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Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. 
Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these 
life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but 
dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new 
antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide 
the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal 
agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic 
data, dosing, and therapeutic drug monitoring.
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Key Points 

While individualized dosing regimens are optimal, 
targeted therapy of antifungal agents in children is chal-
lenging because of the lack of known pharmacodynamic 
endpoints for many fungal infections and the unavailabil-
ity of clinical assays.

Prescribers should be attuned to the data informing dos-
ing recommendations for antifungal agents and the gaps 
in the current literature for children.

This review summarizes the available data on the phar-
macokinetics/pharmacodynamics, dosing, and thera-
peutic drug monitoring of available systemic antifungal 
agents for treatment and prevention of invasive fungal 
diseases in children.

1  Introduction

With the remarkable advances in life-saving and life-pro-
longing treatments and technologies for premature, immu-
nocompromised, and critically ill infants and children, the 
number of pediatric patients at risk for invasive fungal dis-
ease (IFD) has increased over time. As a result, more and 
more children are receiving antifungal agents, for either the 
treatment or the prevention of IFD [1, 2]. Over the past few 
decades, therapeutic options have expanded, and there has 
been a shift away from conventional antifungal drugs (e.g., 
amphotericin products) toward the use of newer agents, 
such as triazoles and echinocandins [1]. However, pediatric-
specific studies are still needed to confirm the therapeutic 
targets associated with optimal effectiveness and safety for 
many of these agents, particularly the newer triazole drugs.

Successful treatment of any infection requires the provi-
sion of an antimicrobial agent at a dose that achieves thera-
peutic concentrations at the site of infection. In cases of IFD, 
substantial interindividual variability in pharmacokinetics 
(triazoles), narrow therapeutic windows (amphotericin prod-
ucts), and limited oral bioavailability (amphotericin prod-
ucts, echinocandins) complicate antifungal selection and 
dosing decisions. The maturation of hepatic and renal clear-
ance mechanisms, which can significantly affect the pharma-
cokinetics of drugs in infants and younger children, further 
challenges dose optimization in pediatrics [3]. Ultimately, 
clinicians need to be cognizant of the myriad patient- and 
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drug-related factors influencing antifungal pharmacokinetics 
in pediatric patients.

The goals of this practical review are to describe the spec-
trum of activity and pharmacokinetics/pharmacodynamics 
(PK/PD) of systemic antifungal agents currently available in 
children. We detail dosing recommendations from infancy 
to adolescence for drugs currently in use and evaluate the 
role of therapeutic drug monitoring (TDM) for each. We 
focus on pediatric data but highlight information that can be 
extrapolated from adults, as needed. Ultimately, we hope this 
review will provide clinicians and pharmacists with useful 
information regarding the current state of antifungal clinical 
pharmacology in pediatrics.

2 � Polyenes

2.1 � Spectrum of Activity and Clinical Indications

Amphotericin B (AmB) is the oldest of the systemic antifun-
gal drugs and has long been considered a first-line treatment 
of IFD because of its potent and broad fungicidal activity. 
AmB is a polyene macrolide that binds to ergosterol, the 
principle sterol present in fungal cell membranes, causing 
membrane disruption, loss of cell contents, and fungal cell 
death [4]. It is active against most pathogenic yeasts and 
molds. However, among Candida species, activity against 
C. lusitaniae [4] and C. auris is variable [5, 6]. Furthermore, 
while AmB provides the most comprehensive coverage of 
pathogens from the Mucorales order, increased resistance 
has been reported with some of the species in this order, 
such as those in the genera of Cunninghamella and Rhizo-
pus [7].

Four AmB products have been produced for clinical use, 
all of which have identical spectra of activity: AmB deoxy-
cholate (D-AmB), also known as conventional AmB, and 
three lipid-based formulations: AmB colloidal dispersion 
(ABCD), AmB lipid complex (ABLC), and liposomal AmB 
(L-AmB). Made available in the 1950s, D-AmB was the first 
formulation for clinical use and served as the cornerstone of 
antifungal therapy for several decades. Dose-limiting side 
effects of D-AmB, namely nephrotoxicity and electrolyte 
disturbances, as well as infusion-related reactions (phlebitis, 
rigors), were major limitations of D-AmB use and led to the 
development of lipid formulations in the 1990s. Each of the 
lipid-based formulations are complexed to lipids in differ-
ent ways, which protects tissues from the direct toxicity of 
free AmB.

Nephrotoxicity is the major adverse event of all AmB 
products and a significant deterrent to their use. The efficacy 
of the lipid-based formulations of AmB is comparable to that 
of D-AmB, but safety profiles are better than that of D-AmB 
[8–10]. In a Cochrane review involving four trials and 395 

participants, lipid formulations were associated with a sig-
nificant decreased risk of nephrotoxicity: relative risk 0.47 
(95% confidence interval [CI] 0.21–0.90) [11]. Because of 
their improved safety, lipid preparations are preferred over 
D-AmB for prevention and treatment of most IFD in chil-
dren. However, D-AmB remains the product of choice for 
treatment of neonatal candidiasis [12] because data from 
observational studies have shown decreased mortality with 
D-AmB compared with lipid formulations [13], similarly 
for cryptococcal meningoencephalitis [14]. Lipid prepara-
tions, particularly L-AmB, remain the first-line treatment 
for central nervous system (CNS) candidiasis outside of the 
neonatal period [12]; mucormycosis [15]; severe endemic 
mycoses, including pulmonary, disseminated, or CNS blas-
tomycosis [16]; osseous coccidioidomycosis [17]; and acute 
pulmonary histoplasmosis [18]. AmB is also an alterna-
tive therapy for treatment of invasive aspergillosis (IA) in 
patients who cannot receive voriconazole [19].

2.2 � Pharmacokinetics/Pharmacodynamics

AmB exhibits concentration-dependent fungicidal activity 
and prolonged suppression of fungal growth after the con-
centration has fallen below the minimum inhibitory con-
centration (MIC) of the infecting organism [20]. The PK/
PD parameter best associated with killing of Candida and 
Aspergillus species in preclinical studies has been the peak 
plasma concentration (Cmax)/MIC ratio [20, 21]. As a result, 
fungicidal activity is promoted through the administration of 
large dosages that achieve optimal peak concentrations at the 
site of infection. Unfortunately, dose- and infusion-related 
toxicities preclude the use of overly large AmB dosages in 
the clinical setting, and recommended dosages for all AmB 
formulations are driven based on tolerability.

Each of the AmB products has unique pharmacokinetic 
properties (Table 1). Conventional AmB is complexed with 
deoxycholate, a detergent, to make the drug soluble in water. 
It quickly disassociates from its carrier after infusion and 
becomes highly (> 95%) protein bound [22]. The pharma-
cokinetics of D-AmB vary widely among children, with an 
inverse relationship between age and clearance [23–25]. As 
a result, serum concentrations of AmB in infants are lower 
than in older children and adults given comparable D-AmB 
doses [23, 24]. Peak serum concentrations tend to be around 
1.5–3.0 mg/L following administration of a 1 mg/kg dose 
[26], although sizable differences in serum concentrations 
are seen across pediatric patients [23, 24]. D-AmB has a 
biphasic plasma concentration profile with an initial half-
life of 9–26 h [23, 24, 27] and a terminal half-life as long 
as 15 days [22]. The plasma half-life has been reported to 
increase over the course of therapy, particularly in premature 
infants [24], suggesting that tissue accumulation may occur 
with prolonged treatment. AmB is not metabolized to any 
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clinically relevant extent, and two-thirds of D-AmB doses 
are excreted unchanged in the urine and feces [28].

