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Abstract
Osteoporosis may affect young individuals, albeit infrequently. In childhood, bone mass increases, reaching its peak between the 
second and third decades; then, after a period of stability, it gradually declines. Several conditions, including genetic disorders, 
chronic diseases, and some medications, can have an impact on bone homeostasis. Diagnosis in young patients is based on the 
criteria defined by the International Society for Clinical Densitometry (ISCD), published in 2013. High risk factors should be 
identified and monitored. Often simple interventions aimed to eliminate the underlying cause, to minimize the negative bone 
effects linked to drugs, or to increase calcium and vitamin D intake can protect bone mass. However, in selected cases, pharmaco-
logical treatment should be considered. Bisphosphonates remain the main therapeutic agent for children with significant skeletal 
fragility and are also useful in a large number of other bone conditions. Denosumab, an anti-RANKL antibody, could become a 
potential alternative treatment. Clinical trials to evaluate the long-term effects and safety of denosumab in children are ongoing.
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Key Points 

Although more commonly associated with aging, osteo-
porosis may affect younger individuals (children and 
adolescents).

A range of risk factors include non-modifiable factors 
(gender, ethnicity) as well as potentially modifiable 
factors (hypovitaminosis D, poor nutrition, previous 
fracture, immobility, inflammatory states, physical activ-
ity and delayed puberty).

Bisphosphonates are the main therapeutic agents for chil-
dren with significant skeletal fragility and are also used 
in a number of other conditions.

Clinical trials of the anti-RANKL monoclonal antibody 
therapy denosumab (currently approved in adults) are 
ongoing to determine its long-term efficacy and safety in 
pediatric patients.

1 Introduction

Bone is a complex and highly dynamic tissue, consisting 
of organic and inorganic components, characterized by a 
continuous structural remodeling of synthesis and destruc-
tion influenced by different intrinsic and extrinsic factors 
such as genetics, hormones, diet, and mechanical loading. In 
childhood, bone mass increases, reaching its peak between 
the second and third decades then, after a period of stability, 
it gradually declines. The word osteoporosis literally signi-
fies ‘porous bone’. In this condition, impaired bone forma-
tion and/or excessive bone loss, as well as microarchitecture 
deterioration, reduce the mechanical bone behavior, increas-
ing the risk of fracture.

Osteoporosis is usually the result of the aging process 
that compromises the regenerative bone potential, predispos-
ing to a negative balance [1]. However, several other con-
ditions, including genetic disorders, chronic diseases, and 
some medications, may negatively affect bone homeosta-
sis. Therefore, although infrequently, osteoporosis can also 
occur in childhood, often as a secondary form, sometimes 
as an idiopathic one [2, 3].

The diagnosis in young patients is based on the crite-
ria defined in the revised pediatric position paper by the 
International Society for Clinical Densitometry (ISCD), 
published in 2013 [4]. Both a clinically significant fracture 
history and a bone density deficiency are required, thus lim-
iting over-diagnosis and treatments based on dual-energy 
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X-ray absorptiometry (DXA) measurements alone. High-risk 
children, even if they are asymptomatic, need to be moni-
tored for bone health to prevent fractures and related com-
plications. Often simple interventions aimed to eliminate 
the underlying cause, to minimize the negative bone effects 
linked to drugs, or to increase calcium and vitamin D intake 
can protect bone from deterioration. However, in selected 
cases bone-sparing medications should be considered [5].

In the present review, we report the definition of oste-
oporosis in the pediatric setting, review the underlying 
etiopathogenesis and diagnosis, and focus on treatment 
strategies.

2  Etiology

Several risk factors with different mechanisms of action can 
have an impact on bone mass acquisition and bone micro-
architecture during childhood, leading to juvenile osteopo-
rosis (JO). Among them, gender and ethnicity [6] are the 
most relevant non-modifiable risk factors, whereas hypovita-
minosis D [7], poor nutrition, previous fractures, immobility, 
inflammatory states, physical activity, and delayed puberty 
should be taken into account as modifiable risk factors [8].

