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Abstract
Stated-preference (SP) methods, such as discrete-choice experiments (DCE) and best–worst scaling (BWS), have increasingly 
been used to measure preferences for attributes of medical interventions. Preference information is commonly characterized 
using attribute importance. However, attribute importance measures  can vary in value and interpretation depending on the 
method used to elicit preferences, the specific context of the questions, and the approach used to normalize attribute effects. 
This variation complicates the interpretation of preference results and the comparability of results across subgroups in a sam-
ple. This article highlights the potential consequences of ignoring variations in attribute importance measures, and makes the 
case for reporting more clearly how these measures are obtained and calculated. Transparency in the calculations can clarify 
what conclusions are supported by the results, and help make more accurate and meaningful comparisons across subsamples.
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Key Points for Decision Makers 

This article provides a guide to evaluate the concept of 
attribute importance, and how it is elicited in discrete-
choice experiments and best–worst scaling studies.

The concept of importance varies across applications, 
partly because it can be estimated using different elicita-
tion methods that result in subtly different versions of 
importance.

Even with the same elicitation method, different 
approaches to normalize importance weights can compli-
cate comparisons of results.

Practitioners should clearly report how attribute impor-
tance is calculated to ensure that conclusions are prop-
erly supported by the study results.

1 Introduction

Stated-preference (SP) methods, such as discrete-choice 
experiments (DCEs) and best–worst scaling (BWS), are 
increasingly used to measure preferences for attributes of 
medical interventions [1–3]. These methods rely on the 

hedonic principle that preferences for interventions can be 
defined as the aggregation of preferences for their funda-
mental characteristics (attributes) [4]. Attributes of medical 
interventions include health outcomes, convenience factors, 
and cost, among others [2].

DCEs and Case 3 BWS elicit attribute importance by 
asking respondents to choose or rank profiles of medical 
interventions. The profiles are defined in terms of attributes 
and the various manifestations of the attributes (attribute 
levels) achievable with each intervention [5]. An experi-
mental design is used to systematically vary the attribute 
levels among profiles. Choices and rankings are assumed to 
respond to the differences in the attributes between profiles. 
Thus, by stating their preference between profiles, respond-
ents provide an indirect way to determine attribute impor-
tance. Other versions of BWS ask respondents to directly 
rank the attributes (Case 1) or attribute levels (Case 2), 
where each question only elicits a partial ranking (i.e., best 
and worst) of the options [5, 6]. With Case 1 and Case 2 
BWS, respondents provide direct information on the rela-
tive importance of attributes. Differences in the elicitation 
formats imply differences in the information obtained from 
respondents as well as the interpretation of the resulting 
measures of attribute importance. These differences across 
methods must be taken into account when comparing and 
interpreting preference results, but are seldom discussed 
explicitly in SP health applications.

This article provides a guide to evaluating the concept of 
attribute importance in the context of DCE and BWS meth-
ods. It also discusses the meaning of importance measures and 
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the ways practitioners can normalize these measures to make 
them easier to interpret and to compare across subgroups in a 
sample. Finally, stylized DCE and BWS results are discussed 
as examples of options to calculate and interpret attribute 
importance.

2  The Concept of Utility

DCE and BWS methods rely on the concept of utility, which is 
assumed to be a latent measure of well-being that can only be 
quantified on a relative (ordinal) scale. For this reason, a single 
measure of utility conveys no meaningful information. Since 
preferences correspond with utility, the ordinal nature of utility 
also applies to preference measures. Thus, to interpret prefer-
ence measures one must understand what relative relationship 
they convey. This, of course, extends to attribute importance.

3  Defining Attribute Importance

In the context of SP applications in health, I define attrib-
ute importance as the absolute change in utility associated 
with an attribute. This measure of importance represents the 
overall positive or negative effect that an attribute has on 
individuals’ well-being relative to other attributes.