Lipid formulations of AmB were developed to mitigate 
toxicities related to D-AmB and facilitate the administra-
tion of larger dosages. A detailed summary of the different 
formulations and their properties is beyond the scope of the 
current review but can be found elsewhere [9, 29]. Compared 
with D-AmB, both ABCD and ABLC attain lower peak 
plasma concentrations, smaller area under the plasma con-
centration–time curve (AUC), larger volumes of distribution 
(Vd), and shorter terminal half-lives in animal models, likely 
because of rapid distribution of the drug into tissues [30]. 
However, these lipid formulations are not well-studied in 
children. Among three children with hepatosplenic candidi-
asis treated with ABLC 2.5 mg/kg [31], steady-state plasma 
concentrations were low at a mean Cmax 1.7–2.0 mg/L on 
days 7–42 [31]. In a separate population pharmacokinetic 
study of 28 neonates treated with ABLC [32], clearance was 
0.399 L/h/kg, resulting in plasma concentrations similar to 
those in older children and adults. Meanwhile, in a study 
involving five children aged < 13 years treated with ABCD 
7–7.5 mg/kg [33], pharmacokinetic parameter estimates 
were comparable to those in children aged > 13 years and 
adults receiving the same dosages [33].

Compared with D-AmB, L-AmB has a lower Vd [28] and 
achieves higher Cmax and larger AUC [30]. At a dosage of 
5 mg/kg, mean day-1 AUC​0–24 was 351 ± 445 µg/mL × h 
among 13 immunocompromised pediatric patients; this con-
trasts with a mean AUC​0–24 of 24.1 µg/mL × h in children 
treated with D-AmB 1 mg/kg [26]. Unlike D-AmB, which 
circulates predominantly as protein-bound (e.g., biologically 
inactive) drug, L-AmB circulates in three forms: unbound, 
protein-bound, and liposome-associated drug. While total 
plasma concentrations are high with L-AmB, the majority 
of the drug is sequestered within liposomes [22], resulting 
in a very low unbound fraction (0.005) in plasma [34]. The 
high fraction of liposome-associated AmB leads to a pro-
longed circulating half-life and protects individuals from 
direct toxic effects of free AmB while providing a depot 
for delivery of AmB to tissues and fungal targets over an 
extended period [22, 34]. Hence, L-AmB activity is believed 
to persist long after cessation of therapy.

Complexing AmB into lipids has significant effects on 
drug distribution to tissues. All formulations of AmB dis-
tribute well into the liver and spleen because of uptake by 
circulating macrophages [35, 36] but have distinct intrapul-
monary disposition patterns [37]. Compared with other for-
mulations, ABLC distributes best to lung tissue in animal 
models [37], achieving concentrations in lung tissue several-
fold that of plasma. The lung tissue:plasma ratio for all other 
AmB formulations is < 1 [37]. However, epithelial lung fluid 
(ELF) concentrations in critically ill adults are comparable 
among lipid-based AmB products [38]. The impact of the 

differential distribution of AmB products in lung tissue and 
ELF on therapeutic outcomes is unknown.

Lipid preparations of AmB were specifically designed to 
be renoprotective, raising concerns about their effectiveness 
in the treatment of fungal urinary tract infections. In a study 
of 30 neonates with invasive candidiasis (IC) [32], AmB 
concentrations in the urine following ABLC 2.5–5.0 mg/kg 
were higher than the MIC for most Candida isolates [32]. 
Despite these findings, clinical failures with lipid AmB for-
mulations have led to continued recommendations against 
the use of these products in the treatment of fungal urinary 
tract infections [39].

Penetration of AmB products into the CNS is of particular 
clinical importance. However, recommendations regarding 
the preferred AmB agent for treatment of various CNS infec-
tions are conflicting, which is largely driven by the paucity 
of comparative effectiveness studies rather than demonstra-
tion of clinical superiority of one agent over another. In the 
USA, D-AmB is the preferred initial drug for treatment of 
CNS candidiasis in infants [12], but D-AmB and L-AmB 
are given equivalent B-II recommendations in Europe [40]. 
Meanwhile, D-AmB remains the drug of choice for treat-
ment of cryptococcal meningitis in all ages [14]. However, 
L-AmB is the preferred agent for treatment of CNS infec-
tions in children outside of the neonatal period, including 
CNS candidiasis [12, 40], mucormycosis [15], and histo-
plasmosis [18]. In a preclinical rabbit model of Candida 
meningoencephalitis, L-AmB achieved significantly higher 
brain tissue concentrations than the other AmB products, 
whereas cerebrospinal fluid (CSF) concentrations were 
comparable across all of the products [30]. In this study, 
D-AmB and L-AmB were equally effective at treating Can-
dida meningoencephalitis and more effective than ABCD 
or ABLC [30].

2.3 � Pediatric Dosing

Each of the four AmB products have unique pharmacologi-
cal characteristics, and the specific dosage differs by agent 
(Table 1). Despite these differences, dosing is weight based 
according to actual body weight for each agent, without a 
maximum recommended dose [41]. However, a recently 
published population pharmacokinetics study of L-AmB in 
morbidly obese adult patients suggested that a fixed dose 
of 300 or 500 mg may be more appropriate than 3–5 mg/kg 
for individuals > 100 kg [42], as clearance is not affected 
by body weight. All of the AmB products are administered 
once daily regardless of age and, since only small amounts 
of AmB are excreted in urine and bile, dose adjustments are 
not required in the setting of renal or hepatic dysfunction. 
AmB is also not dialyzed, so doses of AmB products do not 
need to be adjusted in patients receiving renal-replacement 
therapy. If possible, D-AmB should be avoided in the setting 
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of known kidney disease/injury since it is the most nephro-
toxic of the formulations.

Standard dosing of D-AmB in neonates and children 
is 1 mg/kg/dose, but dosages as high as 1.5 mg/kg could 
be considered in serious or resistant infections. To reduce 
the likelihood of infusion reactions, D-AmB should always 
be infused as a slow infusion (over at least 2–6 h). Some 
studies have also reported a decreased risk of nephrotox-
icity with administration of D-AmB as a continuous infu-
sion [43], although this finding is not universal [44]. While 
AmB demonstrates concentration-dependent killing, the use 
of continuous infusions has not been associated with inferior 
microbiologic or clinical outcomes [44].

