0.87 (0.12) -0.20 0.97 0.0374 0.1199

OLOGIT (5) 0.89 (0.11) -0.10 0.99 0.0290 0.1028 0.88 (0.11) 0.10 0.99 0.0376 0.1195
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4 Discussion

The PedsQLTM GCS is an important measure that has been

widely used to assess the HRQoL of children, but is not

currently preference based. This study shows that it is

possible to accurately map PedsQLTM GCS scores onto

summary EQ-5D-Y utility scores. A range of mapping

models was developed in accordance with external guide-

lines for this purpose [11]. Of all of the models examined,

the best two models for predicting utility scores in terms of

prediction error were two OLS models based on sub-scale

scores, their squared terms and interaction terms (with and

without age and gender).

The performance of the two preferred models in terms of

overall MAE was similar to previous mapping models,

which have obtained MAEs between 0.0011 and 0.19

[29].Their performance in terms of the overall MSE

(0.0315–0.0316) was also within the range of other

reported mapping studies [29]. The prediction accuracy for

both models varied considerably across the range of fitted

EQ-5D-Y utility scores (see Table 5) with the MAE for

predicted EQ-5D-Y utility scores at the lower end of the

utility range more than double that of higher fitted values, a

tendency also found in previous mapping studies [38, 39].

Because of the higher prediction errors at the lower end of

the utility scale it would be useful to replicate our analyses

using data for clinical populations with a broader range of

health utility index scores. However, if the purpose is to

use predicted scores in cost-effectiveness analyses, then the

mean scores across populations will be of greater interest

than the individual scores [37, 38]. Therefore, a predictive

model that gives group means that are close to the observed

values would be suitable for the purpose of mapping, and

other reported metrics such as the range of individual errors

should complement the assessment of the model’s

performance.

The mapping models shown in Table 6 can be used to

estimate EQ-5D-Y health utilities in situations where only

the PedsQLTM GCS has been administered. These models

require the analyst to have access to individual-level

PedsQLTM GCS data. They have been estimated using

PedsQLTM GCS sub-scale scores, their squared terms and

interactions, and additionally in the case of one model

(OLS 6) basic sociodemographic information. The models

are likely to be most accurate for children aged

11–15 years who have similar distributions of PedsQLTM

GCS scores to those of our study population. The gener-

alisability of our algorithms to other childhood populations

requires careful consideration. The items for each of the

age-specific modules and self-report or proxy-report for-

mats of the PedsQLTM GCS are essentially identical across

2–18 years of age, differing only subtly in terms of

developmentally appropriate language, or first- or third-

person tense. Similarly, the EQ-5D-Y currently only differs

from the adult EQ-5D in terms of its age-appropriate use of

language rather than in terms of its structure or underpin-

ning preference weights. In principle, therefore, our map-

ping algorithms may have broad applications across a wide

spectrum of childhood years, potentially inclusive of 2- to

18-year-olds, the age range currently considered empiri-

cally amenable to HRQoL measurement. Nevertheless, the

performance of our mapping algorithms in childhood

populations, which differ according to age or clinical

characteristics to our own, remains to be evaluated.

Our study is, to our knowledge, the first to estimate

associations between the PedsQLTM GCS and the EQ-5D-

Y and, therefore, we are not able to gauge our results with

those of comparable studies. The PedsQL (with the

Table 3 continued

Estimation method Estimation sample (n = 559) Validation sample (n = 337)

Mean (SD) Min Max MSE MAE Mean (SD) Min Max MSE MAE

OLOGIT (6) 0.89 (0.11) -0.12 0.98 0.0290 0.1024 0.87 (0.11) 0.09 0.99 0.0381 0.1219

OLOGIT (7) Convergence not achieved

OLOGIT (8) Convergence not achieved

Dependent variable for OLS, Tobit, Fractional Logistic, CLAD, Two-part and GLM models was EQ-5D score