The proposed definition of attribute importance consid-
ers changes in utility between attributes, and changes in util-
ity within attributes. Between-attribute importance captures 
the change in utility associated with changing one treatment 
attribute for another. For example, it would be the change in 
utility when a treatment that causes nausea is changed for a 
treatment that causes fatigue, all else being equal. To under-
stand the importance of changes between attributes, prefer-
ence information must provide a ranking of these attributes. 
Within-attribute importance captures the impact of changing 
an attribute between two relevant attribute levels. For example, 
it would be the change in utility when a treatment that causes 
severe nausea is changed for a treatment that causes mild nau-
sea, all else being equal. Thus, to understand the importance 
of changes within an attribute, preference information must 
provide a ranking of attribute levels. Although the distinction 
between within- and between-attribute importance can seem 
trivial, it is significant in terms of how we interpret and how 
we can use importance information from SP methods.

Because the definition of attributes and levels often can 
be ambiguous, identifying changes as within or between 
attributes can be problematic. For example, a researcher 
might want to consider treatment-related tolerability issues 
in an SP study. One option would be to make each adverse 
effect outcome an attribute, and specify the attribute levels 
as the presence and absence of each outcome. A different 

approach could be to create an attribute labeled ‘treatment 
tolerability  issues’ and make each adverse effect outcome 
a level for the attribute. Essentially turning the attributes in 
the first approach into attribute levels.

With the first approach, the importance of eliminating 
a specific tolerability issue in a treatment can be evaluated 
within each adverse effect as preference information for the 
two attribute levels (i.e., presence and absence of a adverse 
effect) is available to calculate an absolute importance value 
for each outcome. This would be the difference between the 
utility for the presence of a adverse effect minus the utility 
value for the absence of the same adverse effect.

With the second approach, the importance of eliminating 
a adverse effect is only identifiable as respondents’ change 
in utility when swapping one adverse effect for another. 
In other words, because the only utility values that can be 
estimated are those for the presence of each adverse effect 
relative to the presence of other adverse effects, the second 
approach does not produce an absolute measure of attribute 
importance.

It is crucial to note that although the calculation of 
within-attribute importance does not depend on the impor-
tance estimates for other attributes, the utility for attribute 
levels are estimated in the context of the other attributes 
and attribute levels presented to respondents. In that sense, 
within-attribute importance measures are only absolute for 
a specific SP application.

4  Differences in Importance Measures 
by Elicitation Method

The previous discussion highlights how the design of an 
experiment can determine whether within- or between-
attribute importance can be evaluated. Next, I discuss how 
DCEs and the various BWS methods are inherently suited to 
collect within- or between-attribute importance. To accom-
plish this, however, one first needs to understand how the 
answers elicited with each SP method relate to utility.

The framework that is commonly used to estimate attrib-
ute importance with DCEs and BWS relies on random-utility 
theory [4]. The theory assumes that it is possible to describe 
the effect of medical interventions on people’s well-being 
(utility) through a function. The utility function is typically 
represented as follows (Eq. 1):

where Uj represents the utility for medical intervention j, 
and V

(
�,Xj

)
 is a deterministic portion of utility defined 

by a vector of attributes that are specific to intervention j (
Xj

)
 and a set of attribute-specific model estimates (�) that 

determine the marginal effect of each attribute or attribute 

(1)Uj = V
(
�,Xj

)
+ �j
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level on utility. The deterministic portion of utility is typi-
cally assumed to be additively separable in the k attributes 
of medical interventions, as in Eq. 2:

In DCEs and Case 3 BWS, the choice or ranking of pro-
files is assumed to be determined by the utility for those 
profiles. More specifically, the probability of selecting an 
alternative over all available alternatives is equivalent to 
the probability that the utility of the preferred alternative 
is greater than the utility of all other alternatives. Thus, in 
a simple example with two alternatives (alternative j and 
alternative i), random-utility theory states that the prob-
ability that alternative j is chosen over—or ranked higher 
than—alternative i is determined by the difference in utility 
between the two options. More positive differences in the 
utility of the alternatives would be associated with greater 
likelihood of choosing or ranking j over i. Although differ-
ent modeling approaches may modify the specific relation-
ship between utility and choice, all methods used to estimate 
attribute importance from DCEs and Case 3 BWS data treat 
the probability of choice or ranking as a signal on utility 
changes [6, 7].