Similar to D-AmB, serum concentrations of L-AmB were 
lower in infants and children than in adults given comparable 
doses in one report [45]. However, data are conflicting, as 
a more recent study found that L-AmB pharmacokinetics 
were similar in adult and pediatric patients [46]. Despite the 
significant interpatient variability in drug concentrations of 
L-AmB in children, evidence is insufficient to support dif-
ferent dosing in pediatric and adult patients. Higher L-AmB 
dosages should be considered when treating resistant or 
more serious infections in children, such as CNS infections. 
A dosage of L-AmB 6 mg/kg is recommended for treat-
ment of cryptococcal meningitis to ensure adequate CNS 
penetration [47]. Meanwhile, dosages of 5–10 mg/kg are 
recommended by European guidelines for treatment of CNS 
mucormycosis in children [15]. Dosages > 5 mg/kg demon-
strate nonlinear pharmacokinetics in children, and signifi-
cantly higher drug exposures are attained with these dos-
ages than at dosages < 5 mg/kg [48, 49]. Thus, whether other 
indications exist for which dosages > 5 mg/kg should be used 
is unclear. Pediatric data are insufficient to identify specific 
clinical scenarios in which individualized (i.e., higher or 
lower) dosages of ABCD and ABLC are warranted.

2.4 � Therapeutic Drug Monitoring (TDM): Adverse 
Events

TDM is not generally available for AmB for several rea-
sons. First, no well-established PK/PD targets have been 
associated with improved clinical outcomes for any of the 
AmB products. Although AmB is concentration dependent, 
and higher Cmax/MIC ratios have been reported in children 
successfully treated with L-AmB [50], specific targets have 
not been established to inform dose adjustments for AmB 
products. Second, while AmB products are associated with 
nephrotoxicity, toxicodynamic thresholds have also not 
been specified. Lastly, because the AmB product being used 
will dictate what type of drug measurement assay should 
be performed—total drug, protein-bound drug, liposome-
associated drug, unbound drug—AmB concentrations are 
not easily interpretable. For TDM, it is important to be able 

to accurately identify the active fraction of total drug con-
centrations (i.e., with L-AmB, both liposome-associated and 
unbound drug are biologically active). Therefore, assays 
need to be able to specify different forms of AmB to inform 
dose adjustments.

Nephrotoxicity and electrolyte wasting are the princi-
pal adverse events associated with AmB administration. 
Nephrotoxicity occurs in 15 to > 50% of children treated 
with D-AmB [51], although nephrotoxicity is less frequent 
in children than in adults [51]. AmB-associated nephrotox-
icity clinically manifests as increased blood urea nitrogen 
and serum creatinine, as well as electrolyte wasting [52, 
53], primarily in the form of potassium wasting. Hypoka-
lemia requiring potassium supplementation occurs in up to 
40% of children treated with high-dose L-AmB (> 3 mg/kg) 
therapy [46, 49, 54]. Therefore, close laboratory monitoring 
and avoidance of other nephrotoxic medications, when pos-
sible, is advised in all patients treated with AmB products.

Infusion-related reactions are also encountered with 
administration of AmB products, particularly when admin-
istered as a rapid infusion. Fever, rigors, chills, myalgias, 
arthralgias, and nausea are common and believed to be due 
to histamine or cytokine release in response to therapy [55]. 
Hypotension, hypoxia, and cardiac arrhythmias are much 
rarer. Among the AmB products, infusion-related toxicities 
are particularly problematic for ABCD. In one trial [56], 
infusion-related events occurred in more than half of recipi-
ents of ABCD, leading some guidelines to discourage its 
use [19].

3 � Azoles

3.1 � Spectrum of Activity and Clinical Indications

The azole antifungals are classified into two distinct groups: 
imidazole and triazole antifungals. Structurally, the main 
difference between the two groups is the number of nitro-
gens in the 5-membered ring (Fig. 1), where imidazoles have 
two nonadjacent nitrogens and triazoles have three nitro-
gens. However, the mechanism of action for both classes of 
azole antifungals is to inhibit the cytochrome P450 (CYP)-
dependent 14-α-sterol demethylase, which interrupts ergos-
terol biosynthesis of fungal cell membranes and inhibits cell 
growth [57].

The clinical indications of imidazoles are mostly limited 
to topical uses because of their spectrum of activity, adverse 
effect profile when systemically administered, potency, or 
solubility [58]. Therefore, imidazoles are frequently admin-
istered as topical formulations for the treatment of dermato-
phytes and vaginal or oral candidiasis (Table 2). Ketocona-
zole is the only imidazole administered both topically and 
systemically. However, because of its drug–drug interaction 
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profile, it has fallen out of favor compared with triazole anti-
fungals and is no longer administered systemically in devel-
oped countries because safer alternatives are available.

Triazole antifungals have an improved spectrum of activ-
ity compared with imidazoles. Fluconazole was the first 
triazole developed and has activity against most yeasts and 
thermally dimorphic fungi (those that present as yeasts in 
temperatures > 37 °C), such as Histoplasma spp. and Blas-
tomyces spp. [59]. It is used extensively in neonates for the 
prevention and treatment of IC [60]. Newer triazoles, such as 
itraconazole, posaconazole, and voriconazole, have extended 
spectra of activity against invasive filamentous fungi, such 
as Aspergillus spp., but resistance has begun to emerge [61, 
62]. The most recently developed second-generation tria-
zole, isavuconazole, was developed to overcome the resist-
ance that limits the efficacy of triazole treatment. However, 
studies to establish the clinical role of isavuconazole in chil-
dren are limited. Clinical indications for triazole antifungals 
differ by agent (Table 3).

3.2 � Pharmacokinetics/Pharmacodynamics

The efficacy of azoles is concentration independent [63], 
with the primary pharmacodynamic endpoint associated 
with clinical outcomes after azole administration being the 
exposure to MIC ratio, or AUC​0–24/MIC. Azoles also exhibit 
significant post-antifungal effects [63]. For IC, clinical suc-
cess is achieved when the AUC​0–24/MIC of the unbound 
azole is > 25 [64]. This averages out to an azole unbound 
concentration close to the MIC of 1 over 24 h [64]. In con-
trast, for Aspergillus infections, the proposed AUC/MIC 
endpoint should be between 2 and 11 [64].

Pharmacokinetic profiles for the triazole antifungals vary. 
Fluconazole is a hydrophilic compound with low protein 
binding compared with other agents. It is well-absorbed, and 
its hydrophilicity limits its Vd to a volume similar to that of 
total body water. It readily passes through the blood–brain 
barrier and has a concentration in CSF up to 80% of that 
observed in the plasma in adults [65]. Fluconazole is bound 

Fig. 1   Core structure of azole agents
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primarily to α1-acid glycoprotein [66] and undergoes only 
minimal metabolism (~ 11%) by UGT2B7 [66, 67]. Overall, 
fluconazole is eliminated primarily unchanged, with 80–90% 
of parent eliminated in the urine [66, 68].

Itraconazole is a weak base that is highly lipophilic 
with poor water solubility. Bioavailability varies widely 
according to formulation. Capsule formulations require a 
low gastric pH for dissolution, so absorption is appreciably 
affected by gastric acidity [69, 70]. Coadministration with 
an H2-receptor antagonist, such as famotidine or ranitidine, 
decreases both the Cmax and the AUC​0–24 by approximately 
half [71]. A lower gastric pH, such as after a meal, along 
with longer gastric emptying time and a higher fat content, 
doubles the bioavailability compared with the fasted state 
and increases the exposure by > 160% [72]. Itraconazole has 
a highly variable pharmacokinetic profile, making it difficult 
to achieve target concentrations. After oral administration, 
it has lower accumulation in children aged < 12 years than 
in adults, with the youngest children exhibiting the lowest 
plasma concentrations, which could be due to maturation in 
intestinal metabolism or absorption [73, 74]. Another study 
of itraconazole in children also demonstrated high pharma-
cokinetic variability and demonstrated a correlation between 
itraconazole pharmacokinetics and ethnicity and sex [75]. 
Itraconazole is highly protein bound, mostly to albumin 
and also to red blood cells [76]. Despite this high protein 
binding, it distributes extensively into tissues because of its 
lipophilic nature, which is shown by its high Vd and concen-
trations two to three times higher in tissues than in plasma 
[77]. However, it poorly distributes into the CSF, eye fluid, 
and saliva [77]. It undergoes metabolism by CYP3A4 to 30 
different metabolites, with hydroxyl-itraconazole being the 
primary metabolite that also displays antifungal activity. It 
has negligible renal elimination of either parent or metabo-
lites, with most elimination into the feces [76].

