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Abstract
Atypical hemolytic uremic syndrome is a thrombotic microangiopathy characterized by hemolysis, thrombocytopenia, and 
acute kidney injury, usually caused by alternative complement system overactivation due to pathogenic genetic variants or 
antibodies to components or regulatory factors in this pathway. Previously, a lack of effective treatment for this condition was 
associated with mortality, end-stage kidney disease, and the risk of disease recurrence after kidney transplantation. Plasma 
therapy has been used for atypical hemolytic uremic syndrome treatment with inconsistent results. Complement-blocking 
treatment changed the outcome and prognosis of patients with atypical hemolytic uremic syndrome. Early administration 
of eculizumab, a monoclonal C5 antibody, leads to improvements in hematologic, kidney, and systemic manifestations in 
patients with atypical hemolytic uremic syndrome, even with apparent dialysis dependency. Pre- and post-transplant use 
of eculizumab is effective in the prevention of atypical hemolytic uremic syndrome recurrence. Evidence on eculizumab 
use in secondary hemolytic uremic syndrome cases is controversial. Recent data favor the restrictive use of eculizumab in 
carefully selected atypical hemolytic uremic syndrome cases, but close monitoring for relapse after drug discontinuation is 
emphasized. Prophylaxis for meningococcal infection is important. The long-acting C5 monoclonal antibody ravulizumab is 
now approved for atypical hemolytic uremic syndrome treatment, enabling a reduction in the dosing frequency and improving 
the quality of life in patients with atypical hemolytic uremic syndrome. New strategies for additional and novel complement 
blockage medications in atypical hemolytic uremic syndrome are under investigation.
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Key Points 

Atypical HUS (aHUS) is a serious disease, which, if left 
untreated, may lead to multiple organ damage and end 
stage renal disease.

Alternative complement pathway dysregulation plays a 
key role in the pathophysiology of the disease. Comple-
ment system inhibition is an effective treatment strat-
egy, leading to normalization of clinical and laboratory 
parameters and improvement ofrenal outcome.

Eculizumab is the first complement inhibitor avail-
able for effective aHUS treatment. Ravulizumab, a 
long-acting complement inhibitor, re-engineered from 
eculizumab, enables reduction in dosing frequency and 
improving the quality of life in patients with aHUS.

New strategies for complement blockage in aHUS treat-
ment are under investigation.

1 Introduction

Hemolytic uremic syndrome (HUS) is a thrombotic micro-
angiopathy (TMA) characterized by intravascular hemoly-
sis, thrombocytopenia, and acute kidney injury. Independent 
of the primary etiologic factor, injury involves endothelial 
damage, leading to platelet activation [1], microthrombi 
formation, microangiopathic hemolytic anemia, comple-
ment cascade activation [2], and multiple end-organ dam-
age, including kidney failure and extra-renal manifestations 
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with neurological [3], cardiac [4], gastrointestinal [5], and 
respiratory [6] involvement. According to the current under-
standing of its pathophysiology, HUS is classified into infec-
tious associated, atypical, and secondary [7]. This review 
concentrates on the diagnosis and management of atypical 
HUS (aHUS) in pediatric patients.

Most of the infectious-associated HUS cases are caused 
by Shiga toxin producing Escherichia coli (STEC) and 
appear after a period of colitis and bloody diarrhea. The 
Shiga toxin binds to cell membrane glycolipid Gb3, which 
is strongly expressed in kidney endothelia, especially in 
children [8–10]. Streptococcus pneumoniae and some 
other infections are less common causes of HUS [11, 12]. 
Recently, coronavirus disease 2019 was implicated as a 
cause [13] or a trigger for aHUS [14, 15].