Exactly how differences in utility between alternatives j 
and i affect the probability of choosing or ranking options 
is defined by the probability density function assumed  in 
the analysis of DCEs and Case 3 BWS data. The probability 
density function often assumed is that of a conditional logit 
model or some variation of it [4, 7]. Importantly, Case 3 
BWS data are analyzed using a variation that specifies 
whether a respondent chooses best and worst simultaneously 
[8] or sequentially [5, 6]. Nevertheless, the basic structure of 
the conditional logit model is preserved with all commonly 
used variations and looks as follows (Eq. 3):

where P(C = j|i, j) is the probability that choice is—or the 
top rank is for—alternative j when both alternative i and j 
are available. Equation 3 shows how the probability of 
choosing alternative j—or ranking alternative j over alterna-
tive i—depends entirely on the utility difference between 
alternatives 

(
V
(
�,Xi

)
− V

(
�,Xj

))
 . Given Eq. 2, the utility 

d i f fe rences  in  Eq .   3  can  be  redef ined  as 
V
�
�,Xi

�
− V

�
�,Xj

�
=
∑
k

�k
�
xik − xjk

�
 when the model vari-

ables are coded as continuous and linear, where xik − xjk 
represents the differences in the levels for attribute k across 
alternatives, and �k is the estimated utility change with any 
change in the levels of the attribute. This simple example 
shows how estimates from the analysis of DCEs and Case 3 

(2)V
(
�,Xj

)
=
∑

k

�kxjk

(3)

P(C = j|i, j) = eV(�,Xj)

eV(�,Xj) + eV(�,Xi)
=

1

1 + eV(�,Xi)−V(�,Xj)

BWS data represent the change in utility associated with 
changes in attribute levels. The result conceptually is the 
same when using non-linear or categorical attribute varia-
bles. However, with non-linear and categorical coding, util-
ity can change at different rates with the attribute levels 
considered.

As with Case 3 BWS, the analysis of Case 1 and Case 2 
BWS data requires an assumption about whether the selec-
tion of best and worst was done simultaneously or sequen-
tially. Nevertheless, these assumptions do not change the 
basic structure of the conditional logit model, which is still 
often used to relate the probability of ranking an attribute 
above others with the utility derived from that attribute. 
Since the ranking in Case 1 and Case 2 BWS does not hap-
pen between profiles, but directly between attributes, the 
parameter estimates in the analysis of these data reflect util-
ity differences between attributes.

For Case 2 BWS, however, respondents are asked to eval-
uate between-attribute importance as attribute levels change. 
Changes in the ranking of attributes at different levels pro-
vide an indirect way to estimate within-attribute importance 
values. Note that, because the utility levels within attributes 
are inferred from changes in attribute rankings, Case 2 BWS 
does not directly provide the impact of changes in one attrib-
ute versus changes in other attributes.

With all of this in mind, we can say that DCEs, Case 3 
BWS, and Case 2 BWS all provide within-attribute impor-
tance. On the other hand, Case 1 BWS provides between-
attribute importance.

5  Interpreting Attribute Importance Across 
Elicitation Methods

In DCEs, respondents choose between profiles that simul-
taneously provide some constructed desirable improve-
ments in certain attributes and undesirable changes in other 
attributes. As respondents choose between profiles, they are 
expected to evaluate the combination of desirable and unde-
sirable attribute changes across alternatives [9]. Thus, the 
measure of importance with DCEs stems from the degree 
to which respondents are willing to accept one attribute 
change for another. Also, because DCEs elicit importance 
from choices between profiles, the importance measures are 
directly related to the impact an attribute has on the decision 
to choose a medical intervention over others.

For BWS, the frequency with which a profile or an attrib-
ute is selected as best or worst indicates how far in one direc-
tion or another the attribute is on a common scale of interest 
[6, 10]. The specific interpretation of the measures depends 
on the context of the ranking, as BWS exercises can ask 
respondents to partially rank items based on a variety of 
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contexts such as how important attributes are in a decision to 
choose treatment, or how burdensome the items are expected 
to be. For this reason, results from BWS methods cannot 
necessarily be interpreted in the context of choices between 
treatments or as tradeoff information between attributes.

