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Abstract
The number of childhood cancer survivors is increasing rapidly. According to American Association for Cancer Research, 
there are more than 750,000 childhood cancer survivors in the United States and Europe. As the number of childhood can-
cer survivors increases, so does cancer treatment-related cardiac dysfunction (CTRCD), leading to heart failure (HF). It 
has been reported that childhood cancer survivors who received anthracyclines are 15 times more likely to have late cancer 
treatment-related HF and have a 5-fold higher risk of death from cardiovascular (CV) disease than the general population. 
CV disease is the leading cause of death in childhood cancer survivors. The increasing need to manage cancer survivor 
patients has led to the rapid creation and adaptation of cardio-oncology. Cardio-oncology is a multidisciplinary science that 
monitors, treats, and prevents CTRCD. Many guidelines and position statements have been published to help diagnose and 
manage CTRCD, including those from the American Society of Clinical Oncology, the European Society of Cardiology, the 
Canadian Cardiovascular Society, the European Society of Medical Oncology, the International Late Effects of Childhood 
Cancer Guideline Harmonization Group, and many others. However, there remains a gap in identifying high-risk patients 
likely to develop cardiomyopathy and HF in later life, thus reducing primary and secondary measures being instituted, and 
when to start treatment when there is echocardiographic evidence of left ventricular (LV) dysfunctions without symptoms of 
HF. There are no randomized controlled clinical trials for treatment for CTRCD leading to HF in childhood cancer survivors. 
The treatment of HF due to cancer treatment is similar to the guidelines for general HF. This review describes the latest 
pharmacologic therapy for preventing and treating LV dysfunction and HF in childhood cancer survivors based on expert 
consensus guidelines and extrapolating data from adult HF trials.

1  Introduction

Cardiac dysfunction and heart failure (HF) in childhood 
cancer survivors related to treatment with anthracyclines 
(doxorubicin, daunorubicin) and their analogs (epirubicin, 
idarubicin, and mitoxantrone) has been widely studied and 
published in the literature. Several mechanisms postulated 
for anthracycline-related cardiotoxicity include topoisomer-
ase-II mediated DNA double-strand breaks, reactive oxygen 
species (ROS) formation, and oxygen free radicals during 
oxidative respiratory chain reaction in the mitochondria [1]. 
The common pathway is persistent mitochondrial damage 
in cardiomyocytes resulting in cardiac dysfunction, includ-
ing histologic changes (myocyte vacuolization, myofibrillar 

loss, and cell death), atrophy, and fibrosis [2]. Alkylating 
agents (cyclophosphamide, ifosfamide, and melphalan) used 
to treat various childhood cancers can also cause cardiomyo-
pathy, although at much lower rates than anthracyclines [3, 
4]. Other newer chemotherapeutic agents such as targeted 
cancer therapies (immune checkpoint inhibitors [ICI], tyros-
ine kinase inhibitors [TKI], human epidermal growth factor 
receptor 2 [HER2]-targeted therapy), vascular endothelial 
growth factor (VEGF), and cellular therapy (chimeric anti-
gen receptor T [CAR-T] cells) can cause a variety of cardio-
toxicities, including acute myocarditis and cardiomyopathy 
[5]. As a result of radiation therapy (RT), especially when 
the heart is involved in radiation such as mediastinal and 
thoracic spine RT, 10–30% of patients may develop cardiac 
complications [6]. Most cancers in children, including leu-
kemia, lymphoma, and brain tumors, need a combination of 
chemotherapy and RT. The cumulative toxicity of various 
cancer therapies increases the risk of these patients later 
developing cardiomyopathy and HF [7]. Children can have 
decreased systolic function of the left ventricle (LV) and 
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Key Points 

Cardiomyopathy and heart failure are leading causes of 
death in childhood cancer survivors.

Dexrazoxane is the only drug approved by the US FDA 
for the secondary prevention of anthracycline-related 
cardiomyopathy.

Early detection of left ventricular dysfunction and early 
initiation of cardioprotective therapy can lead to subse-
quent recovery of function and delay progression to heart 
failure.