In secondary HUS, a coexisting disease or health 
state such as autoimmunity, transplantation, cancer, 
and pregnancy or the use of certain cytotoxic drugs 
are associated with a similar disease manifestation [7]. 
Atypical HUS is usually caused by dysregulation of the 
alternative complement pathway, resulting in overacti-
vation and excessive production of the terminal attack 
complex C5b-C9, leading to endothelial cell injury [16]. 
Dysregulation of the alternative complement system 
may be due to loss-of-function mutations in genes of 
regulatory proteins [complement factor H (CFH), mem-
brane cofactor protein (or CD46), complement factor I 
and thrombomodulin], gain-of-function mutations in the 
genes of the C3 convertase components (complement 
factor B and C3), or anti-CFH inhibitory autoantibodies 
[17]. In addition, mutations in diacylglycerol kinase ɛ 
and cobalamin C, proteins not related to the comple-
ment system, have been described as a cause of aHUS 
[18, 19]. The absence of a pathogenic mutation does not 
exclude the diagnosis of aHUS.

The relative frequencies of secondary and primary 
TMA in adults were evaluated in a retrospective cohort 
of 564 patients with TMA diagnosed during 2009–16. 
Atypical HUS was found in only 18/564 patients (3%), 
whereas secondary TMA (pregnancy, malignancy, infec-
tions, drugs) was the most frequent diagnosis [20]. In 
contrast, Alfandary et  al. reported on HUS etiologies 
in Israeli children (n = 75) [21] who were classified 
according to contemporary guidelines [7] into four major 
groups: infection associated, aHUS, secondary HUS, and 
unknown. Atypical HUS was relatively common (24%) 
and STEC HUS was a rare diagnosis (only 6.6%), most 
probably owing to the high prevalence of genetic diseases 
in this country, secondary to high rates of consanguineous 
marriages in selected populations. These reports empha-
size the need to define the country- and age-specific 
prevalence of HUS subclasses.

2  Differential Diagnosis

In most Western countries, STEC HUS, diagnostically 
confirmed by STEC identification in a stool culture or by 
polymerase chain reaction, is ten times more common than 
aHUS [22]. Even in STEC-negative stool samples, serologi-
cal studies did show evidence of recent STEC infection in 
many children with HUS [23].

The diagnosis of aHUS begins with the same biochemi-
cal and hematologic criteria as for typical HUS or any other 
TMA. Atypical HUS in children is usually suspected in 
patients aged younger than 6 months, or with a non-syn-
chronous HUS family history, or in relapsing cases and in 
children without a history of bloody diarrhea. However, the 
presence of gastrointestinal symptoms may also reflect a 
microangiopathic ischemia of the intestinal tract and does 
not exclude the possibility of aHUS, as described for exam-
ple in children and adolescents with anti-FH antibodies [24]. 
Therefore, the previous classification of diarrhea-positive 
and diarrhea-negative HUS is not relevant anymore. A short 
period of diarrhea or the concomitant appearance of diar-
rhea and HUS should raise the suspicion for aHUS versus 
STEC HUS, as the latter usually appears at the end of the 
gastrointestinal illness (4–5 days from diarrhea onset) [25]. 
Other aHUS features include a slower and insidious onset, 
sometimes preceded by vague and nonspecific signs and 
symptoms [26], a lower rate of diarrhea, a low prevalence 
of leukocytosis (under 16,000/μL), and a higher rate of 
consanguinity [21]. Shiga toxin producing E. coli infection 
can even trigger an aHUS episode in patients with comple-
ment pathogenic genetic variants [27]. Anti-CFH antibody-
associated HUS was originally described by Dragon-Durey 
et al. [28]. Age of onset in this aHUS variant is later than 
aHUS because of pathogenic genetic variants, as well as 
an increase in gastrointestinal complaints prior to disease 
onset. Genetic variants in the CFH-related peptide and the 
pathogenesis of this association have been described [29].

An important differential diagnosis in patients presenting 
with aHUS is thrombotic thrombocytopenic purpura. This is 
a TMA that occurs secondary to congenital deficiency of the 
metalloprotease ADAMTS13 or acquired anti-ADAMTS13 
antibodies [30]. ADAMTS13 is a critical factor that prevents 
the accumulation of von Willebrand factor multimers, sec-
ondary to platelet activation [31]. Therefore, determination 
of ADAMTS13 activity is mandatory before the diagnosis of 
aHUS. For more details on the diagnostic approach to TMA, 
readers are referred to recent publications (7).