Since Case 3 and Case 2 BWS elicit attribute importance 
in the context of treatment profiles, importance measures can 
be more directly related to the desirability of medical inter-
ventions. With a BWS scale that relates to the likelihood of 
choosing a treatment, importance measures from Case 3 and 
Case 2 can be equivalent to those obtained with DCEs. How-
ever, interpreting results from Case 2 BWS as those of DCEs 
requires assuming that the elicited attribute level rankings 
appropriately capture the mechanism by which respondents 
would make treatment choices.

6  Normalizing Importance: Comparing 
Importance Measures

Importance measures are often normalized to aid in their 
interpretation or to compare attribute importance across 
subgroups within a sample. There are two main types of 
normalizations used with attribute importance values: (1) 
attribute-based normalization—which presents attribute 
importance as a proportion of a reference attribute impor-
tance; and (2) profile-based normalization—which presents 
attribute importance as a proportion of the total utility 
induced by exchanging treatment profiles.

Attribute-based normalization can be described with 
Eq. 4:

where Ikj is the normalized importance value for attribute k, (
Vk1 − Vk2

)
 is the estimated importance for attribute k, and (

Vj1 − Vj2

)
 is the estimated importance for attribute j, given 

any two levels of interest in the attribute. For the purpose 
of the normalization, 

(
Vj1 − Vj2

)
 is considered a reference 

attribute importance. The reference attribute and the attrib-
ute levels chosen to define importance could be based on 
clinical or practical considerations. For example, this ref-
erence attribute importance could be a clinically meaning-
ful risk increase with treatment or the greatest difference in 
utility among all study attributes. The reference attribute 
importance could also be the importance of a 1-unit change 
in another attribute (e.g., treatment risk or out-of-pocket 
cost), which makes the attribute-based normalization a 
measure of the marginal rate of substitution between attrib-
utes [10–12]. Finally, S is an arbitrary scaling factor that 

(4)Ikj = S ×

(
Vk1 − Vk2

)
(
Vj1 − Vj2

)

sets the normalized importance of the reference attribute 
at a particular value. Some authors set S to be equal to 10 
or 100 as intuitive anchors for the normalized importance 
measures [13, 14].

The attribute-based normalization implies that attribute 
importance values are no longer in utility units, but rather in 
the units of the reference attribute change. For example, if 
the reference attribute importance corresponds to the change 
in utility associated with an increase of 10 percentage points 
in the risk of an adverse event, the normalized importance 
measures represent how much more or less important each 
attribute is relative to that 10 percentage-point increase. 
Thus, if the normalized importance for the attribute of inter-
est is 2, that attribute is two times as important as a 10 per-
centage point risk of an adverse event. When the reference 
attribute importance is a $1 change in cost, the normalized 
importance measures become a representation of the number 
of dollars in cost that are equivalent to each attribute1 [11].

Attribute-based normalizations also are commonly 
applied by setting the reference attribute importance to be 
the greatest attribute importance in a study (i.e., the great-
est difference in utility between the most and least preferred 
level for any given attribute). With this reference every 
normalized attribute importance value lies between 0 and 
S, and can be interpreted as a fraction of the most impor-
tant attribute in the exercise. Note that the same reference 
attribute importance must be used to compare normalized 
attribute importance across subgroups in a sample—even 
if the attribute is not the most important in all subgroups. 
Otherwise, the normalized importance values represent dif-
ferent fractions and cannot be compared directly.

The profile-based normalization calculates importance 
values relative to the aggregate utility differences between 
two treatment profiles. This can be represented as follows:

where 
∑J

j

�
Vj1 − Vj2

�
 is the sum of all attribute differences 

between profiles 1 and 2, including the differences in attrib-
ute k.

In this context, normalized importance values are inter-
preted as the proportion of the value of a profile change 
captured by a specific attribute, or how much of the value 
of one intervention relative to another is due to a specific 
attribute change. Note that with this normalization, the sum 
of all normalized importance values is also equal to S, as 
shown in Eq. 6:

(5)Ik = S ×

�
Vk1 − Vk2

�

∑J

j

�
Vj1 − Vj2

�

1 Assuming the marginal utility of cost is constant.
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Since 
∑K

k

�
Vk1 − Vk2

�
=
∑J

j

�
Vj1 − Vj2

�
 by the defini-

tion of this normalization. If the scaling factor S is set to 1, 
the normalized relative importance values can be interpreted 
as the percentage of the difference between profiles attribut-
able to attribute k [15, 16].