Standard heart failure therapies should be implemented. 
Other causes of left ventricular dysfunction should be 
excluded in children who develop heart failure during 
treatment or long term after cancer therapy.

have a similar clinical presentation to a dilated cardiomyo-
pathy (DCM) phenotype in early stages after chemotherapy, 
but some children may develop a restrictive pattern of LV 
dysfunction (restrictive cardiomyopathy, RCM) later in their 
life, a long time after cancer therapy. Thus, both types of 
HF, that is, due to reduced ejection fraction (HFrEF) or pre-
served ejection fraction (HFpEF), are encountered as late 
cancer treatment-related cardiac dysfunction (CTRCD) in 
childhood cancer survivors [7]. Given this new field and the 
heterogeneity of this cohort of childhood cancer survivors, 
there have been no randomized controlled trials in children 
for the treatment of HF due to cancer therapy. Therefore, 
CTRCD and HF drug treatment is primarily based on expert 
consensus and extrapolation of data from adult HF trials. 
This review compares stages of HF due to cancer therapy 
and focuses on preventing and treating HF in childhood can-
cer survivors.

2 � Prevention of Cancer Treatment‑Related 
Cardiac Dysfunction (CTRCD) and Heart 
Failure (HF)

Figure 1 describes three phases of cancer therapy patients: 
baseline risk, during cancer therapy, and long-term follow-
up in cancer survivors. The cardiovascular (CV) risk is 
minimal at baseline and depends upon pre-existing risk fac-
tors (Fig. 2). During cancer therapy, CV outcomes depend 
upon chemotherapy and combination therapies with RT. 
The risk of cardiac injury is monitored by echocardiography 
and cardiac biomarkers (Fig. 3). After cancer therapy, CV 
risk depends upon CV risk factors (Table 1), and surveil-
lance depends on these factors (Fig. 4). The ultimate goal 

is to mitigate the CTRCD without decreasing the potency 
of cancer therapy. Primary prevention is extended to all 
patients receiving cancer therapy with potential cardiotox-
icity (at risk, Stage A HF [8]) and to intervene to optimize 
their modifiable risk factors (Fig. 2). Secondary prevention 
in selected high-risk patients showing preclinical signs of 
cardio-toxicity in the form of elevated cardiac biomarkers 
(cardiac troponin T (cTnT) and brain-type natriuretic pep-
tides (BNP) or change in echocardiographic parameters such 
as a decrease in left ventricular ejection fraction (LVEF), 
decrease in strain and strain rate, and evidence of cardiac 
modeling such as dilated LV, reduce wall thickness, etc., but 
clinically asymptomatic (Stage B HF) [9]. Secondary pre-
vention also includes screening for cardiomyopathy in high-
risk patients who received either cumulative anthracyclines 
dose ≥ 250 mg/m2 or RT ≥ 35 Gy) over the long term after 
completion of cancer therapy (Fig. 4). Early identification of 
cardiac dysfunction and preemptive intervention is proven 
to help decrease cardiotoxicity, and early treatment in symp-
tomatic HF (Stage C) will help the recovery of the myocar-
dium by reverse remodeling [10]. HF medications used in 
childhood cancer survivors are similar to those used in the 
general population. The choice of medications depends on 
the individual patient's clinical condition, underlying cause 
of HF, and other factors [11].    

2.1 � Primary Prevention

Primary prevention applies to all patients receiving car-
diotoxic chemotherapy. As per the American College of 
Cardiology (ACC)/American Heart Association (AHA), all 
patients requiring cardiotoxic chemotherapy belong to stage 
A (at risk) HF [8]. For anthracyclines, cardiac damage is 
dose-dependent. Thus, the goal is to limit the total doses of 
anthracyclines to < 250 mg/m2 [9]. Recent evidence sug-
gests that patients treated with < 100 mg/m2 total cumula-
tive anthracyclines have not shown a significantly increased 
risk of HF [11]. However, there is no safe dose of anthra-
cyclines. Factors that can increase the risk of developing 
cardiac toxicity include patients < 5 years of age, minority 
race, female gender, Down syndrome, cumulative anthra-
cycline dose > 250 mg/m2, combined with radiation expo-
sure, sedentary lifestyle, poor diet, and comorbidities such 
as prior LV dysfunction, hypertension, obesity, diabetes, and 
dyslipidemia [6, 12]. Primary prevention aims to optimize 
pre-existing modifiable CV risk factors, normalize blood 
pressure, lower cholesterol, and consume a balanced nutri-
tious diet. Anthracyclines should be avoided in patients with 
LVEF < 40% unless there is no practical alternative cancer 
regimen. In patients with LVEF < 50% but ≥ 40% and those 
exposed to cancer chemotherapy with pre-existing cardio-
vascular risk factors, a preemptive cardioprotective therapy 
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with angiotensin‐converting enzyme inhibitors (ACEis) (or 
angiotensin receptor blockers [ARBs]) and/or β‐blockers 
(BBs) is recommended [13]. Patients with cardiometabolic 

syndrome undergoing chemotherapy should receive close 
monitoring of cardiovascular parameters, such as blood pres-
sure, heart rate, and cardiac function, to promptly detect any 