JO is divided into primary and secondary forms. In pri-
mary JO, genetic conditions compromising skeletal matura-
tion represent the main cause of bone fragility [9]. Osteogen-
esis imperfecta (OI), a heterogeneous group of connective 
tissue disorders, is the most common inherited form of pri-
mary JO, characterized by increased bone fragility, low bone 
mineral density (BMD) and extra-skeletal involvement with 
blue sclerae, hearing loss, and dental abnormalities [10, 11]. 
The clinical severity varies widely from being nearly asymp-
tomatic with a mild predisposition to fractures, normal stat-
ure and normal lifespan, to disabling and even lethal presen-
tations. Currently, 21 genetic variants have been described 
[12]. COL1A1 and COL1A2 genes, encoding the α1 and 
α2 chains of collagen 1, are the most commonly mutated, 
driving up to 90% of OI prevalence [10]. Different clinical 
phenotypes are caused by genetic defects compromising col-
lagen structure or post-translational modifications affecting 
bone mineralization. Recently, new genetic forms of child-
hood-onset primary osteoporosis such as WNT1 and PLS3 
mutations have been defined [13]. These new findings led 
to a novel molecular and pathogenetic classification, revised 
by the Nosology Committee of the International Skeletal 
Dysplasia Society in 2019 [14]. Accordingly, the diagnosis 
of genetic forms of JO are based on clinical presentation 
confirmed by genetic tests. By contrast, juvenile idiopathic 
osteoporosis (JIO) is a rare condition affecting prepuberal 
patients without a clear genetic predisposing etiology, char-
acterized by acute onset and wide clinical spectrum, rang-
ing from radiological evidence of osteoporosis to multiple 

vertebral and metaphyseal fractures, with complete recovery 
within 3–4 years [15, 16].

Several systemic diseases and some medications can 
lead to secondary JO. For example, rheumatic disorders are 
tightly associated with bone mass loss secondary to systemic 
inflammation and corticosteroid therapy. In fact, inflamma-
tory cytokines, such as IL-1, IL-6, and TNF-α, lead to the 
upregulation of receptor activator of nuclear factor kappa-B 
ligand (RANK-L), promoting osteoclastogenesis and bone 
resorption [17]. A relevant association between the reduc-
tion of BMD and juvenile idiopathic arthritis (JIA), juvenile 
systemic lupus erythematosus, or juvenile dermatomyositis 
was described [18–22]. In addition, rheumatic patients often 
develop glucocorticoid-induced osteoporosis (GIO), dramat-
ically contributing to secondary osteoporosis [23]. Indeed, 
glucocorticoids directly enhance bone resorption via RANK-
L signal stimulation and inhibit osteoblastogenesis by block-
ing Wnt/β-catenin [24]. Moreover, glucocorticoids indirectly 
interfere with vitamin D and calcium metabolism [25]. In a 
cohort of 136 rheumatic patients treated with a 3-year course 
of glucocorticoid therapy, a higher daily average dose and 
a longer duration of glucocorticoids were associated with 
increased risk of incident vertebral fractures [26]. In addi-
tion, malabsorption due to inflammatory bowel diseases and 
celiac disease was also found to be related to delayed bone 
maturation and osteoporosis in childhood [27–29]. Besides, 
in accordance with the mechanostat theory, a low BMD sec-
ondary to the lack of mechanical stimuli was described in 
children affected by neuromuscular disorders [30, 31].

3  Diagnosis

The current diagnostic criteria of JO were established in 
2013 according to the ISCD. The presence of a non-trau-
matic vertebral compression fracture (> 20% loss of verte-
bral height ratio) regardless of BMD or the coexistence of 
a history of clinically significant fractures (≥ 2 long bone 
fractures by the age of 10 years, or ≥ 3 long bone fractures 
by 19 years) with a BMD Z-score of ≤ − 2.0 are mandatory 
for the diagnosis of JO [4]. According to these recommen-
dations, densitometry criteria alone are not adequate in the 
diagnostic work-up of JO. Indeed, the occurrence of fragil-
ity fractures with concomitant BMD Z-scores > − 2.0 was 
found in children with osteopenia-inducing diseases, such 
as leukemia, neuromuscular disorders, or rheumatic disor-
ders [26, 32–34]. A further limitation of BMD assessment 
is the disparity in Z-scores generated by different pediatric 
reference databases. In 2015, the Canadian STOPP Consor-
tium observed a significant disparity among different BMD 
Z-score databases used in a cohort of 186 children with leu-
kemia and vertebral fractures, upholding the lack of valid-
ity of the BMD Z-score threshold alone in the definition of 
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JO [32]. Moreover, areal BMD (g/cm2) can underestimate 
volumetric BMD (g/cm3) in children with short stature and 
overestimate BMD in taller ones. The use of bone mineral 
apparent density (BMAD) and height-for-age Z-score (HAZ) 
BMD represent valid tools to minimize stature impact on 
BMD [35]. Peripheral quantitative computed tomography 
(pQCT) may provide further advantage compared with 
DXA, as the measures obtained by this three-dimensional 
technique are not influenced by bone size. Furthermore, 
pQCT is capable of evaluating trabecular and cortical bone 
distinctly. However, the use of pQCT remains confined to 
the research field due to lack of reference data and scan-
ning acquisition consensus [36]. Total body less head and 
lumbar spine are the preferred regions of interest for DXA 
assessment in pediatric patients as confirmed by ISCD in 
2013 [36]. On the other hand, DXA assessment at other 
skeletal sites such as distal forearm, proximal femur, and 
lateral distal femur were suggested in patients with severe 
scoliosis or other skeletal anatomical disorders, according 
to updated 2019 guidelines [37]. On these bases, a careful 
diagnostic approach is primarily based on an accurate clini-
cal evaluation including fracture location (with particular 
attention to vertebral fracture surveillance), magnitude of 
trauma, family history, and the presence of other risk factors. 
Recently, Ward et al. proposed an algorithm for the differ-
ential diagnosis of osteoporosis in children, which aims to 
explore genetic and metabolic defects, as well as underlying 
acute or chronic illnesses [2].

