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Abstract
The current treatment options for neurodegenerative diseases in older adults rely mainly on providing symptomatic relief. 
Yet, it remains imperative to identify agents that slow or halt disease progression to avoid the most disabling features often 
associated with advanced disease stages. A potential overlap between the pathological processes involved in diabetes and 
neurodegeneration has been established, raising the question of whether incretin-based therapies for diabetes may also be 
useful in treating neurodegenerative diseases in older adults. Here, we review the different agents that belong to this class 
of drugs (GLP-1 receptor agonists, dual/triple receptor agonists, DPP-4 inhibitors) and describe the data supporting their 
potential role in treating neurodegenerative conditions including Parkinson’s disease and Alzheimer’s disease. We further 
discuss whether there are any distinctive properties among them, particularly in the context of safety or tolerability and 
CNS penetration, that might facilitate their successful repurposing as disease-modifying drugs. Proof-of-efficacy data will 
obviously be of the greatest importance, and this is most likely to be demonstrable in agents that reach the central nervous 
system and impact on neuronal GLP-1 receptors. Additionally, however, the long-term safety and tolerability (including 
gastrointestinal side effects and unwanted weight loss) as well as the route of administration of this class of agents may also 
ultimately determine success and these aspects should be considered in prioritising which approaches to subject to formal 
clinical trial evaluations.
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Key Points 

There is a potential overlap between the pathological 
processes involved in diabetes and neurodegeneration.

Incretin-based therapies may provide a novel way of 
treating neurodegenerative diseases in older adults by 
slowing down or halting disease progression.

Several candidates for drug repurposing are currently 
being investigated.

1  Neurodegeneration and Type 2 Diabetes 
Mellitus (T2DM)

The classification of neurodegenerative diseases takes into 
account their varying clinical presentations, which reflect 
closely the site and distribution of the pathology but also, 
perhaps more importantly, relies on the pathological appear-
ance of the brain according to aggregation of different pro-
teins and protein isoforms. While the specific aggregating 
protein is the main factor determining the pathological clas-
sification of each disease, independent studies have con-
firmed that multiple overlapping pathways can all contribute 
to the pathophysiology of several types of neurodegenera-
tive diseases in older adults [1]. Furthermore, the presence 
of only one aggregated protein is the exception rather than 
the rule. Most patients demonstrate multiple pathologies at 
post-mortem, which may reflect interaction (i.e. one protein 
misfolding pathway triggering another) or alternatively that 
similar dysfunctional processes result in misfolding of sev-
eral different proteins.
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While the greatest risk factor for all forms of neurode-
generation is undoubtedly ageing, discoveries in the field 
of genetics have uncovered key pathways that lead to an 
increased risk of neurodegeneration even in the apparently 
sporadic forms of these diseases. As well as protein aggrega-
tion, it has become clear that neuroinflammation, lysosomal 
dysfunction and mitochondrial dysfunction all contribute to 
the risk of neurodegeneration and are therefore potential tar-
gets for therapeutic intervention.

It has also become clear that type 2 diabetes mellitus 
(T2DM) is at least a modest risk factor for neurodegenera-
tion. This association appears to be strongest among those 
with the earliest onset of T2DM and the most severe stages 
of the disease (i.e. has a dose-dependent relationship) [2]. 
The co-occurrence of T2DM and neurodegeneration also 
appears to accelerate the rate of clinical progression of the 
neurodegenerative disease [3, 4]. Further, T2DM has a clear 
mechanistic overlap with neurodegeneration in that in this 
condition there is protein aggregation (human islet amyloid 
polypeptide, known as amylin), mitochondrial dysfunction 
and inflammation in the beta islet cells of the pancreas [5, 
6]. Finally, there has been recent recognition of the role 
of insulin resistance in the brain as a contributory factor 
for neurodegeneration [7]. In contrast to peripheral insulin 
resistance that leads to the lack of glucose uptake and conse-
quent hyperglycaemia, insulin resistance in the brain is now 
understood to lead to a cascade of processes that include 
protein aggregation, neuroinflammation, mitochondrial dys-
function and apoptosis [8]. The apparent overlap between 
the pathological processes of T2DM and neurodegeneration 
raises the question whether T2DM treatments may have a 
useful function in neurodegenerative disease [9–11].

There is thus growing interest in the role of incretin-based 
therapies as potential treatment options in older adults with 
neurodegenerative diseases. In this review, we describe the 
different therapies that belong to this class, briefly summa-
rise the data supporting their potential role in neurodegener-
ation and discuss whether there are any distinctive properties 
among them that might facilitate the successful repurpos-
ing of one or more of these agents. While incretin-based 
approaches are also being investigated for the treatment of 
several neurological conditions (e.g. traumatic brain injury 
[12], stroke [13], Huntington’s disease [14] and amyotrophic 
lateral sclerosis [15]), for the purposes of this review we will 
primarily focus on Alzheimer’s disease and Parkinsonism.