The interpretation of relative importance with the pro-
file-based normalization is consistent with the concept of 
attribute importance in a decision to choose a specific medi-
cal intervention. Also, with this normalization the relative 
importance value for an attribute depends on all the other 
attribute changes considered in the treatment profiles. Thus, 
although the ratios of normalized importance values are 
always the same, the specific attribute importance values 
change  with the profiles considered. In the absence of clini-
cally relevant treatment profiles to use with the profile-based 
normalization, practitioners could consider profiles that rep-
resent the most extreme attribute changes in the experiment.

When using profile-based normalizations, the comparison 
of importance values across subgroups must be done using 
the same profile differences for all subgroups. Otherwise, 
the normalized values have different meanings as fractions 
of different profile changes.

It is also worth noting that the two normalizations shown 
here do not apply as presented to between-attribute impor-
tance measures obtained with Case 1 BWS. With between-
attribute importance, some authors have used information 
on choice probabilities to recover absolute importance meas-
ures that can be normalized [17, 18]. The steps for such 
transformations are discussed in Sect. 7.

7  Normalizing Between‑Attribute 
Importance

It is possible to transform between-attribute importance 
values so they can be normalized with attribute- or profile-
based normalizations. To do this, however, more information 
is needed. One way to incorporate the additional information 
is to use what we know about the relationship between utility 
and choice through the conditional logit probability density 
function. Specifically, one can set the assumed value for the 
best [ V(b) ] and worst [ V(w)] attributes in the conditional logit 
probability density function to be the regression estimate for 
an attribute of interest 

(
�k
)
 and zero for the omitted effect in 

the model, respectively. If the attribute of interest and the 
omitted effect were the only ones included in a Case 1 BWS 
question, we could calculate the probability that the attribute 
of interest is selected as best using Eq. 7:

(6)

K�

k

Ik =

K�

k

S ×

�
Vk1 − Vk2

�

∑J

j

�
Vj1 − Vj2

� = S ×

∑K

k

�
Vk1 − Vk2

�

∑J

j

�
Vj1 − Vj2

� = S

where Ak is considered the adjusted importance estimate for 
attribute k, and L is the number of items in each of the BWS 
questions. Conceptually, this adjustment uses the probabil-
ity of selecting an attribute against the omitted category in 
the model specification to generate an absolute measure of 
attribute importance [19]. With adjusted importance values 
for each attribute, it is straightforward to apply the normali-
zations in Eqs. 4 and 5 by substituting the utility differences 
in each normalization for the adjusted importance values. 
The final form of the normalizations for between-attribute 
importance measures is then as follows (Eqs. 8 and 9):

where Aj is the adjusted importance of the reference attrib-
ute, and 

∑J

j
Aj represents the sum of the adjusted importance 

measures for attributes that would make up a profile for a 
medical intervention.

8  Stylized Example

To illustrate the interpretation and normalization of attribute 
importance with SP methods, consider the following stylized 
examples of a DCE and Case 1 BWS.

8.1  Example Discrete‑Choice Experiment

Assume a DCE evaluated three attributes with three levels 
each for two different subgroups in a sample. These attrib-
utes include treatment efficacy, safety, and convenience. 
Table 1 presents the attributes and levels for this example.

If data for subgroups are not pooled, traditional analysis 
of DCEs would produce a set of estimates representing 
utility values (or preference weights) for each subgroup 
[7].

If estimates look like those in Table 1, absolute impor-
tance values can be obtained by simply taking the difference 
between any two levels of an attribute. For example, the 
importance of changing efficacy from level 2 to level 1 is 
0.1 (0.1 = 0.2–0.1). Overall attribute importance would be 
calculated as the difference between the most and least pre-
ferred level in each attribute, or 0.5 (0.5 = 0.2 to − 0.3) for 

(7)
Ak =

e�k

e�k +
∑L−1

l
e0

=
e�k

e�k + L − 1

(8)Ikj = S ×
Ak

Aj

(attribute - based normalization)

(9)Ik = S ×
Ak

∑J

j
Aj

(profile - based normalization)
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efficacy, 1.6 (1.6 = 0.9 to − 0.7) for safety, and 1.1 (1.1 = 0.4 
to − 0.7) for convenience. Although these values are abso-
lute importance measures because they represent within-
attribute importance, they must be interpreted in the con-
text of all the other attributes presented to respondents, and 
are not directly comparable across subgroups. To interpret 
and compare these absolute importance values across sub-
groups, results need to be normalized using one of the two 
approaches described earlier.