Fig. 1   Low to high cardiovas-
cular risk factors over time in 
childhood cancer survivors. 
CTRCD chemotherapy-related 
cardiac disease

Fig. 2   Baseline cardiovascular (CV) risk assessment. BNP brain 
natriuretic peptide, CHD congenital heart disease, CMR cardiac mag-
netic resonance, CVD cardiovascular disease, ECG echocardiography, 

GLS global longitudinal strain, H/O history of, LVEF left ventricular 
ejection fraction, TTE transthoracic echocardiography
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changes or complications. A 25% increased weight gain in 
leukemia survivors observed after chemotherapy and RT is 
associated with an imbalance between energy intake and 
expenditure [14]. Lifestyle changes include promoting a 
healthy diet, regular exercise, weight management, and 

avoiding tobacco and excessive alcohol use, play an impor-
tant role in the overall management of HF in cancer survi-
vors. However, exercise and dietary modifications should be 
implemented in consultation with oncologist to ensure safety 
and appropriateness during cancer treatment [15].

Stage A HF
(At risk for HF: all 
pa�ents receiving 
cancer Rx )
- Normal LV func�on
- Normal Tn/BNP 
- No symptoms

Stage B HF
(Asymptoma�c LV 
dysfunc�on)
- LVEF  between 50-
54% - Increased 
Tn/BNP

Stage C HF
(Symptoms and signs 
of HF syndrome
- LVEF <50%,
- GLS <-15%
- Elevated BNP 
(NYHA class II-III)

Stage D HF
(Advanced HF with 
end-organ 
dysfunc�on requiring 
hospitaliza�on)
Refractory to oral 
GDMT 
(NYHA class IV)

Primary preven�on
- Risk stra�fica�on
- Management of CV risk 
factors as in Figure-2 
before star�ng cancer 
therapy     

Secondary preven�on
- Alterna�ves to anthracycline
- Cardioprotec�ve therapy

Dexrazoxane
- ? Role of BB/ACEi
- Personalize surveillance

GDMT for HF
- BB
- ACEi/ARB
- ARNi
- SGLT-2i
- Ivabradine
- Aldosterone antagonists

Advanced HF Therapy
- RCT
- Inotropic support 
- MCS
- HT
- Pallia�ve care

(NYHA class I)

Fig. 3   Surveillance for cardiac dysfunction during cancer therapy and 
management of heart failure (HF) during and after chemotherapy. 
ACEi angiotensin-converting enzyme inhibitor, ARB angiotensin 
receptor blocker, ARNi angiotensin-receptor-neprilysin inhibitor, BB 
β-blocker, CV cardiovascular, GDMT guideline-directed medical ther-

apy, HT heart transplantation, LV left ventricle, LVEF left ventricular 
ejection fraction, MCS mechanical circulatory support, NYHA New 
York Heart Association, RCT​ resynchronization therapy, SGLT-2i 
sodium-glucose transporter-2 inhibitor, Tn troponin

Table 1   Cardiovascular risk category and patient characteristics

CV cardiovascular, HF heart failure, RT radiation therapy

Risk category Patient characteristics

Very high risk Baseline risk factors before starting cancer therapy (Fig. 2)
Doxorubicin (> 400 mg/m2)
RT > 35 Gy
RT > 15–25 Gy + doxorubicin ≥ 100 mg/m2

Early high risk (< 5 years after cancer therapy) High baseline CV or metabolic risk factors (Fig. 2)
HF Class C and D during cancer therapy
Doxorubicin 250–399 mg/m2

Hematopoietic stem cell transplantation
Late high risk ≥ 5 years RT 15–25 Gy

RT 15–25 Gy + doxorubicin ≥ 100 mg/m2

Poorly controlled CV risk factors and metabolic syndrome
Moderate risk Moderate risk factors at baseline

Doxorubicin 100–249 mg/m2

RT 15–25 Gy
RT < 5 Gy + doxorubicin ≥ 100 mg/m2

Low risk Low baseline risk factors and normal CV assessment at end 
of therapy

Mild cardiac dysfunction during cancer therapy but recov-
ered at end of cancer therapy

RT < 5 Gy
Doxorubicin < 100 mg/m2
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2.1.1 � Statins