Dependent variables for OLOGIT models were EQ-5D Dimensions

Independent variable(s): Model (1) PedsQL Total scale score; Model (2) PedsQL Total scale score, age and gender; Model (3) PedsQL Subscale

scores; Model (4) PedsQL Subscale scores, age and gender; Model (5) PedsQL Subscale scores, squared terms and interactions; Model (6)

PedsQL Subscale scores, squared terms, interactions, age and gender; Model (7) PedsQL items entered as categorical variables; Model (8)

PedsQL items entered as categorical variables, age and gender
a Parallel regression assumption holds

GLM generalized linear modelling, MSE mean squared error, MAE mean absolute error, Min minimum, Max maximum, OLS ordinary least

squares, PedsQL Pediatric Quality of Life Inventory, SD standard deviation
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exception of the toddler module covering 2- to 4-year-olds)

can be completed by the child and/or a parent proxy,

including for adolescents, and there are have been shown to

be differences in agreement between self and proxy reports

[40]. Future research should explore the performance of

our mapping algorithms in data obtained from proxy

Table 4 Model performance of two best-fitting models

Model no. Mean (SD) Min P.25 Median P.75 Max MSE MAE Abs diff.

\0.10 (%)

Abs diff.

\0.25 (%)

Estimation sample

Observed EQ-5D 0.903 (0.203) -0.594 0.796 1 1 1 – – – –

OLS (6) 0.903 (0.111) -0.309 0.890 0.935 0.955 1.047 0.0290 0.1000 70.84 94.99

OLS (5) 0.903 (0.110) -0.301 0.890 0.938 0.955 1.045 0.0291 0.1006 69.77 95.35

Validation sample

Observed EQ-5D 0.879 (0.226) -0.594 0.848 1 1 1 – – – –

OLS (6) 0.889 (0.104) -0.129 0.861 0.925 0.946 1.060 0.0363 0.1151 65.28 92.88

OLS (5) 0.893 (0.102) -0.112 0.866 0.928 0.955 1.067 0.0364 0.1140 64.69 93.77

Dependent variable = EQ-5D score

Independent variable(s): Model (5) PedsQL Subscale scores, squared terms and interactions; Model (6) PedsQL Subscale scores, squared terms,

interactions, age and gender

Abs diff. absolute differences, MSE mean squared error, MAE mean absolute error, OLS ordinary least squares, PedsQL Pediatric Quality of Life

Inventory, SD standard deviation

Plot of residuals –OLS6 
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Fig. 2 Plot of residuals (actual minus predicted) for the two best

fitting models

Table 5 Distribution of errors by observed EQ-5D utility score

OLS (6) OLS (5)

MSE

EQ-5D range

\0 1.0154 1.0339

0–0.2 0.3249 0.3282

0.2–0.4 0.1170 0.1214

0.4–0.6 0.1474 0.1527

0.6–0.8 0.0219 0.0223

0.8–1 0.0101 0.0095

MAE

EQ-5D range

\0 0.9422 0.9522

0–0.2 0.5677 0.5708

0.2–0.4 0.2860 0.2889

0.4–0.6 0.3797 0.3871

0.6–0.8 0.1329 0.1342

0.8–1 0.0784 0.0762

Dependent variable = EQ-5D score. Independent variable(s): Model

(5) PedsQL Subscale scores, squared terms and interactions; Model

(6) PedsQL Subscale scores, squared terms, interactions, age and

gender

MSE mean squared error, MAE mean absolute error, OLS ordinary

least squares

Mapping EQ-5D Utility Scores from the PedsQLTM Generic Core Scales 703



reports as opposed to self-reports. The results presented in

this paper are preliminary and we have shown that it is

possible to map PedsQLTM GCS scores onto the summary

EQ-5D-Y utility score. There is need for further validation

and testing before these results can be broadly applied in

economic evaluations.