4  Treatment

4.1  General Measures and Prevention

Prevention strategies and removal of modifiable risk factors 
are the first measures to reduce bone mass loss. During intra-
uterine life, many factors (e.g., vitamin D status, endocrine 
problems, placental defects, smoking, alcohol consumption, 
caffeine intake) can lead to impaired skeletal mineraliza-
tion and consequentially influence future peak bone mass 
and fracture risk. Interactions between the genome and early 
maternal environment may play a key role in bone physi-
ology. It has been previously demonstrated that low birth 
weight, fetal growth restriction and poor childhood growth 
are important determinants of bone mineral content (BMC) 
[38, 39]. There is evidence on maternal vitamin D status 
during pregnancy and its association with bone outcomes 
in children. A double-blinded, randomized clinical trial 
(RCT) involving 623 pregnant women demonstrated that 
high-dose vitamin D supplementation (2800 IU/d) in preg-
nancy improved offspring bone mineralization (BMC and 
BMD) up to 6 years of age compared with the standard dose 
(400 IU/d) [40]. These results suggest that an optimization 

of maternal nutrition and a recommended vitamin D gesta-
tional intake should be included within preventive strate-
gies. It is clear that, also in pediatric populations, vitamin D 
and calcium intake are two fundamental elements for bone 
health and are strongly related to BMD [41]. Vitamin D 
insufficiency is common in pediatric patients with primary 
and secondary osteopenia or osteoporosis and secondary 
hyperparathyroidism may contribute to bone mass loss 
[7]. Supplementation of vitamin D should be a priority in 
the management of pediatric patients with risk factors for 
osteoporosis or in vitamin D deficient children because it 
has been well demonstrated that a proper supplementation 
increases BMC and guarantees osteo-protection [42–44]. In 
contrast, vitamin D supplementation for healthy children 
with low BMD is not recommended [45]. Physical activity is 
another preventive strategy that can have a positive outcome 
on bone remodeling [46–48] and improve bone geometry 
[49]. An improvement in BMD parameters was observed in 
patients with JIA [50] and dermatomyositis after a 12-week 
supervised exercise program [51]. Finally, in patients with 
chronic inflammatory diseases, good control of inflamma-
tion and low disease activity result in an improvement of 
bone status, as reported with anti-TNF drugs in children with 
JIA [52, 53]. More studies are available for adult popula-
tions [54–56]. Regarding methotrexate, there are conflict-
ing reports concerning bone toxicity [57–61]. A study of 
32 children affected by JIA on therapy with methotrexate 
showed that low-dose treatment does not induce osteopenia, 
but can improve BMD, probably controlling disease activity 
and blocking inflammation pathways [62].

4.2  Drug Treatment

4.2.1  Bisphosphonates

Bisphosphonates (BPs) are stable derivatives of inorganic 
pyrophosphate in which two phosphate groups are cova-
lently linked to carbon group. They bind hydroxyapatite 
crystals and inhibit osteoclast activity. The affinity for bone 
matrix is conferred by the hydroxyl groups attached to the 
central carbon (R1 position) and by the adjacent phosphate 
groups, while potency for bone resorption is determined by 
the final structural fraction (in the R2 position). Based on 
the presence or not of nitrogen or amino groups in the R2 
position, BPs can be classified as non–nitrogen-containing 
(first-generation BPs) or nitrogen-containing (second- and 
third-generation BPs). In first-generation BPs, a cytotoxic 
analog of adenosine triphosphate accumulates in osteo-
clasts and leads to cell death, whereas nitrogen-containing 
BPs promote osteoclast apoptosis inhibiting the activity of 
farnesyl pyrophosphate synthase. Skeletal retention of BPs 
depends on availability of hydroxyapatite binding sites [63]. 
BPs are hydrophilic medications with low gastrointestinal 
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absorption, high distribution volume and renal excretion. 
After a rapid clearance from the circulation there is a long 
elimination phase due to a slow release from bone tissue 
[64]. This feature differentiates BPs from other antiresorp-
tive drugs such as denosumab and makes side effects such 
as rebound hypercalcemia less likely. BPs have been used 
in children, following the evidence of efficacy in adults. 
Pamidronate, neridronate, and zoledronic acid are available 
for intravenous (IV) use, while alendronate and risedronate 
are available for oral administration. Most of the safety and 
efficacy reports concerning BPs in pediatric populations 
have been derived from studies on patients with OI.