Statins reduce cholesterol synthesis by inhibiting the enzyme 
HMG CoA reductase and they are known to exhibit pleio-
tropic properties and decrease oxidative stress and inflam-
mation. Atorvastatin is approved by the US Food and Drug 
Administration (FDA) for lowering cholesterol and the risk 
of heart attack and stroke but is not approved to reduce 
CTRCD after doxorubicin. In adults, chronic statin treat-
ment concomitantly with anthracyclines was associated 
with a lower risk for incident HF and less deterioration of 
LVEF [16, 17]. Recently, it has been found that the efficacy 
of prophylactic statin therapy in patients with breast cancer 
and lymphomas with no indication for statin therapy did 
not affect LV function decline after 2 years [18]. In contrast 
to the prior study, in the STOP-CA clinical trial, patients 
who took atorvastatin with chemotherapy before the first 
dose of anthracycline for 1 year showed less deterioration 
of LV function compared with those who took a placebo 
[19]. The study's author has supported the use of atorvastatin 
when anthracycline group drugs are used for treating lym-
phoma in adults. A high dose of atorvastatin (i.e., 40 mg) is 
used in both trials. However, further studies are needed on 
whether statin use is a cardioprotective therapy in children 
receiving anthracyclines in the future.

2.1.2 � Exercise

Exercise may decrease the CV risk factors for the devel-
opment of CTRCD and complement pharmacologic risk 
factor modification. Physical exercise may change the 

mitochondrial phenotypes that resist ROS-mediated dam-
age and could be beneficial against anthracycline-induced 
cardiac toxicity [20]. However, exercise may harm children 
with restrictive LV physiology by precipitating pulmo-
nary edema. Exercise should be individualized over time 
as childhood cancer survivors’ health changes. Appropri-
ate and safe exercise rehabilitation will decrease the survi-
vor’s CV risks, improve mental health, and decrease adverse 
cardiometabolic effects. Cardiopulmonary exercise testing 
(CPET) is beneficial to identify CV versus non-CV factors 
for decreased exercise capacity in childhood cancer survi-
vors. Cardiac rehabilitation is beneficial in the improvement 
of cardio-respiratory fitness. In adults, an increase in 1 meta-
bolic equivalent (3.5 mL O2/kg/min) in exercise capacity 
decreases CV-related mortality [21].

2.1.3 � Role of Neurohormonal Antagonists as Primary 
Prevention of HF

Preclinical studies have shown that angiotensin II [22] and 
endothelin receptors [23] can mediate anthracycline cardio-
toxicity. Furthermore, in animals exposed to anthracyclines, 
β-1 receptor activation appears to be cardiotoxic, while β-2 
receptor activation seems to be cardioprotective [24]. A 
prophylactic cardioprotective therapy with bisoprolol, per-
indopril, and eplerenone attenuated doxorubicin-induced 
adverse myocardial effects in a rodent model compared with 
treatment initiated after the development of cardiac injury 
[25]. These observations form the rationale for considering 
neurohormonal antagonists for prophylactic treatment HF 
with BBs, ACEis, ARBs, and mineralocorticoid receptor 

Fig. 4   Surveillance and 
management of CTRCD in 
childhood cancer survivors. 
BNP brain natriuretic peptide, 
CTRCD chemotherapy-related 
cardiac disease, CV cardiovas-
cular, ECG echocardiography, 
GLS global longitudinal strain, 
LVEF left ventricular ejec-
tion fraction, MRI magnetic 
resonance imaging, Tn troponin, 
TTE transthoracic echocardi-
ography, 2-D two-dimensional, 
3-D three-dimensional
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antagonists (MRAs) for chemotherapy-induced cardiomyo-
pathy and HF. The results from preventing LV dysfunction 
with enalapril and carvedilol showed a minor reduction in 
LVEF compared with placebo in patients. Pre-treatment with 
both bisoprolol and perindopril attenuated a decline in LVEF 
in a group of HER2+ breast cancer patients undergoing 
treatment with trastuzumab [27]. Candesartan, an ARB, also 
attenuates the decrease in LVEF in HER2-positive breast 
cancer patients undergoing anthracycline-containing chemo-
therapy. In contrast, metoprolol did not prevent a reduction 
in LVEF [28]. There are conflicting findings from multi-
ple small trials on the role of neurohormonal antagonists 
as primary prevention in patients receiving anthracyclines 
[29–33]. Carvedilol has a beneficial effect in decreasing 
anthracycline-induced decline in LVEF [29–31]. However, 
other studies did not show the benefit of BB therapy with 
or without ACEi [32, 33]. In the CECCY trial, synchronous 
use of carvedilol with anthracyclines did not protect against 
LV systolic dysfunction in HER2-negative breast cancer 
patients. However, a benefit of β-blockade was noted in the 
development of diastolic dysfunction [34]. Empagliflozin, 
a sodium-glucose cotransporter-2 inhibitor (SGLT-2i), was 
also found to attenuate cardiotoxic effects exerted by doxoru-
bicin on LV function and remodeling in a nondiabetic mice 
model [35]. Current evidence does not support ACEi and 
BBs as primary preventive strategies in children receiving 
anthracycline chemotherapy without any changes in cardiac 
or imaging biomarkers.