Voriconazole is a structural analog to fluconazole but has 
a wider spectrum of activity. It was the first triazole to dem-
onstrate superior efficacy and safety to D-AmB in the treat-
ment of IA [78] and is now the first-line treatment for IA in 
both children and adults [19]. In adults, it is well-absorbed, 
with a bioavailability of approximately 96% [79]. Absorp-
tion is decreased when administered with food, with a reduc-
tion in Cmax and AUC​0–24 of up to 60 and 80%, respectively 
[80]. It is extensively metabolized in the liver by CYP3A4, 
CYP2C19, CYP2C9, and flavin-containing monooxyge-
nase 3 [79, 81, 82]. Almost all of its metabolites, includ-
ing the main circulating metabolite, voriconazole N-oxide, 
are renally eliminated [79]. Studies have suggested that 
polymorphisms in CYP2C19, including poor and ultrara-
pid metabolizers, contribute in part to this high variability 
[83, 84]. The pharmacokinetics of voriconazole in children 
differs significantly from that in adults. Overall, variability 
of AUC, Cmax, and clearance ranges from 32 to 175% in 

adults and children [79, 85]. While bioavailability is high 
in adults, it is significantly reduced to 44–65% in children 
[86, 87]. One physiologically based pharmacokinetic model 
suggested that first-pass intestinal metabolism could be 
responsible for the lower bioavailability in pediatric patients 
[88]. In children, voriconazole has linear pharmacokinet-
ics, which has been attributed to the higher abundance and 
capacity of hepatic CYP2C19 and FMO3 in children than in 
adults, yielding a clearance threefold higher in children aged 
2–12 years compared with that of adults [82]. In preclinical 
studies [89], autoinduction has been observed, a process by 
which metabolism of the drug increases over time; this has 
also been reported in clinical cases with declining concentra-
tions over time [90, 91].

Posaconazole was initially derived from itraconazole 
and is also highly lipophilic. It is available in a delayed-
release tablet, oral suspension, and intravenous formula-
tion. Posaconazole’s lipophilicity allows it to distribute 
extensively into the tissues, conferring a high Vd and a long 
terminal half-life. But, as with itraconazole, it is highly pro-
tein bound to albumin, and its penetration into CSF fluid 
is poor. Posaconazole lipophilicity also contributes to large 
variability in pharmacokinetic parameters, such as clearance 
and bioavailability, which can vary between subjects by up 
to 50 and 80%, respectively [92–95]. Two studies demon-
strated that the clearance of posaconazole in children aged 
6 months to 13 years was approximately 0.8 L/h/kg [96, 
97], an almost fourfold increase compared with adults, and 
variability between subjects was > 60%. Posaconazole under-
goes hepatic metabolism by glucuronidation, but only to a 
small degree, with approximately 17–34% of the total dose 
converted to glucuronide metabolites and the rest remaining 
unchanged as the parent compound is eliminated primarily 
through the feces [98, 99]. Despite not requiring the CYP450 
pathway for metabolism, posaconazole is a potent inhibitor 
of CYP3A4 [100, 101].

Overall, posaconazole absorption is affected by meals for 
both the suspension and the tablet formulations, increas-
ing the bioavailability up to 168–290% depending on the 
fat content of the meal [102]; administration with a high-
fat meal increases the gastric residence time and increases 
solubility. However, bioavailability is saturable such that 
increasing the dose decreases the percent absorbed [96]. As 
a result, the bioavailability of posaconazole increases when 
the total daily dose is divided over multiple doses, with a 
two- and threefold increase after administration every 12 and 
6 h, respectively [93]. There are important differences in the 
bioavailability of posaconazole between the suspension and 
delayed-release tablet. In a trial of posaconazole as prophy-
laxis in hematopoietic cell transplant (HCT) recipients, 
trough levels were significantly higher in children receiv-
ing the tablet than in those receiving the suspension [103]. 
A recently published nonrandomized trial reported that 
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dosages as high as 18 mg/kg/day divided every 8 h failed to 
achieve a therapeutic target of Cave of 500–2000 ng/mL in 
90% of children treated with the oral suspension [104]. Sim-
ilarly, simulations performed in a separate study reported 
that 200 mg in tablet form taken three times daily resulted 
in 72% probability of target attainment (minimum plasma 
concentration [Cmin] > 1 mg/L) for children aged 7–12 years, 
whereas the same dosage in suspension form achieved this 
target in roughly 40% [96]. Meanwhile, a recently presented 
abstract reported that over 90% of children aged 2–17 years 
reached Cave of 500 ng/mL when administered a novel pow-
der for oral suspension at 4.5 mg/kg/day [105], although this 
formulation is not yet commercially available.

Isavuconazole is the active metabolite of the prodrug isa-
vuconazonium sulfate, a water-soluble prodrug cleaved and 
almost entirely cleared by plasma esterases [106]. Isavucon-
azonium is cleared in 98–99% of adult patients within 1–2 h 
after the start of intravenous administration [107, 108]. After 
oral administration, the prodrug is hydrolyzed in the intesti-
nal lumen with no quantifiable concentration of the prodrug 
in the plasma but a high bioavailability of isavuconazole 
[106]. Isavuconazole, the active moiety, has a long elimi-
nation half-life of approximately 56–130 h once absorbed 
and does not reach steady state until day 14 with once-daily 
dosing [106, 108]. It is highly protein bound to albumin, 
with high bioavailability, and undergoes extensive hepatic 
metabolism [108, 109]. Exposure and half-life increase sig-
nificantly with mild to moderate hepatic impairment, but 
dosage adjustments are not recommended because of the 
morbidity associated with IFDs. At the time of writing, no 
pharmacokinetic data for children have been published, as 
pediatric trials are ongoing.

3.3 � Pediatric Dosing

3.3.1 � Fluconazole

Fluconazole demonstrates a higher clearance in children 
than in adults, with a half-life of 20 versus 30 h, respectively 
[110]. Vd is much higher in neonates than in older children 
or adults, which is reasonable given the hydrophilicity of 
fluconazole and the relative total body water of neonates 
compared with older populations [110]. For neonates, it is 
recommended to administer a loading dose of 25 mg/kg fol-
lowed by 12 mg/kg/day to achieve target fluconazole plasma 
concentrations in IC [110, 111]; there is no such loading 
dose recommendation for children outside of the neonatal 
period. Oropharyngeal candidiasis is treated with lower dos-
ages: 6 mg/kg on day 1 followed by 3 mg/kg/dose once daily. 
Dosing is the same for intravenous and enteral formulations.