Several studies in children with OI demonstrated 
increased BMD and reduced fracture risk using oral BPs 
[65, 66] and a randomized open-label trial showed that oral 
alendronate and IV pamidronate therapies are equally effec-
tive (lumbar spine BMD increase) in children with OI [67]. 
Oral BPs have also been used in other conditions, such as 
chronic inflammatory disorders, and they were effective in 
increasing lumbar spine BMD [68–72]. A recent prospec-
tive study in patients with Duchenne muscular dystrophy 
showed similar effect of zoledronic acid and alendronate in 
increasing bone mineral density and reducing bone loss [73]. 
Nevertheless, oral BPs have not shown the efficacy in induc-
ing vertebral body reshaping after spine fractures [74–76] 
that can be seen with IV pamidronate [77, 78]. According to 
current evidence, oral BPs should be used only in patients 
with mild forms of OI without vertebral fractures. A recent 
double-blind RCT of pediatric patients with rheumatological 
disease with glucocorticoid-induced osteopenia showed a 
better improvement in lumbar spine BMD in patients receiv-
ing risedronate compared with patients treated with vitamin 
D supplementation [79]. However, prophylactic BP therapy 
(i.e., treating a low bone density in the absence of fracture) 
in secondary osteoporosis is not recommended currently 
[80]. Studies concerning oral BPs in children are summa-
rized in Table 1 with a dosage scheme in Table 2.

In terms of IV BPs, pamidronate is the most commonly 
used in children. Dosage and timing of administration in the 
pediatric population are derived from the experience with 
OI. The standard dosage in children aged > 3 years con-
sists of three infusions on consecutive days repeated every 
4 months. In children under 3 years of age, the bone turnover 
is higher so the cycles should be closer. Pamidronate has 
been shown to be safe in this subgroup of patients as well 
[81, 82]. In children younger than 24 months, the stand-
ard dose of 0.5 mg/kg daily is repeated every 2–3 months 
[83]. In children aged < 1 years, a scheme of 0.5 mg/kg 
every 2 months was also used with good outcome [84]. 
Other protocols using a lower dose of pamidronate were 
proposed. Gandrud et  al. suggest a single-day infusion 
of pamidronate (1 mg/kg) every 3 months. This uncon-
trolled observational trial of 11 children with osteoporosis 

(glucocorticoid-induced osteoporosis, OI, and idiopathic 
juvenile osteoporosis) showed an increase of spinal BMD 
and a reduction of fractures using low-dose BPs [85]. 
Another group reported efficacy of a single pamidronate 
infusion (30 mg if < 50 kg, 45 mg if > 50 kg) every 3 months 
[86]. A single retrospective study conducted in non-OI 
patients receiving IV pamidronate 1 mg/kg for 1 day every 
3 months (4 mg/kg/year) or 1 mg/kg/day for 3 days every 
4 months (9 mg/kg/year) showed a comparable increase in 
BMD and reduction in fragility fractures after 1 year of treat-
ment [87]. The optimal dose of pamidronate to treat pediat-
ric patients has not been established yet, especially for those 
patients with secondary osteoporosis. Large trials are needed 
to delineate the minimal effective dose in these patients.

The standard infusion scheme for neridronate is 1–2 mg/
kg/day in a single infusion every 3–4 months [88–90]. 
Neridronate has proved effective in increasing BMD in OI 
patients. Idolazzi et al. found no statistically significant effect 
on fracture risk between OI patients treated with neridronate 
versus non-treated patients, although a significant reduction 
was observed in the mean number of fractures occurring 
during treatment compared with pre-treatment values [89].

For zoledronic acid, which has the highest potency among 
BPs, data on pediatric populations show good outcomes in 
terms of BMD gain and fracture rates [91]. It has also been 
shown to be effective in promoting vertebral reshaping [92]. 
The initial dose of 0.0125 mg/kg is followed by a second 
dose 6 weeks later of 0.0375 mg/kg [92]. A recent study 
comparing the efficacy of pamidronate and zoledronic acid 
in 40 patients with OI showed no differences between the 
two groups in terms of spine BMD gain and fracture rate, 
following 1 and 2 years of treatment [93].