2.1  Natural aHUS History

Atypical HUS is associated with increased mortality, 
depending on the underlying pathogenic genetic variant 
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[32]. The risk of HUS recurrence is higher in patients with 
pathogenic genetic variants in CFH (31–55%), membrane 
cofactor protein (18–52%), and C3 (50%), and is 30% in 
patients without a known pathogenic genetic variant [27]. 
Previously, when an effective treatment was absent, a third 
of pediatric patients and half of adult patients with aHUS 
who survived the acute phase remained dialysis dependent. 
The risk of recurrent disease after kidney transplantation 
was as high as 80% [33, 34].

3  Management of aHUS

3.1  Supportive Treatment

Supportive treatment is based on general principles of AKI 
management such as correction/avoiding volume overload 
and electrolyte abnormalities, hypertension control, stopping 
nephrotoxic drugs, initiation of dialysis therapy if indicated, 
and provision of adequate nutrition. In severe anemia (Hb 
<7 g/dL), blood transfusions are indicated. Platelets transfu-
sions should be avoided unless there is evidence of active 
bleeding or the need for surgical intervention.

3.2  Role of Plasma Therapy

Since the original description of HUS, numerous treatment 
options have been tested, including different types of anti-
coagulants and plasma therapy. Plasma therapy originally 
showed inconsistent results, mostly because of the mix of 

HUS cases of currently known different etiologies. While 
plasma therapy showed no efficacy in STEC HUS, its role in 
aHUS cases was inconsistent. As complement dysregulation 
was increasingly recognized as a key mechanism in aHUS, 
owing to the deficiency of a plasmatic factor (mainly CFH 
and CFI) or the presence of a pathogenic antibody (such as 
anti-FH antibodies), the use of plasma therapy with or with-
out exchange became an alternative again [35–37]. Plasma 
exchange/plasma infusion has uncertain benefits and a high 
rate of technique-related complications in children. A multi-
center study summarized the contemporary experience with 
plasma therapy in 71 children with aHUS (in the months 
prior to more widespread use of eculizumab) [38]. In 59 of 
them (83%), plasma was administered within the first 33 
days of disease. Plasma exchange was the dominant tech-
nique. Complications of central venous catheters occurred 
in 31% of patients with a catheter in-situ. A hematological 
remission was obtained in 89% within a median period of 
11.5 days. Twelve patients (17%) remained dialysis depend-
ent at day 33. Thus, although some benefit could be shown 
by plasma therapy and or exchange, it was not consistent and 
associated with complications.

3.3  Anti‑Complement Treatment

3.3.1  Eculizumab

Eculizumab  (Soliris®; Alexion Pharmaceutical Inc., Wash-
ington, DC, USA) is a humanized chimeric monoclonal anti-
body. Binding to complement C5, it prevents its cleavage 
to C5a and C5b, blocking terminal membrane attack com-
plex formation (Fig. 1). The pharmacologic characteristics 
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Fig. 1  Simplified alternative complement cascade and its regula-
tion. Complement components: filled squares (basic: blue; activated: 
orange). Cofactors for this pathway activation: red ovals; regulators 
(FH, FI, membrane cofactor protein, DAF, CD59): green triangles. 
The active products of this cascade (C3a, C5a, and C5b-9): yellow 
circles. Pathogenic genetic variants and antibodies leading to its over-

activation: green squares. Sites of pharmacologic complement inhibi-
tion for aHUS treatment: white squares. Activating factors: FB factor 
B, FD factor D, P properdin. Regulatory factors: anti-FH Ab-anti-
factor H antibodies, DAF-decay-accelerating factor, FH factor H, FI 
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of eculizumab are similar to other monoclonal antibodies. 
Eculizumab is administered as an intravenous infusion and 
is primarily distributed in blood plasma [39]. Because of its 
molecular size, eculizumab is not excreted in urine, except 
in patients with heavy proteinuria [40].