3.3.2 � Itraconazole

The current recommendation for itraconazole dosing in chil-
dren is 3–5 mg/kg/day to maintain a trough concentration 
of > 0.5 mg/L [112]. However, studies have demonstrated 
that even a 5 mg/kg dose does not reliably produce goal 
trough concentrations in children [113]. In fact, one study 
suggested that a dose of 8–10 mg/kg divided over two doses 
reached target trough concentrations better than the recom-
mended dose of 5 mg/kg/day [114]. Given the high vari-
ability in absorption, and significant differences in bioavail-
ability of oral formulations, TDM is warranted.

3.3.3 � Voriconazole

Differences in clearance mean that recommended dosages of 
voriconazole are roughly twofold higher in children than in 
adults. Weight-based oral dosing for children aged > 2 years 
is 9 mg/kg twice daily (maximum of 350 mg total). Mean-
while, 8 mg/kg twice daily is used as maintenance dosing 
with the intravenous formulation. Population pharmacoki-
netic modeling has suggested that higher dosages (9 mg/kg 
three times daily for 3 days) may more rapidly attain thera-
peutic concentrations than current twice-daily dosing with-
out notable drug accumulation [115], but this dosage has 
not been fully evaluated. Similarly, optimal dosing has not 
been established in children aged < 2 years, although limited 
studies have suggested that higher doses may be necessary to 
maintain adequate trough concentrations [116]. Because par-
enteral voriconazole contains the excipient sulfobutyl ether 
β-cyclodextrin, which can accumulate in patients with renal 
impairment, intravenous voriconazole should be avoided in 
patients with creatinine clearance < 50 mL/min.

3.3.4 � Posaconazole

To date, posaconazole is only approved for use in children 
aged ≥ 13 years. The dosage in this age group is the same 
as in adults and varies by formulation. Less is known about 
optimal dosing in younger children. To our knowledge, 
only a few studies aimed to elucidate the pharmacokinet-
ics and determine the dosing of posaconazole in children 
aged < 13 years [96, 104, 105]. In a study by Boonsathorn 
et al. [96] using TDM data collected via routine clinical care, 
modeling and simulations were performed to evaluate dos-
ing needed to achieve targeted trough concentrations. The 
authors found low bioavailability of the oral suspension and 
recommended that children aged 6 months to 6 years receive 
200  mg suspension four times daily and children aged 
7–12 years receive 300 mg suspension four times daily [96]. 
The finding of low serum concentrations in young children 
treated with oral suspension is consistent with a recent study 
by Arrieta et al. [104], which reported that oral suspension 
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at 12–18 mg/kg/day in two to three divided doses failed to 
achieve a target of Cave of 500–2500 ng/mL in > 90% of chil-
dren aged 2–17 years; no specific dosing recommendations 
were given by these authors. Boonsathorn et al. [96] also 
included recommendations about dosing of the delayed-
release (“gastro-resistant”) tablet, but few pharmacokinetic 
samples (n = 12) were included from subjects taking this 
formulation, precluding conclusions about the optimal dos-
ing of delayed-release tablets in children aged < 13 years. 
Meanwhile, data from an open-label, dose-escalation trial of 
both an intravenous formulation and a novel powder for oral 
suspension showed that > 90% of children aged 2–17 years 
achieved target Cave > 500 ng/mL at dosing of 4.5–6 mg/kg/
day with both formulations [105].

As with adults and older children, significant differ-
ences in drug concentrations are achieved with the various 
posaconazole formulations. As such, dosing will likely dif-
fer by formulation when this drug is approved in children 
aged < 13 years. Until dosing is better determined, TDM 
and concentration-dependent dose adjustments may be ben-
eficial if this drug is used in younger children. Similar to 
voriconazole, the intravenous formulation of posaconazole 
contains cyclodextrin, which can accumulate in patients with 
renal function impairment. Use of the intravenous formula-
tion should be based on a careful risk/benefit assessment in 
patients with creatinine clearance < 50 mL/min.

3.3.5 � Isavuconazole

The optimal dosage of isavuconazole in children has not 
been established. However, a recent conference abstract 
reported that an intravenous dose of 10 mg/kg (maximum 
372 mg) administered to children aged 1–18 years produced 
exposures similar to those in adults [117]. In adults, dosing 
of the intravenous and enteral formulations are the same. 
Because its intravenous formulation does not contain cyclo-
dextrin, dosages do not need to be adjusted in patients with 
renal impairment [118], unlike with voriconazole.

3.4 � TDM: Adverse Events

TDM is used for triazole agents to optimize clinical out-
comes and limit adverse effects. Although the AUC/MIC 
ratio is the best determinant for efficacy, AUC correlates 
well with trough concentrations for azoles, as determined by 
linear regression [119], so trough concentrations are most 
often used for TDM. Low variability in fluconazole phar-
macokinetic parameters decreases the utility of TDM for 
this agent and, therefore, is not routine. However, van der 
Elst et al. [120] reported that 40% of critically ill pediatric 
patients with cancer exhibited subtherapeutic fluconazole 
Cmin concentrations (< 11 mg/L) and, therefore, TDM should 

be considered in this population because of the higher mor-
tality risk for invasive fungal infections [120].

Voriconazole trough concentrations between 1 and 
6 mg/L have demonstrated improved clinical outcomes while 
minimizing adverse effects [121]. Dose adjustments after 
TDM improves target attainment in adult patients [122], 
but frequent TDM may be required in children because of 
the higher variability in pharmacokinetics observed in this 
population [123]. Voriconazole levels should be measured 
every 3–5 days until appropriate concentrations are attained. 
Additionally, if voriconazole is administered for a prolonged 
period (i.e., > 2 months), repeat drug concentrations should 
be obtained because autoinduction can lead to subtherapeu-
tic concentrations over time [90, 91].

A similar practice is occurring with posaconazole because 
of the high variability of absorption and clearance in chil-
dren. Goal trough concentrations of ≥ 0.7 mg/L for prophy-
laxis and ≥ 1 mg/L for treatment are recommended [124, 
125]. Because of the improved bioavailability of posacona-
zole tablets, TDM can be performed after 3 days, as with the 
intravenous formulation, whereas steady state may not be 
achieved until > 7 days with the oral suspension. The TDM 
targets for itraconazole for both prophylaxis and treatment 
are > 0.5 mg/L [126], and monitoring should occur 5–7 days 
after initiation of therapy or with dose adjustments. The 
exposure–response profile has not been fully elucidated for 
isavuconazole, so TDM targets have not been established.

It is noteworthy that all of the triazoles demonstrate clini-
cally significant interactions with hepatic CYP enzymes to 
varying degrees, mostly as inhibitors [127]. This can result 
in increases in other hepatically metabolized drugs, such 
as immunosuppressive drugs [128]. Triazole dosages may 
need to be adjusted when coadministered with other CYP-
inducing or -inhibiting medications, and close monitor-
ing of serum levels is important. Isavuconazole has fewer 
drug–drug interactions than other azoles: in a study of adult 
HCT recipients, isavuconazole only modestly affected levels 
of tacrolimus and sirolimus [129].