2.1.4 � Genetics

Evidence of increasing the burden of rare variants among 
patients who develop chemotherapy-induced cardiomyo-
pathy suggests that genetic factors are significant deter-
minants of CTRCD susceptibility and outcomes [36–47]. 
Garcia-Pavia and colleagues have reported an increased 
frequency of rare, truncated variants (TTN) and missense 
variants (MYH7) of genes in patients who developed cardio-
myopathy after cancer therapy [37]. Lipshultz et al. found 
that 30% of cancer survivors with cardiomyopathy have one 
or more mutations of mitochondrial DNA compared with 
healthy controls. Also, they found that cancer survivors 
have higher mitochondrial DNA copies/cardiomyocytes as 
a part of the compensation for abnormal functioning mito-
chondrial DNA in cardiomyocytes [38]. Besides TTN and 
MYH7 genes, single nucleotide polymorphisms of RARG 
rs2229774 (G>A) [39, 40], SLC28A3 rs7853758 (G>A) [7], 
UTG1A6*4 rs17863783 (G>T) [36], and CELF4 rs1786814 
[41] genes are also associated with a higher risk of CTRCD. 
Numerous retrospective studies [42–46] suggest pharmaco-
genetic testing may be beneficial before chemotherapy. More 
data should guide clinical decision making in children based 
on genomics. In the future, identifying genetic risk factors 

with artificial intelligence (machine learning) for anthra-
cycline cardiotoxicity using a combination of genetic and 
clinical factors provides new opportunities to identify cancer 
patients at high risk of CTRCD.

2.2 � Secondary Prevention

Secondary prevention could be defined as the appropriate 
management strategies for preventing symptoms, HF, and 
cardiovascular events in asymptomatic anthracycline car-
diotoxicity. The secondary prevention goal is identifying 
high-risk patients for the development of HF earlier and 
and initiating cardioprotective therapy. Although there are 
no evidence-based guidelines for monitoring cardiotoxicity 
during and after chemotherapy, there are serum and imaging 
biomarkers such as elevated high-sensitive (hs) C-reactive 
protein, cTnT, and BNP or NT-pro-BNP  and LVEF in order 
to detect subclinical cardiotoxicity prior to the development 
of overt cardiac dysfunction [48–52]. Thus, close monitoring 
of these patients will help to manage LV dysfunction and 
to prevent progression to HF. Early impaired LV function 
with LVEF 40%, but asymptomatic could be treated with 
ACEi in combination with BBs [48]. New medications used 
in HF including SGLT-2 inhibitors, angiotensin receptor-
neprilysin inhibitor (ARNi), non-steroid MRAs, ivabradine, 
and ATPase activators such as omecamtiv mecarbil, could be 
used as potential secondary prevention strategies with prom-
ising results in the future [35]. However, more randomized 
control trials are required.

2.2.1 � Early Identification of Left Ventricular Dysfunction 
by Echocardiography

Echocardiography is the primary modality of screening to 
determine cardiac remodeling, LVEF, Strain, and Strain 
rate. LVEF < 50% or a 10% relative reduction is the most 
commonly used echocardiographic parameter in adults [53]. 
However, specific guidelines to identify cutoff values do not 
exist for the pediatric population. LVEF has established pre-
dictive capability for HF but depends on preload and after-
load, and reproducibility is limited [54]. Furthermore, LVEF 
is not sensitive to detect regional wall motion abnormalities. 
Many studies suggest the role of Strain, primarily global 
longitudinal Strain (GLS), for segmental assessment of myo-
cardial function after starting cancer therapies in children 
[55, 56]. In adult cancer survivors, LV GLS < − 15% sug-
gests clinically significant cardiotoxicity [57]. GLS appears 
to have higher sensitivity, but specificity as a marker for 
long-term cardiotoxicity is not apparent. The SUCCOUR 
(Strain Surveillance During Chemotherapy for Improv-
ing Cardiovascular Outcomes) trial recently showed that 
echocardiography GLS-guided cardioprotection therapies 
provide less cardiac dysfunction in survivors of potentially 
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cardiotoxic chemotherapy compared with usual care at 3 
years [58]. There are several newer imaging studies such as 
cardiac magnetic resonance (CMR) imaging, computerized 
tomography angiography, radionuclide scanning to deter-
mine the function and myocardial perfusion (positron emis-
sion tomography, PET), and other echocardiographic indices 
such as 3-D LVEF, 3-D Strain, right ventricular Strain and 
left atrial Strain for detection of diastolic dysfunction in 
childhood cancer survivors [59]. At this time, the utility of 
this advanced imaging in predicting cardiac outcomes after 
chemotherapy has yet to be satisfactorily established in pedi-
atric patients. The surveillance imaging details are beyond 
this review's scope; readers can refer to European Society of 
Cardiology guidelines on cardio-oncology [13].