In 2009, the first reports on the efficacy of eculizumab 
in pediatric [41] and adult [42] patients with aHUS were 
published. Later, the efficacy and safety of eculizumab were 
shown across four prospective studies including a pediatric 
cohort trial [43–46], and eculizumab received US Food and 
Drug Administration approval and has subsequently been 
adopted as first-line therapy in patients with aHUS. Ecu-
lizumab treatment led to the normalization of hematologic 
parameters (platelet count and lactate dehydrogenase lev-
els) in 82% of patients after 26 weeks, and kidney function 
improvement in 73% of patients (at least a 25% decrease 
is serum creatinine levels). All patients were able to dis-
continue plasma therapy and 82% of patients were able to 
discontinue dialysis with no resulting deaths or meningo-
coccal infections [45]. Eculizumab can also improve central 
nervous system manifestations, ischemic cardiomyopathy, 
other ischemic manifestations, ophthalmologic involvement, 
and ulcero-necrotic skin lesions [7, 13]. Recommendations 
for clinical practice including eculizumab doses and regi-
mens have been published [7]. Genetic screening results are 
not necessary prior to eculizumab treatment initiation, as 
patients with and without identified genetic variants in com-
plement genes may have similar responses to eculizumab 
treatment, with the exception of diacylglycerol kinase ɛ and 
cobalamin C deficiency-associated HUS [47, 48].

3.3.1.1 Timing of Eculizumab Initiation In adults, an earlier 
initiation of eculizumab after aHUS onset increases the odds 
of kidney function improvement [43], as well as other sys-
temic manifestations. In pediatric patients with suspected 
aHUS, eculizumab is considered a first-line treatment and 
should be initiated as soon as possible. Early eculizumab 
initiation was associated with better kidney outcomes, based 
on open-label, single-arm, prospective clinical studies [49]. 
These studies included 97 patients, with a median age of 29 
(0–80) years, 25 (26%) of them were younger than 18 years 
of age. A multivariate regression analysis demonstrated 
that a shorter time from aHUS manifestation to eculizumab 
treatment, younger age, higher baseline lactate dehydro-
genase, and lower baseline hemoglobin were independent 
predictive factors of an estimated glomerular filtration rate 
change from baseline. If eculizumab is unavailable, plasma 
exchange with fresh frozen plasma (60 mL/kg/session or a 
daily plasma infusion of 10 mL/kg) should be initiated, with 
a switch to eculizumab when possible [45].

3.3.1.2 Monitoring of  Effectiveness Complement block-
ade is assessed using complement hemolytic activity 

(CH50) and is considered to be optimal when it is less 
than 10%. C5 function and alternative pathway hemolytic 
activity (AP50 or CH50) are also reported as markers of 
eculizumab effectiveness [50]. Checking CH50 before 
the next dose of eculizumab can be a practical approach 
to ensure complement blockade and adjustment of dose 
or intervals between treatments, if needed [51, 52]. The 
simultaneous testing of CH50 and eculizumab trough con-
centrations (if available through an investigative treatment 
protocol) can be used in patients without laboratory and 
clinical improvement after one or two eculizumab doses, 
or in patients experiencing a relapse under eculizumab. 
Resistance to eculizumab can be seen due to concurrent 
infection, inflammation or surgery, urinary leak of ecu-
lizumab in proteinuric patients, non-complement-related 
HUS (diacylglycerol kinase ɛ and CblC-HUS), or a vari-
ant in the eculizumab C5-binding site gene, mostly pre-
sent in Asian individuals [53–55]. In a case series study 
that included 13 (34%) pediatric patients, Ardissino et al. 
have shown that high eculizumab trough concentrations 
associated with CH50 less than 10% indicated an over-
dosage of the drug and allowed spacing of the interval 
between doses, thus reducing treatment burden and cost 
[56]. The use of different biomarkers of complement acti-
vation (sC5b9, C3d, and C5a) is not validated and requires 
further studies [53]. A case series study by Galbusera 
et al. [57] that included 47 (32%) patients aged <18 years 
assessed the performance of an ex vivo kit to test C5b-9 
levels within the endothelium, to distinguish active dis-
ease from remission, and to determine relapses during 
eculizumab dosage tapering or after its discontinuation. 
Among 121 study patients with primary and secondary 
aHUS, 96% had stable  endothelial C5b-9 levels after 
3–4 weeks of eculizumab treatment. Hence, the C5b-9 
endothelial deposition assay might show further merit in 
the diagnosis and differentiation of active disease from 
remission.