Hepatotoxicity is the most notable side effect of triazole 
agents, although the incidence of hepatotoxicity with azoles 
is similar to that seen with AmB products [130]. Visual dis-
turbance and rash/photosensitivity are unique side effects 
of voriconazole compared with other azoles, occurring in 
as many as 45 and 8% of adults, respectively [78, 131]. Fur-
thermore, voriconazole is a known photosensitizing agent, 
and multiple studies have demonstrated that voriconazole 
exposure produces a higher risk for developing cutaneous 
squamous cell carcinomas, even after adjusting for sun expo-
sure [132–134]. Cancer risk has correlated with duration of 
voriconazole exposure and fairer skin [135]. A more com-
plete list of toxicities can be found in Table 4.
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4 � Echinocandins

4.1 � Spectrum of Activity and Clinical Indications

Two echinocandin agents are currently approved for 
use in children in the USA and Europe: caspofungin and 
micafungin. Clinical use of these agents has increased sub-
stantially in recent years among hospitalized children in the 
USA [1]. Anidulafungin, the most recently licensed agent 
in this class, does not yet have a labeled pediatric indica-
tion. All three commercially available echinocandin agents 
exert activity by inhibiting β(1-3)-glucan synthase activity 
and preventing synthesis of the fungal cell wall [136, 137]. 
They demonstrate similar spectra and degree of activity 
with potent fungicidal activity against yeasts, most notably 
Candida species [138, 139], as well as fungistatic activity 
against Aspergillus species [140, 141]. They have little to 
no activity against Cryptococcus neoformans, Trichosporon 
species, and Saccharomyces cerevisiae [142], nor against 
species in the Mucorales order [143]. Echinocandin resist-
ance in Candida spp. results from amino acid substitutions 
in the FKS gene, which confers decreased affinity of glu-
can synthase to the drugs [144]. Fortunately, echinocandin 
resistance is uncommon among Candida species [144–147]: 
C. albicans (0.0–0.1%), C. parapsilosis (0.0–0.1%), C. tropi-
calis (0.5–0.7%), C. krusei (0.0–1.7%), and C. glabrata 
(1.7–3.5%), as reported by the SENTRY Antimicrobial 
Surveillance Program from 1997 to 2006 [146].

Extensive clinical experience and durable antifungal 
activity has led to the adoption of echinocandins as first-line 
therapy for IC in neonates, children, and adults by the Euro-
pean Society for Clinical Microbiology and Infectious Dis-
eases [40] and the Infectious Diseases Society of America 
[12]. Although pediatric trials are few, echinocandins have 
demonstrated effectiveness and safety comparable to that of 
amphotericin products for the treatment of IC in infants and 
children [148–150], as well as empiric treatment of febrile 
neutropenia in pediatric patients [151]. Most isolates of C. 
auris (> 95%) are susceptible to echinocandins [152], so 
these drugs are also considered first-line therapy for this 
emerging, multidrug-resistant pathogen [153]. Although 
echinocandins are active against many Aspergillus species 
in vitro [142], they are reserved for treatment of refractory 
cases or as salvage therapy [19].

4.2 � Pharmacokinetics/Pharmacodynamics

Preclinical studies have determined that echinocandins 
exhibit time- and concentration-dependent fungal killing of 
Candida spp. with significant post-antifungal effects (PAFE) 
[154–157], meaning that fungicidal activity persists even 
after concentrations have declined. The pharmacodynamic 

parameter best associated with effectiveness against Candida 
species is the ratio between the AUC​24/MIC ratio [154–156]. 
The specific pharmacodynamic targets are generally similar 
for the three agents but vary by Candida species [156]. In 
an in vivo study by Andes et al. [156], the pharmacody-
namic target for C. albicans (mean free drug 24-hour AUC 
(fAUC​24)/MIC of 20.6 ± 32) was significantly higher than 
for C. glabrata (mean 7.0 ± 8.3) and C. parapsilosis (mean 
7.6 ± 7.1) for each agent. Because echinocandins are fung-
istatic against Aspergillus species, it is difficult to define 
MICs so instead a minimum effective concentration (MEC) 
ratio is used to define activity [158], which is the concentra-
tion at which hyphae transition to abnormal forms. However, 
no specific AUC/MEC ratio has been established as a phar-
macodynamic target for clinical care Table 5.

Echinocandins are large molecules with poor bioavail-
ability [136] and, thus far, are only available for parenteral 
administration. The pharmacologic properties of the three 
agents are similar, demonstrating linear pharmacokinetics 
over a range of clinically relevant dosages [159–161] and 
distributing well into most tissues [162]. However, they do 
not penetrate well into the eye [161, 163, 164] or CSF [161, 
165] and distribute slowly into urine [166]. There is debate 
regarding the clinical significance of echinocandins’ poor 
urine penetration, which differs from their parenchymal 
penetration into kidney: preclinical studies have found that 
drug concentrations in the kidneys are comparable to those 
in other organs [161, 162, 167] and that concentrations per-
sist in the kidneys well after serum concentrations decline 
[154]. To that end, there have been numerous reports of suc-
cessful treatment of Candida urinary tract infections with 
echinocandins [168–171]. Despite this, data are insufficient 
to support recommendations for their use in the treatment of 
urinary tract infections [12, 19], at least as first-line therapy.

Similarly, despite poor CSF penetration, echinocandin 
concentrations in brain tissue exceed those in CSF [161, 
172], and case reports of successful treatment of Candida 
meningitis [173, 174] and CNS aspergillosis [175] have 
been published. Preclinical studies and population phar-
macokinetic analyses support the use of higher dosages of 
micafungin for the treatment of Candida meningoencepha-
litis in neonates [172, 176, 177]. Based on a dose-depend-
ent penetration into the CNS and dose-microbiological 
responses demonstrated in preclinical studies [172], a dos-
age of 10 mg/kg is recommended by European guidelines for 
treatment of hematogenous Candida meningoencephalitis in 
neonates [40]. However, despite the pharmacokinetic data, 
the Infectious Diseases Society of America continues to rec-
ommend echinocandins only for salvage therapy or in cases 
of toxicity to other agents [12]. Data are also insufficient to 
guide the optimal dosing of caspofungin for neonatal men-
ingitis or for any of the echinocandins for treatment of CNS 
infections outside of the neonatal period.
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Significant differences exist in the metabolism and elimi-
nation of the three agents. Anidulafungin undergoes nonen-
zymatic chemical degradation [178], whereas micafungin 
and caspofungin are subject to hepatic metabolism [179, 
180], albeit via different mechanisms. As a result, dosing of 
micafungin and caspofungin should be adjusted in patients 
with moderate or severe hepatic dysfunction, whereas this is 
not necessary for anidulafungin. None of the echinocandins 
undergo significant renal elimination, so dosage adjustments 
are not needed in patients with renal impairment, including 
those receiving continuous venovenous hemofiltration or 
hemodialysis [181–183].

All three agents are highly protein bound (92–99%), pre-
dominantly to albumin [166], and have long half-lives in 
plasma of up to 24–72 h, with steady state attained after 
several days [136]. Critically ill adult patients with hypoal-
buminemia have higher caspofungin clearance and a result-
ant lower AUC​0–24 [184]. This has been hypothesized to be 
due to the presence of extensive protein binding, in which 
small reductions in serum albumin lead to a larger free frac-
tion of drug available for elimination. However, decreased 
protein binding may also result in increased distribution of 
unbound drug to tissues, improving echinocandins’ effec-
tiveness against tissue-based infections. The impact of serum 
albumin on echinocandins’ distribution and clearance, and 
thus dosing, in infants and children is unclear.