Currently, neridronate is approved by the regulatory agen-
cies (US Food and Drug Administration [FDA] and Euro-
pean Medicines Agency [EMA]) for use in children with 
OI. The IV BPs dosage schedule is summarized in Table 3. 
Numerous studies reassure about the safety of BPs in pedi-
atric populations, though the majority of data are short-term. 
A recent retrospective study conducted in 228 pediatric 
patients treated with zoledronic acid showed good efficacy 
and safety profile [94]. The most common side effect of IV 
BPs (85% of patients) is the acute phase reaction, which 
occurs typically within 72 h from the first or second IV 
administration and is characterized by flu-like symptoms 
that respond to paracetamol or NSAIDs [95]. The acute 
phase reaction usually does not recur at subsequent infu-
sions and is not an indication to stop treatment. It appears 
that this side effect is not dose related [96]. Hypocalcemia is 
another common adverse event that occurs within a few days 
after infusion (74% patients) [95]. Munns et al. suggested 
that reducing the initial zoledronic acid dose (0.0125 mg/
kg instead of 0.02–0.025  mg/kg) could be effective in 
reducing incidence and intensity of hypocalcemia [96]. In 
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patients with low vitamin D levels, BPs may be responsible 
for symptomatic hypocalcemia. To minimize the risk, it is 
important to ensure adequate vitamin D/calcium supplemen-
tation, especially in the days following infusion [97]. In a 
growing skeleton, BPs determine a typical radiological find-
ing called ‘zebra lines’. These are transversal linear bands of 
increased density as a result of alternative phases of denser 
bone deposition and normal bone mineralization [98]. These 
alterations are harmless and do not induce morphological 
changes or have consequences for bone growth [99, 100]. 
BP-induced transverse lines disappear with time, supporting 
the view that these lines represent horizontal trabeculae that 
undergo remodeling [101]. Major adverse events affecting 
the adult population (e.g., atrial fibrillation, kidney injury, 
and esophageal ulceration) are not reported in children [88, 
102, 103]. Osteonecrosis of the jaw after BPs in the pediatric 
population is a rare complication with only one report in the 
literature of a 15-year-old girl consequent to alendronate 
therapy [104]. In past years there was much concern regard-
ing fracture healing during BP therapy. However, available 
evidence indicates normal fracture healing with slightly 
delayed osteotomy healing [105, 106]. Atypical femoral 
fracture has been described only in an 18-year-old male 
treated with IV pamidronate for 7 years, then risedronate for 
2 years for X-linked osteoporosis [107], and in a 21-year-old 
male with OI diagnosis treated with BPs during adolescence 
[108]. Acquired osteopetrosis following BP therapy has also 
been described [109, 110]. Long-term effects of BP treat-
ment are still unknown and data on the optimum duration 
of treatment with BPs are lacking. The general suggestion 
is to discontinue treatment after reaching a good clinical 
response, especially in patients with transient or modifiable 
risk factors [97]. In patients with persistent risk for fractures, 
it is recommended to continue treatment until definitive 
height is attained [111]. Another problem is the potential 
teratogenic effects of BPs; indeed, these agents can cross 
the placenta, resulting in fetal exposure. Up to now, only 
minor adverse effects have been described in newborns of 
pregnant woman treated with BPs and a recent study sug-
gested that BPs have no major teratogenic effects. In this 
study, the rates of neonatal complications and spontaneous 
abortions were increased in women with bone/systemic dis-
eases treated with BPs but this is more likely to be linked 
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Table 2  Oral bisphosphonate dosage schemes

d day, w week

Drug Dosage

Alendronate Weekly: 1–2 mg/kg/w
Daily: 5 mg/d (< 20 kg) to 10 mg/d (> 20 kg)

Risedronate Weekly: 15 mg/w (< 40 kg), 30 mg/w (> 40 kg)
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to the severity of the underlying diseases and concomitant 
medications rather than to antiresorptive therapy [112]. Due 
to the lack of definitive data, contraceptive treatment should 
be prescribed to adolescent girls before starting BP therapy.

4.2.2  Denosumab

Denosumab is a fully human monoclonal antibody directed 
against RANKL, preventing RANKL/RANK interaction on 
the osteoblast, which leads to the inhibition of osteoclast 
formation, function, and survival. It can be very useful in 
inflammatory diseases since cytokines and glucocorticoids 
can up-regulate RANK expression on osteoclast precur-
sors and promote bone resorption [113, 114]. In children, 
denosumab was originally used in patients with OI or in 
other bone diseases (see Table 4). The pharmacokinetic and 
pharmacodynamic profile of denosumab in children have not 
been assessed yet. In dose ranging studies in adults, deno-
sumab exhibited non-linear, dose-dependent pharmacokinet-
ics, with lower clearance at higher doses or concentrations, 
and its metabolism and elimination are expected to follow 
the immunoglobulin clearance pathways [115]. Furthermore, 
the clearance seems to depend on the amount of available 
RANKL [116]. In the pediatric population, the increased 
skeletal turnover and the amount of RANKL produced by 
children at different ages may have an impact on pharma-
cokinetics [117]. Therefore, if RANKL is expressed at high 
concentration, the antibody will be eliminated rapidly at the 
standard dose of 1 mg/kg [118]. However, pediatric dosage 
and dosing intervals of monoclonal antibodies in children 
are generally readjusted taking into account body weight 
and surface area [119]. In patients with OI unresponsive to 
BP treatment, denosumab resulted in higher BMD and in 