It is unknown if a complete blockade is necessary to 
prevent disease progression in the acute and/or remission 
phases. In one cohort of patients with aHUS, no recurrences 
were observed during eculizumab treatment when a minimal 
CH50 of less than 30% was maintained, instead of complete 
suppression [56].

3.3.1.3 Infection Prophylaxis The activated terminal com-
plement pathway is required for efficient serum bactericidal 
activity against encapsulated bacteria, including Neisseria 
meningitidis. The risk of invasive meningococcal disease 
under eculizumab treatment is estimated to be at a >2000-
fold increase compared with the normal population. Thus, 
patients receving eculizumab should receive a quadrivalent 
A,C,W,Y meningococcal conjugate vaccine and B menin-
gococcal vaccine, as well as long-term antimicrobial proph-
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ylaxis with penicillin (or macrolides for penicillin-allergic 
patients) for the duration of eculizumab treatment. [58–60]

3.3.1.4 Limited Use and  Treatment Discontinuation After 
introduction of eculizumab, life-long therapy was suggested 
and the risk of eculizumab withdrawal was emphasized [61, 
62]. Since then, an increasing number of case reports and 
small cohort studies have provided information on safe eculi-
zumab withdrawal in selected patients [63–67]. Eculizumab 
discontinuation was assessed in a prospective multicenter 
open-label study in 55 patients (including 19 children) with 
aHUS, 51% of them had rare variants in complement genes 
(membrane cofactor protein: 22%, CFH: 11%, CFI: 10%). 
During the follow-up, 13 patients (23%; six of them chil-
dren) experienced aHUS relapse. In a multivariable analy-
sis, female sex, presence of a rare variant in a complement 
gene, and an increased sC5b-9 plasma level at eculizumab 
discontinuation were associated with an increased risk of 
aHUS relapse. All but two of the relapsed patients regained 
their baseline kidney function after eculizumab re-initiation 
[68]. Close monitoring of hematologic parameters is needed 
in case of eculizumab discontinuation for early recognition 
of relapse and immediate treatment re-initiation.

3.3.1.5 Eculizumab in  Anti‑CFH Antibody‑Associated 
HUS Eculizumab can also be efficacious in this form of 
aHUS as in other complement-aHUS [69]. However, alter-
native efficacious treatment with PE, followed by glucocor-
ticoids and an immunosuppressive drug (such as mycophe-
nolate or cyclophosphamide) is recommended, as shown in 
a study from India [70]. An earlier retrospective analysis 
from the same group described a similar initial response 
and a later relapse rate with the use of rituximab, in addition 
to plasma exchange and corticosteroids. This approach can 
even lead to a decrease of anti-CFH antibody titers, possi-
bly allowing safe discontinuation of any treatment with time 
[71].

3.3.1.6 Eculizumab in  Patients with  aHUS Receiving 
Long‑Term Dialysis In one of the original studies on eculi-
zumab in patients with aHUS and substantial renal damage, 
dialysis was discontinued in four of five patients (80%) who 
had required dialysis at the time of initiation of eculizumab 
[43]. Povey et al. reported on a case of full kidney recovery 
with eculizumab treatment in a young woman with aHUS 
receiving long-term dialysis. [72]. Haskin et al. described a 
boy with aHUS and complete anuria receiving dialysis for 
4.5 months who weaned off dialysis after eculizumab ther-
apy[73]. This highlights the importance of a treatment trial 
with eculizumab, even in patients already receiving long-
term dialysis.