4.3 � Pediatric Dosing

4.3.1 � Micafungin

Children exhibit a nonlinear, inverse relationship between 
weight and clearance of micafungin [185, 186]. As weight 
decreases, relatively larger dosages are needed to attain simi-
lar exposures to those in heavier patients. As a result, larger 
weight-based doses of micafungin (per kg) are needed for 
treatment in infants and smaller children [185]. Data support 
dosing of micafungin at 2–4 mg/kg once daily for treatment 

of candidemia in children aged ≥ 4 months [185]. Because 
children weighing > 50 kg achieve exposures similar to those 
in adults when receiving a fixed dosage of 100 mg per day, 
adult dosing is recommended in heavier children [185]. 
The use of higher dosages (3–5 mg/kg) less often (every 
2–3 days or twice weekly) has been evaluated as an approach 
to prophylaxis in children at risk for IFD [187–189]. These 
regimens attained pharmacodynamic targets against sus-
ceptible isolates in most children [187–189] but have not 
been adopted into clinical practice. Lehrnbecher et al. [190] 
conducted an in-depth review of intermittent dosing strate-
gies [190].

On the other hand, neonates require substantially larger 
dosages (10–15 mg/kg) to adequately treat disseminated can-
didiasis [176] because this disease often involves the CNS 
(i.e., meningoencephalitis) in this age group [172]. Several 
small observational studies of preterm and term neonates 
and infants have demonstrated that dosages up to 15 mg/kg/
day are well-tolerated in infants [176, 191, 192]. As a result, 
higher dosages (4–10 mg/kg/day) are endorsed by European 
guidelines for treatment of IC in neonates, with specific rec-
ommendations for the use of 10 mg/kg/day when menin-
goencephalitis is suspected [40]. Despite these reports, the 
Infectious Diseases Society of America recommends that 
echinocandins only be used in neonates as salvage therapy 
or in settings in which other agents are not tolerated [12].

4.3.2 � Caspofungin

The clearance and Vd of caspofungin are more closely related 
to body surface area (BSA) than weight alone [193–196]. 
Dosing scaled to BSA better approximates adult dosing than 
use of mg/kg dosing for this agent [194]. As a result, BSA-
informed dosing of 70 mg/m2 as a loading dose followed 
by 50 mg/m2 for maintenance is recommended for children 
aged ≥ 3 months [193]. BSA dosing is also recommended for 
neonates and infants aged < 3 months: dosages of 25 mg/m2 
achieved plasma exposure similar to that in adults receiving 

Table 4   Drug–drug interactions and notable toxicities for triazole agents

CYP cytochrome P450

Fluconazole Itraconazole Voriconazole Posaconazole Isavuconazole

Drug–drug 
interac-
tions

Inhibits CYP2C9, 2C19, 
3A4

Inhibits CYP2C9 & 3A4 Inhibits CYP2C9, 2C19, 
3A4

Inhibits CYP3A4 Inhibits CYP3A4

Toxicities Nausea, vomiting; pro-
longed QTc interval; 
Stevens–Johnson syn-
drome; toxic epidermal 
necrosis; agranulocy-
tosis

Nausea, vomiting; 
hypertriglyceridemia; 
hypokalemia; hepa-
totoxicity; peripheral 
neuropathy

Nausea, vomiting, diar-
rhea; visual distur-
bances; hepatotoxicity; 
skin rash, photosensi-
tivity; hallucinations; 
tachyarrhythmias; 
prolonged QTc interval

Nausea, vomiting, diar-
rhea; prolonged QTc 
interval

Nausea, vomiting, 
diarrhea; visual 
disturbances; hepa-
totoxicity; skin rash, 
photosensitivity
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standard 50-mg doses in a study of 18 neonates and young 
infants [197], forming the basis for dosing recommendations 
in this age group. Caspofungin is the only echinocandin for 
which dosing adjustments are recommended in patients with 
hepatic dysfunction. Clearance of caspofungin is not affected 
by mild liver dysfunction [184, 198, 199], but it is decreased 
in patients with moderate hepatic impairment, leading to rec-
ommendations for use of lower doses in such patients [200].

4.3.3 � Anidulafungin

Although anidulafungin is not yet approved in children, 
pharmacokinetic studies have been performed in pediatric 
patients across a range of ages [201, 202]. Dosages of 0.75 
and 1.5 mg/kg/day achieved AUCs comparable to those 
achieved with 50-mg and 100-mg doses in adults, respec-
tively [201, 202]. A loading dose of twice the maintenance 
dose is recommended for adults on day 1 and would presum-
ably also be advised for children.

4.4 � TDM: Adverse Events

Echinocandins are generally well-tolerated. The most com-
mon adverse events include infusion reactions and elevation 
of hepatic transaminases [195, 196, 201–203], which is most 
often mild. In general, TDM is not performed for echino-
candins. Because of the extent of protein binding (> 95%), 
clinical assays that reliably measure free drug concentrations 
would be necessary to determine the amount of active drug 
in plasma. TDM may be beneficial when using echinocan-
dins for treatment of organisms with decreased susceptibility 
to ensure that total plasma concentrations are in line with 
published studies.

5 � Other Agents

5.1 � Flucytosine (5‑FC)

Flucytosine, also known as 5-fluorocytosine (5-FC), is 
one of the oldest antifungal drugs. It inhibits protein and 
DNA synthesis following conversion from 5-FC to 5-fluo-
rouracil (5-FU) within fungal cells [204]. Human cells lack 
the enzyme to convert 5-FC to 5-FU, although intestinal 
microbes can convert the drug [205], which can lead to 
systemic 5-FU levels and possible toxicity. Flucytosine is 
active in vitro against many yeasts and some molds, but its 
clinical utility is largely limited to adjunctive therapy for 
cryptococcal meningitis [14]. Because of the rapid emer-
gence of resistance when used as monotherapy, 5-FC is 
almost always administered in combination with an AmB 
product. Flucytosine and AmB provide additive activity 
against C. neoformans and C. albicans [47, 206]. As a result, AU
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coadministration can facilitate the use of lower dosages in 
the treatment of these organisms than are required when 
either agent is used alone.

Flucytosine is available in both enteral and parenteral 
formulations. Because it is highly bioavailable, intravenous 
administration is generally restricted to critically ill patients 
who cannot take enteral medications. The standard dosage of 
5-FC is 100 mg/kg divided every 6 h, which is recommended 
for both children and adults, although higher dosages are 
sometimes used. Neonates achieve higher serum concentra-
tions than older children [207, 208], therefore 75 mg/kg/day 
is the typical dose for infants aged < 30 days. Dose adjust-
ments are also needed in patients with impaired renal func-
tion. The pharmacokinetics of 5-FC demonstrate significant 
interindividual variability [209] and, because 5-FC exhibits 
concentration-dependent toxicity, which manifests most fre-
quently as hepatotoxicity (elevated transaminases) and bone 
marrow suppression (leukopenia, thrombocytopenia) [210], 
TDM is paramount. Peak (1–3 h post-dose) serum concen-
trations > 100 mg/L are associated with toxicity [211], thus 
TDM should be used routinely in children treated with 5-FC, 
with peak concentrations 50–100 mg/L and trough levels 
25–50 mg/L considered acceptable [204].