2.2.2 � Cardioprotective Therapy: Dexrazoxane

Dexrazoxane is the only FDA-approved cardiacprotect-
ant  against anthracycline-induced cardiotoxicity and is 
recommended for high-risk patients prone to CTRCD. The 
drug's administration is usually via intravenous infusion 
over 15 min. The suggested dosage ratio of dexrazoxane to 
doxorubicin is 10 to 1. The dose of dexrazoxane requires a 
reduction in patients who have moderate to significant renal 
impairment (e.g., creatinine clearance lower than 40 mL/
min) by 50%. Administration of doxorubicin within half 
an hour after the completion of dexrazoxane infusion is 
recommended. Although the mechanism of cardioprotec-
tion by dexrazoxane was thought to be mediated by iron 
chelation, more recent evidence suggests that inhibition of 
2-β-topoisomerase and inhibition of mitochondrial DNA 
breaks are also possible mechanisms for cardioprotection 
[60]. Despite compelling evidence of cardioprotective effi-
cacy, dexrazoxane is not routinely administered to patients 
receiving cancer therapies. The International Late Effects 
of Childhood Cancer Guideline Harmonization Group 
reviewed the existing literature and used evidence-based 
methodology to develop a guideline for dexrazoxane admin-
istration in children with cancer who are expected to receive 
anthracyclines [8]. It is recommended to use dexrazoxane 
in all patients who receive a total anthracycline dose of 
≥ 250 mg/m2 or RT dose ≥ 35 Gy (moderate recommen-
dation) [8]. No recommendation could be formulated for 
cumulative doxorubicin or equivalent doses of < 250 mg/
m2 due to insufficient evidence to determine whether the risk 
of cardiotoxicity outweighs the possible risk of subsequent 
neoplasms [8]. Further research is needed to determine the 
long-term efficacy and safety of dexrazoxane in children 
with cancer. Lue et al. demonstrated that a synthetic human 
analog, humanin, increases the protective effect of dexrazox-
ane in vivo by inhibiting the doxorubicin-induced decrease 
in LVEF and cardiac fibrosis while protecting mitochondrial 
function [61]. Another highly conserved and stress-inducible 

protein, SESN2, maintains mitochondrial function, thus pro-
viding a potential future therapeutic approach to doxoru-
bicin-induced cardiomyopathy [62].

2.2.3 � Cardioprotective Role of Neurohormonal Agents

The diagnosis of cancer treatment-related cardiomyopathy is 
a diagnosis of exclusion, and in a comprehensive search for 
alternatives, etiologies—particularly genetic and infectious 
etiologies—should be ruled out. The role of neurohormo-
nal antagonists is controversial in children with asympto-
matic LV dysfunction. However, they may be considered 
in some cases. According to the ACC/AHA Task Force on 
Clinical Practice Guidelines and the Heart Failure Society 
of America, patients who develop LV dysfunction during 
anthracycline treatment, even asymptomatic (Stage B) HF 
patients, should be treated with ACEis and BBs [8]. Enal-
april is helpful in children with CTRCD due to anthracycline 
therapy [63, 64]. Although enalapril seems to decrease the 
cardiotoxic effects of cancer therapy, the long-term impacts 
on preventing HF have been disappointing [65, 66]. Multiple 
studies have shown that early initiation of BBs improves LV 
function in patients receiving anthracycline therapy over a 
longer-term follow-up [67–69]. The role of BBs in prevent-
ing cardiotoxicity is currently undergoing evaluation in a 
study of the long-term benefits of carvedilol in preventing 
cardiomyopathy and/or HF in high-risk childhood cancer 
survivors exposed to high-dose anthracyclines [70]. The 
results will be helpful to determine if carvedilol can mitigate 
anthracycline-related HF.