3.3.1.7 Eculizumab in  Kidney Transplantation After 
aHUS Prior to eculizumab, the outcome following isolated 
kidney transplantation was poor, with recurrence of aHUS 
post-transplant in 50–60% of patients [74]. Pre- and post-
transplant use of eculizumab allowed favorable short- and 
long-term outcomes in patients with aHUS. A retrospective 
multicenter study from a large French nationwide registry 
of adult patients with atypical HUS showed a better graft 
survival in patients treated with prophylactic eculizumab 
therapy in comparison with those who received it after 
experiencing an aHUS recurrence, based on a pre-transplant 
risk for recurrence stratification [75]. These findings were 
confirmed in another observational study of 344 patients 
with aHUS, including 49 (14%) pediatric patients who 
underwent kidney transplantation [76].

3.3.1.8 Eculizumab in  Secondary HUS Thrombotic micro-
angiopathy/HUS may be seen in different underlying dis-
eases, such as autoimmune diseases (systemic lupus ery-
thematosus, anti-phospholipid syndrome, scleroderma), 
malignant hypertension, medications, and cancer. The 
pathophysiology of TMA in many of these disorders is 
related to endothelial damage by different mechanisms, 
not always related to complement dysregulation. Data on 
eculizumab efficacy in secondary aHUS are controversial, 
based on adult studies [77, 78],.[79, 80]. In a retrospective 
study of 110 patients with secondary HUS, including eight 
(7%) patients under 18 years of age, the kidney outcome at 3 
months of follow-up was not different in 38 patients treated 
with eculizumab and 38 matched patients not treated with 
eculizumab [81].

Transplant-associated TMA (TA-TMA) is a multifacto-
rial disorder, associated with high mortality [82]. Use of 
calcineurin inhibitors, graft-versus-host disease, and viral 
infections are risk factors for TA-TMA [83]. Complement 
pathways may become activated in cases with TA-TMA 
resulting in tissue damage [84]. High-dose chemotherapy, 
calcineurin inhibitors, infection with different viruses, and 
graft-versus-host disease can lead to direct endothelial dam-
age and classic or alternative complement pathway activa-
tion[85, 86]. Cyclosporine can reduce levels of ADAMTS13 
by inhibiting its secretion or by releasing von Willebrand 
factor multimers that form complexes with ADAMTS13 
[87]. Immune dysregulation after HSCT can be a reason for 
anti-CFH antibody formation [88].

Eculizumab has shown its benefits in the treatment of 
patients with TA-TMA [81, 89, 90], but the exact eculi-
zumab dosing is not well established. For pediatric patients, 
the initial dose is based on body weight, and subsequent 
dose adjustments are based on maintaining suppressed 
CH50 levels. Induction therapy is administered weekly for 
4 weeks, and then maintenance therapy every 2 weeks is 
continued [79]. A supplemental dose of 600 mg should be 
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given before plasma infusion or within 1 hour after plasma 
exchange [43]. A phase II trial evaluating an early interven-
tion with eculizumab to treat TMA/aHUS-associated mul-
tiple organ dysfunction syndrome in hematopoietic stem 
cell transplant recipients is now ongoing (NCT03518203).

3.3.2  Ravulizumab

Eculizumab requires a standard treatment regimen of intra-
venous infusions every 2–3 weeks, increasing the infusion 
burden and associated adverse events. To overcome this 
problem, ravulizumab (Alexion Pharmaceutical, Inc.) was 
re-engineered from eculizumab by a two amino-acid substi-
tution. Ravulizunab targets the same epitope on C5 as ecu-
lizumab, but has a four times longer half-life because of an 
augmented endosomal dissociation of C5 and recycling to the 
vascular compartment via the neonatal Fc receptor pathway, 
providing an increased duration of terminal complement inhi-
bition [91]. Ravulizumab has recently been approved for the 
treatment of aHUS in adults and children [92].