The normalized overall importance values are pre-
sented in Fig. 1. To the left, the importance values for each 
subgroup are normalized using the attribute-based nor-
malization based on the overall importance of the safety 
attribute. That is, the overall importance of efficacy and 
convenience are presented as a proportion of the overall 
importance of safety for each subgroup. As expected with 
this normalization, the relative importance value for safety 
is 1 in both subgroups. Figure 1 also shows the normal-
ized importance values for each subgroup as a proportion 

of overall changes in medication profiles (profile-based 
normalization considering a change from the treatment 
with the lowest utility to the treatment with the highest 
utility). As expected, the sum of all importance values 
with the profile-based normalization is equal to 1 in each 
subgroup.

Although all ratios of relative importance values are 
preserved with both normalizations, one can see how the 
two approaches seem to provide different information 
about attribute importance across subgroups. For example, 
with the attribute-based normalization, safety is assumed 
to have the same importance in both subgroups. This, of 
course, is an assumption in the normalization. However, 
the importance of safety seems to be dramatically differ-
ent across subgroups with the profile-based normalization. 
The difference between the two sets of normalized results 
can be explained by the fact that the two normalizations 
are providing different representations of attribute impor-
tance. Thus, differences across subgroups would also sup-
port different conclusions.

Table 1  Estimates from discrete-choice experiments

Attribute Estimates

Subgroup 1 Subgroup 2

Efficacy
Efficacy 1 0.2 0.5
Efficacy 2 0.1 − 0.1
Efficacy 3 − 0.3 − 0.4
Safety
Safety 1 0.9 0.4
Safety 2 − 0.2 − 0.1
Safety 3 − 0.7 − 0.3
Convenience
Convenience 1 0.4 0.3
Convenience 2 0.3 0.2
Convenience 3 − 0.7 − 0.5

Fig. 1  Normalized importance values from discrete-choice experiments

Table 2  Best–worst scaling items and results

Items Estimates

Subgroup 1 Subgroup 2

Improved efficacy 0.7 1.0
Safety problems 0.6 0.6
Lack of convenience 0.2 0.3
Tolerability problems 0.1 0.1
Quality-of-life problems 0.1 0
Administration at home − 0.1 − 0.1
Delayed onset of action − 0.3 − 0.3
Prolonged duration of effect − 0.4 − 0.9
Cost − 0.9 − 0.7
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While the attribute-based normalization focuses strictly 
on how the attributes relate to each other, the profile-based 
normalization evaluates the relationship between the 
attributes and profile choice. Finding differences across 
subgroups when importance values are normalized with an 
attribute-based approach implies that the average relation-
ship between attributes varies by subgroup. Differences in 
importance values that are normalized with a profile-based 
approach imply that the attributes contributed to treatment 
choices at different rates across subgroups.

Information from each normalization can be used to 
address different problems. For example, practitioners may 
want to evaluate marginal rates of substitution, in which case 
information from the attribute-based normalization would 
be necessary. Alternatively, practitioners may want to use 
attribute importance information to support multi-criteria 
decision analysis. In such a case, profile-based normaliza-
tions can inform how attributes influence a relevant decision 
and facilitate consensus among stakeholders.

8.2  Case 1 Best–Worst Scaling Example

Assume a Case 1 BWS exercise with three items in each 
question that considered nine items in total. These items 
are summarized in Table 2. The items cover attributes that 
could be used to build the profile of a medical intervention, 
although the questions will only ask respondents to rank the 
most and least important attribute in determining the desir-
ability of a medical intervention. Thus, the importance of 
these attributes would not strictly correspond to the effect 
of choosing specific medical interventions.

Responses to BWS tasks can be analyzed following 
standard regression tools [6]. Results of such analysis show 
the importance of the attributes and could look like those 
presented in Table 2. These results correspond to an effect-
coded specification—note that the result for cost is the nega-
tive sum of all other items in both subgroups—but could 

easily be changed to represent deviations from any item in 
the list (dummy coding).