a decreased fracture incidence in some studies [120–123]. 
The dosage used in OI patients varies from 1 mg/kg every 
12 weeks to 1 mg/kg every 6 months. Hoyer-Kuhn et al. 
made a retrospective evaluation of an individualized bio-
marker-associated treatment regimen with denosumab in 10 
children with classical OI who were followed for 1 year after 
their participation in a pilot trial (ClinicalTrials.gov identi-
fier: NCT01799798). After a treatment period of 1 year with 
a fixed dose interval of 12 weeks, the following doses were 
given based on changes of urinary bone resorption markers. 
Denosumab was administered when bone resorption mark-
ers increased. In this study, increasing the intervals between 
drug administrations did not change vertebral shape despite 
a reduction of lumbar areal BMD [123]. In another study 
in four patients with OI, a decreased BMD was found in 
three out of four children after denosumab therapy but when 
the interval between denosumab injections was reduced, the 
lumbar spine-aBMD Z-score increased [118]. The suppres-
sion of bone resorption is reversible and a shorter interval 
seems more appropriate to ensure a constant suppression 
of bone resorption by osteoclasts [124]. Studies concerning 
OI patients are summarized in Table 4. Dosing regimens, 
efficacy, and side effects of denosumab for other pediatric 
conditions are summarized in Table 5. 

Regarding safety, minor side effects such as hypocalce-
mia [120–122] have been reported. Rebound hypercalcemia 
is a potentially serious complication resulting from a rapid 
increase in bone resorption secondary to decrease in antire-
sorptive effect after withdrawal of denosumab and is well 
described in the literature. In previous reports, denosumab-
associated hypercalcemia in children developed between 5.5 
and 28 weeks after denosumab injection [118, 125–131]. 
This complication developed not only after treatment 

Table 3  Intravenous bisphosphonate dosage schemes

d day, m month

Drug [references] Administration Dosage

Pamidronate [81–84, 167, 
168]

200–250 mL isotonic saline solution 
in 3 h

Children > 3 years:
First cycle: 0.5 mg/kg/d the first day then 1 mg/kg/d on days 2–3
Next cycles: 1 mg/kg/d for 3 d every 4 m
Children 2–3 years:
First cycle: 0.38 mg/kg/d the first day then 0.75 mg/kg/d on days 2–3
Next cycles: 0.75 mg/kg/d for 3 d, every 3 m
Children < 2 years:
First cycle: 0.25 mg/kg/d the first day then 0.5 mg/kg on days 2–3
Next cycles: 0.5 mg/kg/d for 3 d, every 2–3 m

Neridronate [88–90] 200–250 mL isotonic saline solution 
in 3 h

1–2 mg/kg/d, every 3–4 m

Zoledronic acid [91, 92, 
169, 170]

50 mL isotonic saline solution in 
45 min

First administration 0125–0.025 mg/kg
Next administrations 0.025–0.05 mg/kg every 6–12 m
Patients with genetic bone diseases:
First administration 0.025 mg/kg
Next administrations 0.025–0.05 mg/kg every 6 m
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discontinuation but also in the interval between two deno-
sumab injections. In accordance with this view, Trejo et al. 
noticed a rapid decrease in bone density when the interval 
between denosumab injections was extended to 6 months in 
two OI patients. Shortening of treatment intervals may be 
helpful to prevent hypercalcemia [118] but further studies 
are needed. No long-term data about the risk of nephrocal-
cinosis or calcification of coronary arteries later in life in OI 
patients with hypercalcemia or hypercalciuria are available. 
Other severe side effects like osteonecrosis of the jaw [129] 
have also been reported in two adolescents (aged 14 and 
15 years) and a young adult (aged 40 years) received fixed-
dose denosumab for giant cell tumor of bone. Radiographic 
appearance of zebra lines, similar to those observed with BP 
therapy, has also been described after denosumab adminis-
tration [131–133]. Based on current data, growth seems to 
be unaffected [120–122, 134].

Clinical trials to evaluate the long-term effect and safety 
of denosumab therapy in pediatric patients are ongoing 

(see Table 6). At the moment, this drug is approved only 
in adults.

4.2.3  Specific Conditions

4.2.3.1 Osteogenesis Imperfecta BPs are first-line therapy 
in children and adolescents affected by OI. They have been 
widely used over the years to treat OI and we currently 
have solid data on safety and efficacy derived through case 
series and RCTs. The efficacy of BPs in increasing BMD 
has been established by a Cochrane systematic review [135]. 
Data concerning fracture incidence during treatment are 
divergent. Three studies with oral BPs showed a reduction 
in relative risk or a tendency to decrease the frequency of 
bone fractures [65, 66, 74]. In contrast, six studies (three 
with oral and three with IV BPs) showed no statistically 
significant differences on fracture incidence between pla-
cebo and treated groups [75, 76, 90, 136–138]. The different 
treatment schemes, the small number of patients enrolled in 