A caveat to the study findings is that although we used a

fairly large sample for the mapping analyses, we encoun-

tered problems when attempting to use the response map-

ping approaches to generate predictions. This was because

of the fact that our study population largely comprised

healthy children with a mean EQ-5D-Y utility score of

0.89. This was reflected in the distribution of scores across

the three response levels for each of the five dimensions of

the EQ-5D-Y, where the proportion of children scoring a

question as level three or ‘‘severe or extreme problems’’

was very low (see Table 2). We have not tested the per-

formance of the estimated models in populations of less

healthy children. Future research could overcome this issue

by estimating mapping algorithms using data for children

with acute or chronic health conditions; this is a further line

of enquiry that we are pursuing. A further caveat to the

study findings is that we have not estimated mapping

algorithms between the PedsQLTM GCS and the EQ-5D-

5L, a recently developed modification of the standard EQ-

5D that provides five response levels in each dimension

[41]. Early evidence suggests that the five-level classifi-

cation system is less prone to ceiling and floor effects and

has greater discriminative ability in some clinical popula-

tions [42–45]. Future research in this area may focus on the

development of new mapping algorithms between non-

preference-based measures of HRQoL developed for

childhood and the EQ-5D-5L, if the latter measure

becomes the recommended preference-based measure of

HRQoL for QALY measurement.

It will, of course, always be preferable to have prefer-

ence- or utility-based outcomes data collected as part of an

evaluation of services for children [11]. When this is not

possible, however, the results of our analyses show that it is

possible to reasonably predict EQ-5D-Y utility scores from

PedsQLTM GCS responses using a regression model

framework. It is important to stress that, if predicted scores

from mapping are to be used as part of economic evalua-

tions, the uncertainty surrounding these predictions should

Table 6 Models results for the two best-fitting models, n = 896

OLS (6) OLS (5)

Coefficient Standard error Coefficient Standard error

Age -0.006136 (0.004741)

Gender -0.009385 (0.012292)

PedsQL PF 0.009067*** (0.002571) 0.009127*** (0.002568)

PedsQL EF 0.006807** (0.002533) 0.006611** (0.002530)

PedsQL SF 0.005630* (0.002831) 0.005705* (0.002829)

PedsQL SchF 0.005802* (0.002371) 0.006011* (0.002367)

PedsQL PF Squared 0.000020 (0.000025) 0.000020 (0.000025)

PedsQL EF Squared -0.000049** (0.000018) -0.000048** (0.000018)

PedsQL SF Squared 0.000011 (0.000016) 0.000011 (0.000016)

PedsQL SchF Squared -0.000017 (0.000015) -0.000017 (0.000015)

PedsQL PF 9 EF -0.000005 (0.000027) -0.000004 (0.000027)

PedsQL PF 9 SF -0.000053 (0.000029) -0.000055 (0.000029)

PedsQL PF 9 SchF -0.000066* (0.000030) -0.000066* (0.000030)

PedsQL EF 9 SF -0.000011 (0.000023) -0.000009 (0.000023)

PedsQL EF 9 SchF 0.000061** (0.000021) 0.000059** (0.000021)

PedsQL SF 9 SchF -0.000026 (0.000022) -0.000027 (0.000022)

Constant -0.335861** (0.118035) -0.428496*** (0.094210)

Observations 896 896

Adjusted R2 0.2870 0.2868

MSE 0.0315 0.0316

MAE 0.1063 0.1067

Standard errors in parentheses

PF physical functioning, PedsQL Pediatric Quality of Life Inventory, EF emotional functioning, MSE mean squared error, MAE mean absolute

error, OLS ordinary least squares, SF social functioning, SchF school functioning

* p \ 0.05, ** p \ 0.01, *** p \ 0.001
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be accounted for in the analyses. Nevertheless, our results

can be used to inform utility estimation within future

economic evaluations of paediatric interventions.

5 Conclusions

This study has shown that it is possible to predict EQ-5D

health utilities from PedsQLTM GCS responses. Our map-

ping algorithms provide an empirical basis for estimating

health utilities in childhood when EQ-5D data are not

available; they can be used to inform future economic

evaluations of paediatric interventions. They are likely to

be robust for populations comparable to our own (children

aged 11–15 years in attendance at secondary school). The

performance of these algorithms in childhood populations,

which differ according to age or clinical characteristics to

our own, remains to be evaluated.
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