With effect-coded attributes, the results from Case 1 BWS 
identify differences between the importance of each attribute 
and the mean importance of all attributes. In other words, 
these differences represent how much more or less impor-
tant attributes are relative to an unobserved mean effect for 
all attributes.2 An absolute measure of attribute importance 
then requires adding each estimate to a mean importance 
measure that is not available. This is a problem because the 
absolute measure of attribute importance will change with 
the value of the unobserved mean. A simple example can 
help us show this.

We can first assume the unknown mean effect of all attrib-
utes in the two populations is 1. If so, one can adjust the 
results for the BWS data by adding 1 to each importance 
estimate and apply the normalizations proposed before. This 
is shown in Table 3 where attribute-based normalizations 
were applied. In this example, the reference attribute impor-
tance was set to be the adjusted importance for cost, but any 
other attribute of interest could be used. One can follow 
the same steps after assuming the mean effect value was 
10, instead of 1. Table 3 also shows the adjusted estimates 
and the resulting normalized importance values if the mean 
effect value was 10.

Note that the adjusted estimates and normalized impor-
tance values vary greatly with the assumed value of the 
mean effect.3 Thus, identifying an absolute importance 
level requires more information. This information can be 
obtained from the probability density function that gener-
ated the BWS estimates. A more general form of Eq. 7 is 

Table 3  Example importance adjustment and normalization of best–worst scaling results

Items Adjusted estimates (mean 
effect = 1)

Adjusted estimates (mean 
effect = 10)

Normalized adjusted esti-
mates (mean effect = 1)

Normalized adjusted esti-
mates (mean effect = 10)

Subgroup 1 Subgroup 2 Subgroup 1 Subgroup 2 Subgroup 1 Subgroup 2 Subgroup 1 Subgroup 2

Efficacy 1.7 2 10.7 11 17.00 6.67 1.18 1.18
Safety 1.6 1.6 10.6 10.6 16.00 5.33 1.16 1.14
Convenience 1.2 1.3 10.2 10.3 12.00 4.33 1.12 1.11
Tolerability 1.1 1.1 10.1 10.1 11.00 3.67 1.11 1.09
Quality of life 1.1 1 10.1 10 11.00 3.33 1.11 1.08
Route of administration 0.9 0.9 9.9 9.9 9.00 3.00 1.09 1.06
Onset of action 0.7 0.7 9.7 9.7 7.00 2.33 1.07 1.04
Duration of effect 0.6 0.1 9.6 9.1 6.00 0.33 1.05 0.98
Cost 0.1 0.3 9.1 9.3 1.00 1.00 1.00 1.00

2 This would be the omitted attribute in the case of dummy-coded 
variables.
3 Or the value of the omitted attribute in the case where dummy cod-
ing is used.
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used to generate the adjusted importance values with the 
various assumed means. This variation would simply update 
the assumed value of the omitted mean from zero to 1 or 10.

where m is the assumed mean importance value (i.e., 1 or 
10 in this example) and L is still the number of items in 
the BWS question. It is hopefully apparent that when m = 0, 
Eq. 10 is exactly the same as Eq. 7. What is perhaps less 
apparent is that Eq. 10 is actually indistinguishable from 
Eq. 7 with any assumed mean value as the new terms in 
Eq. 10 cancel each other. This shows that these adjust-
ments do not depend on the value of the unknown mean 
importance.

After the adjustment, all importance values can be nor-
malized using any of the two options described here (i.e., 
attribute- or profile-based normalizations). Table 4 shows 
the adjusted values and the normalized adjusted values fol-
lowing the attribute-based approach. As anticipated, the 
adjusted importance values are now invariant to changes in 
the mean attribute importance.

9  Other Sources of Variation in Importance 
Measures

Importance measures can vary both in value and interpreta-
tion depending on the method used to elicit preferences (e.g., 
DCEs versus Case 1 BWS), the specficic context of  the 
questions  (e.g., whether a BWS question asks respondents 
to rank attributes based on how important they are when 
choosing a treatment versus how important they are when 
reducing treatment burden), and the approach used to nor-
malize attribute effects (i.e., attribute-based versus profile-
based normalization). When evaluating attribute importance, 

(10)Ak =
e�k+m

e�k+m +
∑L−1

l
em

at least two other factors can influence the interpretation 
of attribute importance: (1) the specific changes considered 
within an attribute; and (2) the context under which the 
importance was elicited.