Table 5  Denosumab studies in other conditions

m month, w week

Medical condition [refer-
ences]

Age (range) No. of 
patients

Dosage Response Adverse effect

Juvenile Paget's disease 
[126]

8 1 0.5 mg/kg Alkaline phosphatase levels 
dropped within the normal 
range and remained at 
normal levels for 5 m after 
the final dose of deno-
sumab

Hypocalcemia and hypercal-
cemia

Giant cell tumor [127, 131] 10–11 2 120 mg every 4 w Reduction of tumor mass
No signs of growth retarda-

tion

Hypercalcemia (n = 1)

Giant cell granuloma [130, 
172]

5–14 7 70 mg/m2 every 4 w Reduced tumor mass Hypercalcemia (n = 3)
Hypocalcemia (n = 4)

Fibrous dysplasia [125] 9 1 1 mg/kg and 0.25 mg/kg 
dose escalations every 3 m

Reduction in pain, bone 
turnover markers, and 
tumor growth rate in 7 m

Hypercalcemia after discon-
tinuation

Cherubism [172–174] 12–19 4 8 subcutaneous denosumab 
injections (120 mg/dose) 
in 6 m

Ossification of the osteolytic 
lesions and suppression of 
their expansion

Transiently decreased growth 
rate (n = 1)

Rebounded asymptomatic 
hypercalcemia (n = 1)

Symptomatic hypocalcemia 
(n = 1)

Noonan syndrome with 
multiple giant cell lesion 
[175]

3–17 4 1.3–1.7 mg/kg monthly Regression of the Noonan-
like multiple giant cell 
lesions, improvement in 
the radiographic appear-
ance of mandibular bone 
and pain relief

Hypocalcemia (n = 2)
Symptomatic hypercalcemia 

(n = 4)

Aneurysmal bone cysts 
[172, 176–178]

5–17 9 70 mg/m2 body surface 
area subcutaneously every 
4 w or

1.2 mg/kg/dose weekly (4 
times) to a final dose of 
1.6 mg/kg given monthly

Recovery from pain, neuro-
logic symptoms and tumor 
regression

Asymptomatic hypocalcemia 
(n = 4)

Rebound hypercalcemia 
(n = 3)
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these trials, and the differences between the various forms 
of OI may play an important role in explaining these dis-
crepancies. On the other hand, no studies have reported an 
increased incidence of fractures with the use of BPs. Seikaly 
et  al. reported a significant decrease in bone pain, evalu-
ated with pain scores and the frequency of analgesic use at 
12 months [66]. In other trials, no differences in bone pain 
between BPs and placebo were observed or pain scores were 
not assessed. Other treatments for OI have been proposed. 
A double-blind RCT involving 79 adult patients with OI 
demonstrated an increased areal and volumetric BMD in 
spine and hip in the group treated with the anabolic agent 
teriparatide compared with the placebo group [139]. Other 
evidence suggests that in patients affected by type I OI, teri-
paratide treatment is associated with a remarkable response 
in markers of bone formation [140]. Another study aimed at 
testing the safety and efficacy of teriparatide in patients over 
18 years of age is in progress (NCT03735537). Denosumab 
has recently been used for the treatment of OI and seems to 
be very effective in increasing BMD (see Table 4).

4.2.3.2 Glucocorticoid‑Induced Osteoporosis Supplemen-
tation with vitamin D and calcium does not appear to be 
effective in preventing fragility fracture in patients with 
GIO [141, 142]. On the other hand, risedronate given pre-
ventively appears to increase BMD compared with no treat-
ment or supplementation, but does not seem to prevent 
vertebral fracture progression [79]. Not all children with 
GIO are candidates for treatment; indeed, children who 
are younger and with transient glucocorticoid exposure are 
more likely to recover and, if they have a sufficient residual 
growth potential, the treatment is not necessary. In contrast, 
vertebral fractures are an absolute indication for BPs [3]. 
Since the principal manifestation of GIO is vertebral frac-
ture, IV BPs are preferred rather than oral formulations. In 
fact, oral BPs have not shown efficacy in inducing vertebral 
body reshaping after spine fractures [74–76], as seen with 
IV pamidronate [77, 78]. In pediatric GIO, two non-rand-
omized case-control trials (a total of 20 patients) have been 
performed [143, 144]. In these studies, the treated patients 
showed an increase of BMD Z-scores and no severe side 
effects were reported. Two uncontrolled studies of zole-
dronic acid in children with osteoporosis (including GIO) 
showed improvement in BMD and absence of vertebral 
fracture [92, 145]. In a retrospective observational study 
on seven boys (a total of 27 vertebral fractures) affected by 
Duchenne muscular dystrophy treated with glucocorticoids, 
IV pamidronate or zoledronic acid therapy were associ-
ated with improvement in back pain and in vertebral height 
ratios of previously fractured vertebral bodies. At the same 
time, such therapy did not appear to prevent the develop-
ment of new vertebral fractures [146]. There are no con-
sensus guidelines on when to start pharmacological therapy Ta
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in children treated with high doses or for long periods with 
glucocorticoids. It has been suggested to start IV BPs prior 
to the first-ever fracture in patients at high risk [3]. A phase 
III, randomized, double-blind, placebo-controlled trial to 
evaluate the safety and efficacy of denosumab in pediatric 
subjects with GIO is ongoing (NCT03164928; active, not 
recruiting). In patients with rheumatic diseases, the inflam-
matory state can lead to bone mass loss, regardless of glu-
cocorticoid therapy. In these patients, the principal strategy 
to prevent bone damage aims to control disease activity. In 
fact, reports in adults [54, 147, 148] and in children [52] 
showed that anti-TNF therapy may exert beneficial effects 
on bone metabolism and on bone mass acquisition.