3 � Treatment of Cancer Therapy‑Related 
Stage C Heart Failure

Cancer therapy-related HF can be due to reduced LVEF 
(HFrEF) or preserved LVEF (HFpEF) [71]. There is a lack 
of randomized controlled trials for chemotherapy-induced 
HF, either HFrEF or HFpEF. Cancer patients diagnosed with 
clinical HF either during or after their cancer therapies are 
currently being treated according to ACC/AHA guidelines 
for managing HF with ACEis/ARBs/ARNi, BBs, and MRAs 
[8].

3.1 � Treatment of Stage C HF with Reduced Ejection 
Fraction (HFrEF)

A combination of BB, ACEi, ARB, and MRA is commonly 
used in guideline-directed medical therapy (GDMT) for 
Stage C HFrEF [72, 73]. Unfortunately, enalapril improved 
LV systolic function in the short-term period, but over the 
long term, there was no effect on the progression of HF in 
patients who received anthracyclines, as many childhood 
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cancer survivors have developed restrictive cardiac physiol-
ogy [66, 74]. Newer contemporary drugs for HFrEF include 
(i) ARNi, a combination of valsartan and sacubitril, (ii) 
ivabradine, (iii) SGLTi (empagliflozin, dapagliflozin, and 
canagliflozin), and (iv) soluble guanylate cyclase (sGC) 
stimulator (vericiguat) that targets the cGMP pathway [75, 
76]. Recent meta-analyses have shown that polytherapy 
with neurohormonal antagonists should be started simul-
taneously rather than sequentially in subjects with HFrEF 
[77]. Recently, FDA-approved therapy, ARNi, has improved 
LV function and decreased BNP in adults with long-stand-
ing chemotherapy-induced HF [78–80]. However, whether 
ARNi is helpful for the primary prevention of anthracycline-
induced systolic dysfunction is unknown. A recent ongo-
ing trial of ARNi in breast cancer patients will provide 
more information in the future [81]. Recently, SGLT2i has 
improved HF outcomes in adults with anthracycline-related 
cardiomyopathies [83, 84]. Based on adult HF studies, these 
newer HF agents should be used in children with cancer ther-
apy-induced refractory HF [72]. Lately, Dapagliflozin has 
been relatively safe and efficacious when added to GDMT 
in children aged < 21 years with a diagnosis of HF [85].

Soluble guanylate cyclase (sGC) is intimately involved in 
regulating cardiovascular tone, platelet aggregation, and titin 
phosphorylation, thus facilitating both the contraction and 
relaxation of cardiomyocytes [86]. Vericiguat, an sGC stim-
ulator that restores the NO-sGC-cGMP pathway by stimulat-
ing sGC levels and enhancing endogenous NO sensitivity, 
is helpful in HF [87]. The studies suggest an opportunity 
for cGMP manipulation to prevent cardiac dysfunction in a 
juvenile mouse model of anthracycline cardiotoxicity [88]. 
Other preclinical data indicate that cGMP manipulations 
might be helpful for the primary prevention of cardiac dys-
function [89]. Recent clinical trials on the efficacy, safety, 
and pharmacodynamics of vericiguat in pediatric partici-
pants with heart failure due to LV systolic dysfunction may 
find a role for vericiguat in children in the future [90]. How-
ever, SGLT2i, vericiguat, ivabradine, ATPase activators such 
as omecamtiv mecarbil, and cGMP manipulators such as 
vericiguat are not the first lines of therapy, and they are still 
considered experimental in children.

3.2 � Treatment of Stage C HF with Preserved 
Ejection Fraction (HFpEF)

Indications from the general population have shown that 
diastolic dysfunction usually progresses to Stage C HF in 
patients with concomitant CV risk factors [71, 91]. In the 
St. Jude Lifetime cohort study, diastolic dysfunction after 
cancer therapy has been described in 11% of all cancer sur-
vivors, and 8.7% of them had isolated diastolic dysfunction 
[92]. Childhood cancer survivors sometimes experience a 
restrictive cardiomyopathy phenotype due to decreased LV 

mass index and LV chamber size [93]. There is limited evi-
dence that the conventional GDMT for HFrEF is effective 
for HFpEF [94, 95]. Although ARNi has a neutral effect on 
significant cardiovascular adverse outcomes in the PARA-
MOUNT-HF trial, it has been approved for use in HFrEF 
and HFpEF because of its improved quality of life and New 
York Heart Association (NYHA) functional class in adults 
[96]. In the recently completed EMPEROR-Preserved trial, 
empagliflozin produced an early and long-lasting reduction 
in the risk and severity of a broad range of worsening HF 
events in patients with NYHA class II–IV HFpEF, defined 
as LVEF between 40 and 49% [97]. Little is known about 
SGLT2i relieving diastolic dysfunction in cardio-oncologic 
settings. In limited preclinical in-vivo studies, empagliflozin 
prevented a doxorubicin-related deterioration of LV func-
tion [98]. The protective effect of empagliflozin is due to 
its cardioprotective property independent of its impact on 
increasing diuresis and decreasing afterload.