2  Incretin‑Based Therapies in T2DM

Glucagon-like peptide-1 (GLP-1) is an endogenous hormone 
released from intestinal L-cells in response to food intake 
[16]. GLP-1 is responsible for the incretin effect whereby 
a greater level of insulin is released due to enteral glucose 

levels than is released in response to an equivalent intra-
venous glucose load. GLP-1 circulates in the bloodstream 
and binds to GLP-1 receptors found on pancreatic beta islet 
cells. Under hyperglycaemic conditions, this stimulates insu-
lin secretion while reducing glucagon secretion. Circulating 
GLP-1 is rapidly degraded by dipeptidyl peptidase-4 (DPP-
4), which results in a short half-life and a brief duration of 
action. The discovery of agonists for the GLP-1 receptor that 
resist degradation by DPP-4, and therefore have a longer-
lasting effect on blood glucose control, has rapidly led to the 
accumulation of clinical trial data confirming the usefulness 
of this class of drugs for treating T2DM. GLP-1 receptor 
agonists (incretin mimetics) and DPP-4 inhibitors (incretin 
enhancers) have thus emerged as effective glucose-lowering 
drugs, reducing glycated haemoglobin (HbA1c) and body 
weight while keeping the risk of hypoglycaemia low [17]. 
Their potential mechanisms of action in neurodegenerative 
processes have been recently reviewed in detail [51].

Beyond glycaemic control, GLP-1 receptor stimulation 
improves overall cell function by protecting pancreatic beta 
cells from apoptosis, reducing oxidative stress and regulat-
ing autophagy, in addition to eliciting anti-inflammatory sig-
nalling [18, 19]. GLP-1 receptor stimulation has also been 
shown to improve mitochondrial function in pancreatic islet 
cells [20]. These latter properties have clear potential rel-
evance for neurodegenerative diseases that occur in older 
adults.

2.1  What is the Relative Potency of Incretin‑Based 
Therapies in T2DM?

2.1.1  GLP‑1 Receptor Agonists

There are currently six injectable GLP-1 receptor agonists 
approved for use in T2DM. Two of these, exenatide twice 
daily and lixisenatide once daily, are classified as short-
acting agents. The remaining agents are long acting and 
include exenatide once weekly, liraglutide once daily, albi-
glutide once weekly, dulaglutide once weekly and semaglu-
tide once weekly. There are substantial pharmacodynamic 
and pharmacokinetic differences between these drugs, and 
this is reflected in their varying levels of efficacy and toler-
ability (Table 1).

Exenatide twice daily and lixisenatide are synthetic deriv-
atives of exendin-4, isolated from the salivary secretions of 
the Gila monster lizard. They significantly reduce HbA1c, 
in addition to reducing postprandial glucose by slowing the 
rate of gastric emptying [21–25]. These effects occur in con-
junction with a concurrent increase in insulin production and 
decrease in glucagon secretion [26]. An extended-release 
formulation of exenatide, however, appears to show supe-
rior results in T2DM than the short-acting agents. Exenatide 
once weekly reaches therapeutic levels after 2 weeks, and 
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after 6 weeks the drug attains a maximum concentration 
higher than that attained by a single injection of exenatide 
twice daily. Significantly greater reductions in HbA1c were 
noted with exenatide once weekly in comparison with the 
twice-daily formulation, and the percentage of patients 
achieving HbA1c ≤ 7% was greater with exenatide once 
weekly [27] (Table 2). Greater improvements in lipid profile, 
total cholesterol and triglycerides were also noted, as was 
better fasting glucose reductions and weight loss [28].

Liraglutide improves biphasic insulin secretion during 
hyperglycaemia and has been shown to reduce HbA1c more 
than both preparations of exenatide [29, 30]. While overall 
weight loss was comparable between liraglutide and exena-
tide twice daily, patients receiving liraglutide lost more 
weight than those receiving exenatide once weekly. Liraglu-
tide has also been compared with albiglutide once weekly, 
showing a superior reduction in HbA1c, fasting blood glu-
cose and weight loss [31]. Liraglutide thus appears to have 
superior effects on glycaemic control compared with other 
GLP-1 receptor agonists. However, this trend was not seen 
when liraglutide was compared with dulaglutide in met-
formin co-treated patients [32]. Dulaglutide was associated 
with a greater change in HbA1c from baseline, although this 
was deemed statistically noninferior. Dulaglutide was also 
superior to exenatide twice daily in reducing HbA1c and 
body weight, with a greater proportion of patients achieving 
HbA1c ≤ 7% [33].