4.2.3.3 Idiopathic Juvenile Osteoporosis Although spon-
taneous remission occurs in patients with idiopathic juve-
nile osteoporosis, permanent bone deformities may occur. 
Several case reports showed the efficacy of BPs in terms of 
symptom resolution and improvement in bone parameters 
[149–151]. In an RCT (pamidronate vs placebo) [152] areal 
and volume BMD Z-scores were lower in untreated patients. 
During study follow-up, the incidence of new fractures was 
almost double in untreated compared with treated children. 
This study suggested that the spontaneous recovery of bone 
mineral status is unsatisfactory in patients with idiopathic 
juvenile osteoporosis and BPs can stimulate onset of the 
recovery phase, reducing fracture rate. Recently, a patient 
with vertebral spinal deformities was treated with alen-
dronate, leading to clinical and radiological improvement 
[153]. No adverse events were described.

4.2.3.4 Osteoporosis‑Pseudoglioma Syndrome Osteopo-
rosis-pseudoglioma syndrome (OPPG) is a rare autoso-
mal recessive syndrome characterized by juvenile-onset 
osteoporosis and ocular abnormalities due to a low-density 
lipoprotein receptor-related protein 5 (LRP5) gene muta-
tion. Based on a few published case reports, treatment with 
BPs improves BMD and bone pain in patients with OPPG 
syndrome [154–158]. However, Streeten et al. have demon-
strated an intrinsic bone fragility despite an improvement in 
BMD during BP therapy. The normalization of DXA after 
long-term BP treatment did not correlate with the severe 
degree of bone fragility seen with quantitative computed 
tomography. In fact, they described four fractures (three 
femoral shafts) in three OPPG patients while on BPs, after 
achieving significant improvement in areal BMD [159]. 
These data are supported by a case series described by Pap-
adopoulos et al. in which three of four patients with OPPG 
reported a fracture during BP therapy, despite an increase 
of BMD [160].

4.2.4  Future Treatments

Romosozumab, a humanized monoclonal antibody, pro-
motes bone formation and inhibits bone resorption by 
inhibiting sclerostin, a protein involved in the regulation of 
bone formation. In the phase III FRAME and ARCH stud-
ies, romosozumab (210 mg once monthly) significantly 
reduced vertebral and clinical fracture risk versus placebo 
and oral alendronate in postmenopausal women with osteo-
porosis [161, 162]. In 2019, the FDA and EMA approved 
romosozumab for postmenopausal women with high risk of 
fracture. At the moment, a phase I, open-label, ascending 
multiple-dose study in children and adolescents (5–17 years 
old) with OI is recruiting. The aim of the study is to evaluate 
the pharmacokinetics, safety, tolerability, pharmacokinetics 
and pharmacodynamics of romosozumab in pediatric popu-
lations (NCT04545554).

Another interesting molecule is fresolimumab, an 
antibody that can block transforming growth factor beta 
(TGF-β). In studies in mice with OI, it has been shown that 
silencing TGF-β can lead to higher bone mass, quality, and 
strength [163, 164]. Fresolimumab is currently in a clinical 
trial in children with OI (NCT03064074).

Odanacatib, a cathepsin K inhibitor, was able to reduce 
the risk of fracture in the LOFT trial, but was associated 
with an increased risk of cardiovascular events, specifi-
cally stroke, in postmenopausal women with osteoporosis 
(NCT00529373) [165]. A study in a pediatric population 
had been planned but was cancelled following safety reports.

5  Conclusions

Although uncommon, osteoporosis may also involve young 
subjects. High-risk conditions should be identified and pre-
vention strategies promptly undertaken. Management often 
requires a multidisciplinary team with experience in pedi-
atric bone diseases. BPs remain the main therapeutic agent 
for children with significant skeletal fragility and are also 
useful in a large number of other conditions. Use of these 
agents should be managed in centers with expertise, since 
their long-term effects are not yet fully known.
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