9.1  Attribute Change

Within-attribute importance measures depend entirely on 
the attribute change characterized by the measure. This is 
because the attribute change will determine the expected 
change in utility. Larger attribute changes can be expected to 
be more important than smaller attribute changes. For exam-
ple, the importance of cost will depend upon the change in 
cost considered in a study. Changing the cost of a profile by 
$1000 is expected to be more important than changing the 
cost by $10.

Even Case 2 BWS, which in principle elicits between-
attribute importance, may be influenced by the ranges of 
the levels in the attributes. An attribute with an extreme 
level may be more likely to be selected best or worst in the 
exercise, which would affect the implied within-attribute 
importance measures derived for an attribute.

The selection of levels to determine attribute importance 
is not generally an issue with Case 1 BWS applications 
because these applications do not ask respondents to rank 
attribute levels. That said, and given that study designs can 
blur the distinction between attributes and attribute levels, 
certain attribute labels or descriptions could lead respond-
ents to think that an attribute implies greater changes in the 
status of a patient. For example, the need for insulin to treat 
patients with type 2 diabetes mellitus (T2DM) may have a 
greater impact than a broader label about the need for inject-
able treatments, because patients with T2DM can be aware 
that they would not need insulin unless their condition has 
deteriorated significantly. In such an example, the attribute 
label can be understood to imply a different intensity that 
would affect its importance.

Table 4  Best–worst scaling 
results adjusted using 
probability density function

Items Adjusted estimates (mean 
effect = 1)

Adjusted estimates (mean 
effect = 10)

Normalized adjusted 
estimates (mean effect = 1 
and mean effect = 10)

Subgroup 1 Subgroup 2 Subgroup 1 Subgroup 2 Subgroup 1 Subgroup 2

Efficacy 0.50 0.58 0.50 0.58 2.97 2.90
Safety 0.48 0.48 0.48 0.48 2.82 2.40
Convenience 0.38 0.40 0.38 0.40 2.24 2.03
Tolerability 0.36 0.36 0.36 0.36 2.11 1.79
Quality of life 0.36 0.33 0.36 0.33 2.11 1.68
Route of administration 0.31 0.31 0.31 0.31 1.84 1.57
Onset of action 0.27 0.27 0.27 0.27 1.60 1.36
Duration of effect 0.25 0.17 0.25 0.17 1.49 0.85
Cost 0.17 0.20 0.17 0.20 1.00 1.00



295A Guide to Measuring and Interpreting Attribute Importance

9.2  The Options  in the Questions

High or low attribute importance values are only meaningful 
given the options and the attributes evaluated. For example, 
convenience associated with route of administration may be 
perceived to be unimportant when compared against very 
salient health outcomes such as longevity or quality of life, 
even if the changes in the health outcomes are minor. On 
the other hand, convenience could be perceived to be very 
important when compared with asymptomatic clinical out-
comes such as changes in surrogate markers. Hence, low 
importance for an attribute cannot be considered an uncon-
ditional indicator that something is unimportant.

This issue can be appreciated when using profile-based 
normalizations. For example, in such a normalization the 
profile differences can include large changes in an efficacy 
attribute which could minimize the normalized importance 
of other attributes  like convenience. In contrast, the pro-
file changes could effectively exclude treatment efficacy by 
assuming no change in that attribute across profiles. This in 
turn could augment the normalized importance of convenience.

10  Concluding Remarks

Although attribute importance is reported in many of the publica-
tions that use SP methods, this article shows that not all impor-
tance values are the same. The measures may not communicate 
the same construct, or represent the same relative assessment of 
value. Practitioners should take these differences into account to 
ensure that the conclusions in studies are consistent with the way 
attribute importance was calculated. Practitioners should also 
report more clearly how attribute importance is calculated in their 
analysis so people using their results can understand what exactly 
is supported by the data, and make more accurate and meaningful 
comparisons across samples and potentially across studies.
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