4 � Treatment of Cancer‑Therapy‑Related 
Advanced HF (Stage D)

When a patient’s HF worsens despite maximizing oral 
GDMT, referral to an advanced HF specialist to consider 
a continuous inotropic infusion, cardiac resynchronization 
therapy (CRT), mechanical circulatory support, and heart 
transplant is appropriate. Decisions surrounding advanced 
HF therapies must involve a multidisciplinary team and 
include shared decision making with the patient and their 
family.

4.1 � CRT for Chemotherapy‑Induced Cardiotoxicity

Atrioventricular conduction disturbances are often seen in 
the setting of cancer therapy. These conduction disturbances 
produce suboptimal LV filling as well as lower stroke vol-
ume. Cardiac resynchronization therapy (CRT) improves 
symptoms and reduces mortality in HFrEF and HFpEF 
patients with electrical or mechanical dyssynchronies. 
Despite meeting clinical indications for this therapy, CRT is 
underutilized in HF among cancer survivors. It is postulated 
that this could be related to understanding HF and comor-
bidities during clinical presentation [99–101]. However, 
utilization of CRT has shown improvement in LV function 
in cancer therapy-induced cardiomyopathy [102, 103]. A 
retrospective multicenter study in adults with anthracycline-
induced cardiomyopathy derived a significant echocardio-
graphic and symptomatic benefit from CRT, similar to other 
forms of non-ischemic cardiomyopathy [104, 105]. The 
pediatric experience with CRT for chemotherapy-induced 
cardiomyopathy is limited to case reports [106].
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4.2 � Mechanical Circulatory Support and Heart 
Transplantation

Specialized interventional procedures such as temporary 
mechanical circulatory support (MCS) are sometimes nec-
essary for children with acute hemodynamic deterioration 
during chemotherapy [107]. These temporary percutaneous 
MCS are reasonable as a ‘bridge to recovery,’ ‘bridge to a 
decision,’ or ‘bridge to transplantation.’ Durable MCS such 
as a ventricular assist device (VAD) is beneficial in carefully 
selected patients with advanced HF as a bridge to cardiac 
transplantation, transplant candidacy, or destination therapy 
[108, 109]. The transplant outcome in this population is 
similar to other non-ischemic cardiomyopathies [110, 111].

4.3 � Pluripotent Stem Cells

Cancer treatment has evolved in the last decade with the 
introduction of new therapies. Despite these successes, 
chemotherapy's lingering cardiotoxic side effects remain a 
significant cause of morbidity and mortality in cancer sur-
vivors. With the advent of human induced pluripotent stem 
cell (iPSC) technology, researchers can model cardiac tox-
icity and discover drugs to protect against chemotherapy-
induced cardiotoxicities [112]. In the mice model, mouse 
embryonic stem cells were transplanted in mice with doxo-
rubicin cardiomyopathy, and improvement in ventricular 
function was noted [113].

5 � Conclusions

The primary purpose of this review is to describe commonly 
used and future pharmacologic treatment of pediatric cancer 
patients and survivors at risk for CV toxicities. Cardiotoxic-
ity associated with cancer therapies can be persistent and 
progressive and can be missed clinically. Cardiomyopathy 
and HF are leading causes of death in childhood cancer 
survivors, given the anticipated long post-cancer lifespan. 
The only FDA-approved cardioprotective therapy is dexra-
zoxane; which works by reducing anthracycline-induced 
dose-limiting cardiotoxicities. Multiple therapies, includ-
ing neurohormonal agents and newer drugs such as ARNi 
or SGLT2i, should be used simultaneously as combination 
therapy with ACEi and BB in patients with Stage C and D 
HF. Early initiation of HF therapies is proven more valuable 
than at a later stage with advanced HF. There is a need for 
both clinical researchers and pharmaceutical companies to 
include cancer-related HF patients in drug trials to acceler-
ate the transition of potentially effective HF drugs from the 
general population to cardio-oncology patients.
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