The efficacy and safety of ravulizumab were evaluated in 
two single-arm, multicenter, 26-week phase III studies in adult 
and pediatric patients with aHUS naive to complement inhibi-
tor treatment or with previous eculizumab treatment. Ravuli-
zumab resulted in stable kidney and hematologic parameters, 
with no unexpected safety concerns when administered every 
4–8 weeks both in adult patients [93] and in pediatric patients 
[94, 95]. The most common treatment-related adverse events 
with ravulizumab in treatment-naive patients were headache, 
diarrhea, and vomiting. While ravulizumab may have simi-
lar efficacy and safety profiles to eculizumab, there are no 
head-to-head comparative studies in patients with aHUS. An 
indirect comparison of patient-level data from pivotal trials 
of ravulizumab and eculizumab indicates that there are no 
significant between-group differences in platelet count and 
kidney outcomes at 26 weeks, after adjustments for baseline 
characteristics [96]. A reduction in dosing frequency is an 
important element in improving the quality of life in patients 
with aHUS [87]. The frequency of infusions has been shown 
to be one of the most important factors contributing to the 
improved quality of life for patients switching to ravulizumab 
[97]. Ravulizumab has recently been approved for the treat-
ment of patients with aHUS in several countries [98–100]. 
Further studies on the efficacy of ravulizumab for HSCT-
associated HUS are currently underway (NCT04557735).

4  Potential Future Treatment Options

A number of potential treatments for aHUS are under inves-
tigation (Fig. 1). Crovalimab is an intravenous C5 antagonist 
that recognizes different epitopes on C5 than eculizumab. 

Its use would enable C5 neutralization in patients carrying 
certain genetic polymorphisms that prevent eculizumab 
binding [101]. The prevalence of these variants in Asian 
individuals is reported as high as 3.5% [49], justifying 
crovalimab-specific use in this population. A phase III, 
multicenter single-arm study evaluating the efficacy, safety, 
pharmacokinetics, and pharmacodynamics of crovalimab is 
currently being studied in 90 adult and adolescent patients 
with aHUS (NCT04861259), with an estimated study com-
pletion date in 2024.

Avacopan is an orally administered C5aR1 antagonist that 
inhibits the functions of C3a, C4a, and C5a. Its efficacy in 
ANCA-positive vasculitis has already been shown [102]. A 
phase II trial in patients with aHUS receiving dialysis has 
been completed (NCT02464891).

The combined C5 and leukotriene B4 inhibitor, nomaco-
pan (Coversin; rVA576), was recently reported to be effec-
tive in patients with TMA [103].

Iptacopan (LNP023) is a first-in-class, orally adminis-
tered, potent and highly selective factor B inhibitor of the 
alternative complement pathway [104]. A phase III multi-
center, single-arm, open-label study to evaluate the efficacy 
and safety of iptacopan in adult patients with aHUS who are 
treatment naive to complement inhibitor therapy has been 
initiated (NCT04889430).

Small interfering RNA are a class of double-stranded 
RNAs that is able to silence its target genes through enzy-
matic cleavage of target messenger RNA [105]. Cemdisiran 
(ALN-CC5), a small interfering RNA complementary to C5 
mRNA, conjugated with N-acetylgalactosamine for targeted 
delivery to hepatocytes has shown efficacy in inhibiting cir-
culating C5 in healthy volunteers as well as patients with 
paroxysmal nocturnal hemoglobinuria [106] ]. Switching 
from eculizumab to cemdisiran in patients with aHUS aged 
12 years and older was proposed for evaluation in a phase II 
clinical trial (NCT03999840), but the study was withdrawn 
because of a lack of economic support. A phase II study 
aimed at evaluating the safety, tolerability, and pharma-
cokinetics of Cemdisiran in adults with aHUS has also been 
terminated owing to a lack of enrollment (NCT03303313).

5  Conclusions

Acute hemolytic uremic syndrome is a serious disease, 
which, if left untreated, may lead to multiple organ damage 
and end-stage kidney disease. Among its different etiologies, 
pathogenic genetic variants in components of the alternative 
complement pathway are more frequent in pediatric patients. 
Alternative complement pathway dysregulation plays a key 
role in the pathophysiology of the disease. Complement 
system inhibition is an effective treatment strategy, leading 
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to normalization of clinical and laboratory parameters and 
improvement of kidney outcomes. Eculizumab is the first 
complement inhibitor available for effective aHUS treat-
ment. Ravulizumab, a long-acting complement inhibitor, re-
engineered from eculizumab, enables a reduction in dosing 
frequency and improves the quality of life in patients with 
aHUS. New strategies for complement blockage in aHUS 
treatment are under investigation.
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