5.2 � Terbinafine

Terbinafine is an allylamine drug with broad antifungal 
activity. It exerts its action by inhibiting the fungal enzyme 
squalene epoxidase and, ultimately, ergosterol formation 
[212]. Clinically, terbinafine is most often used to treat tinea 
capitis or onychomycosis because of excellent penetration 
into nail, skin, and hair follicles [213]. In clinical trials, 
terbinafine was noninferior to griseofulvin for treatment 
of tinea capitis [214]. Terbinafine is highly protein bound 
(> 99%) and accumulates in skin and adipose tissue, leading 
to a terminal half-life > 150 h in plasma [215]. In addition, 
the penetration of terbinafine into other pertinent tissues, 
such as the brain, is unknown. As a result, its role as mono-
therapy for treatment of noncutaneous infections is question-
able. Terbinafine has also shown in vitro synergistic activity 
with azoles against several clinically relevant molds, includ-
ing Aspergillus species, Fusarium species, Rhizopus species, 
Scedosporium species, and organisms from the Mucorales 
order [216]. Therefore, terbinafine may have an adjunctive 
clinical role in the treatment of refractory or resistant mold 
infections in immunocompromised children, although data 
documenting the clinical utility of this agent for these patho-
gens are limited.

Terbinafine is approved by the US FDA for children 
aged ≥ 4 years. It is administered orally as granules (125 or 
187.5 mg) or as a 250-mg tablet once daily. Children require 
larger dosages of terbinafine per kg of body weight than 
adults to achieve similar systemic exposures [217]. For tinea 

capitis, a 6-week course of therapy with 125 mg (< 25 kg), 
187.5 mg (25–35 kg), or 250 mg (> 35 kg) once daily is 
advised [217]. At dosages used for tinea capitis, terbinafine 
is well-tolerated, with anorexia and gastrointestinal distur-
bance the most often reported adverse events [212, 217].

High-dose regimens (> 250 mg) have been used in the 
treatment of refractory mold infections [218]. In a physi-
ologically based pharmacokinetic model [219], plasma terbi-
nafine concentrations significantly accumulated over the first 
7 days of therapy with high-dose regimens. Of the dosing 
regimens studied, 500 mg twice daily achieved the highest 
drug concentrations and pharmacodynamic target attainment 
(Cmax/MIC, AUC/MIC). However, without knowledge of the 
pharmacodynamic target associated with improved clinical 
outcomes in the treatment of molds, the optimal dosage for 
this indication is unknown.

5.3 � Griseofulvin

Griseofulvin is a fungistatic antifungal with good activity 
against organisms that cause dermatophyte infections, such 
as Microsporum and Trichophyton species [220]. The drug 
is made soluble through its preparation as microsize and 
ultramicrosize particles, which increases the surface area 
of the drug and enhances its absorption. Its bioavailability 
is further enhanced by ingestion of the drug with a high-fat 
meal or food [221]. Griseofulvin distributes well into skin, 
nails, hair, liver, and muscle [220], but its clinical utility is 
limited by its narrow spectrum of activity to the treatment 
of tinea infections. In a Cochrane review of therapies for 
tinea capitis [222], griseofulvin was superior to terbinafine 
in the treatment of M. canis infections but inferior in the 
treatment of T. tonsurans. Although griseofulvin is carcino-
genic in small animals [223], these same toxic effects have 
not been found in human studies, and the drug is generally 
well-tolerated. It has fewer hepatotoxic effects than other 
agents used to treat dermatophyte infections, including keto-
conazole, itraconazole, fluconazole, and terbinafine [224].

6 � Future Directions

Despite the development of newer and safer antifungal 
agents, the management of IFD in children remains chal-
lenging. Population pharmacokinetic studies have been per-
formed in infants and children, but many of these studies 
involved a small number of diverse pediatric subjects. Full 
characterization of the effects of clinical factors (i.e., critical 
illness, obesity, organ dysfunction, age, drug interactions) 
on the pharmacokinetics of available antifungal agents in 
all children continues to be elucidated. Ongoing research 
in this area will be beneficial as the number of children at 
risk for IFD expands with time. However, the low overall 
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incidence of IFD makes performance of adequately powered 
trials challenging. Therefore, well-designed observational 
studies will continue to be needed to provide comparative 
effectiveness data on antifungals in children.

IFD seems like the type of infectious process for which 
personalized medicine would be beneficial: high mortality, 
limited therapeutic options, variability in drug dosage–expo-
sure relationships. Unfortunately, TDM is neither available 
nor feasible for most antifungal agents and, when performed, 
delayed turnaround in drug levels often affects the clinical 
applicability of results. With the availability of Bayesian 
dose adaptation software programs and continued investi-
gations into dose–concentration–outcome relationships, the 
potential exists for implementation of individualized antifun-
gal dosing to improve outcomes in IFD. However, advances 
in antifungal TDM are necessary to make results clinically 
actionable and bring the expanding amount of population 
pharmacokinetic data to the bedside.

An area not discussed in this review is the role of com-
bination therapy in the treatment of IFD. As described else-
where [178], certain antifungal combinations provide syn-
ergistic fungicidal activity in vitro. How well this translates 
to humans and improves outcomes of IFD is unknown. Dual 
therapy may be advantageous for some pathogens (i.e., more 
resistant organisms), infections of sites where drug delivery 
is impeded, such as the CNS, or in immunocompromised 
patients, who lack adequate immunity to clear infections 
once established. Translating research from the laboratory 
to the patient is particularly challenging in this area but is an 
important avenue for continued investigation.

Finally, since the 1990s, there has been a welcome 
expansion in the number of systemically available anti-
fungal agents. This has included three new triazoles, three 
agents in the novel echinocandin class, and evolution of less 
toxic lipid formulations of amphotericin. Unfortunately, the 
immediate availability of these newer agents is often lim-
ited to adult patients as pediatric-specific PK/PD data are 
never available at the time of initial drug approval. Clini-
cians caring for children at risk for or diagnosed with an 
IFD are placed in the precarious position of relying on older 
agents with known pediatric pharmacokinetic parameters 
but potentially conferring greater toxicity versus the option 
of extrapolating adult pharmacokinetic data of newer agents 
to off-label use in children. Fortunately, physician advocates 
and legislators in both the USA and in Europe recognized 
this delay in or absence of pediatric-specific PK/PD data. In 
the past two decades, a series of legislative acts have helped 
to resolve this knowledge gap; this is described in detail 
elsewhere [225]. A collaborative infrastructure between 
pharmaceutical agencies and the FDA and European Medi-
cines Agency has improved the number of pediatric-specific 
indications for antifungal agents. However, the time from 
adult approval to pediatric approval still ranges from 7 to 

8 years. Furthermore, pediatric indications for certain anti-
fungal agents, such as posaconazole, remain elusive up to 
13 years after the initial adult approval. Additional legisla-
tion is needed to shorten this time between adult approval 
and completion of pediatric-specific studies.
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