The newest GLP-1 receptor agonist is semaglutide; treat-
ment results in significantly larger reductions in HbA1c 
and weight compared with placebo, oral antidiabetic drugs 
(sitagliptin, sodium glucose cotransporter-2 inhibitors) and 
other GLP-1 receptor agonists (exenatide once weekly, lira-
glutide, dulaglutide). The rather high and constant levels of 
semaglutide potentially contribute to its efficacy, in addition 
to the amount of receptor activation that results from full 
DPP-4 protection and improved linker function. Due to its 
proven clinical efficacy, an oral formulation of semaglutide 
has been developed and could provide a suitable alternative 
for patients who are unable or unwilling to self-administer an 
injectable agent. It is non-covalently associated with sodium 
N-[8-(2-hydroxybenzoyl) amino] caprylate to improve bio-
availability and diffusion across the intestinal membrane, 
enabling semaglutide to reach systemic circulation intact 
[34]. This preparation has shown comparable results to the 
injectable version in reducing HbA1c and body weight, with 
better results noted with higher doses. Oral semaglutide also 
has similar glycaemic efficacy to liraglutide, but results in 
greater weight loss [35]. The 14-mg dose has also been 
shown to have positive effects on cardiovascular mortality, 
whereby patients experienced a 51% relative risk reduction 
compared with placebo [36]. To date, there are no real-
world studies assessing adherence rates between the oral 
and injectable preparations of semaglutide.

An important property of GLP-1 receptor agonists com-
pared with other anti-diabetic agents is their relative safety 
regarding hypoglycaemia because of their glucose-level-
dependent mechanism of action. For example, the rate of 
episodes of hypoglycaemia did not exceed 0.8% in patients 
who received liraglutide monotherapy. Both liraglutide and 
lixisenatide are also known to evoke fewer hypoglycaemic 
events compared with exenatide twice daily. Indeed, a direct 
comparison between lixisenatide and exenatide showed 
that 2.5% versus 7.9% of patients experienced symptomatic 
hypoglycaemia, respectively [24]. Similar findings have been 
reported for head-to-head comparisons between liraglutide 
and exenatide twice daily [30]. Frequency of hypoglycaemia 
increases slightly when these agents are used in combination 
with sulfonylureas.

These data suggest that semaglutide and liraglutide have 
greater potency than exenatide and lixisenatide at the GLP-1 
receptor, but with important consequences of greater weight 
reduction, which while an advantage in patients with dia-
betes, might be a cause for concern if used in patients with 
neurodegeneration.

2.1.2  Dual and Triple Agonists

Glucose-dependent insulinotropic polypeptide (GIP) is a 
second incretin hormone. It is also released from the cells 
of the small intestine and stimulates GIP receptors on the 
beta islet cells to enhance insulin release in a glucose-level-
dependent manner. Like GLP-1, GIP is also broken down 
by DPP-4, and has both GIP receptors in brain tissue and 
trophic effects on pancreatic tissue.

Dual receptor (GLP-1 and GIP) agonists reflect a 
further innovative class of glycaemic agents. Combin-
ing GLP-1 and GIP agonist infusions has superiority in 
enhancing insulin secretion compared with either treat-
ment alone [37]. Several novel compounds employing this 
strategy have subsequently been developed and trialled in 
T2DM [38]. An acetylated form of a dual-incretin ago-
nist (RG7697-NNC0090-2746), administered subcutane-
ously once daily, has been shown to significantly decrease 
HbA1c, body weight and both fasting and postprandial 
glucose in 56 patients with T2DM [39]. Higher doses 
were associated with a significant improvement in insu-
lin resistance, as assessed by a reduction in homeostatic 
model assessment (HOMA) insulin-resistance index val-
ues. This effect in combination with a reduction in weight 
is thought to have caused the reduction in HbA1c, rather 
than this agent simply stimulating the secretion of insu-
lin. While these are promising results, the performance of 
this dual agonist does not differ from that of liraglutide, 
as shown in a study that used liraglutide as an open-label 
reference [40].
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Tirzepatide (LY3298176, Eli Lilly) has been developed as 
a once-weekly subcutaneous dual agonist injection. Preclini-
cal studies with mice have shown that acute administration 
improves glucose-dependent insulin secretion and glucose 
tolerance [41]. Chronic administration decreased body 
weight and food intake in these animals, and the effects were 
significantly greater compared with dulaglutide. Similar 
findings were echoed in studies with healthy participants and 
diabetic patients, in which tirzepatide significantly reduced 
HbA1c compared with placebo, as well as fasting glucose 
and fasting insulin levels [41]. A greater number of patients 
achieved HbA1c < 6.5% when compared with dulaglutide 
or placebo [42]. Further, tirzepatide caused greater weight 
loss than dulaglutide, which may be explained by suppres-
sion of calorie intake and a slight but significant increase 
in energy expenditure [41]. The actions of GIP and GLP-1 
receptors possibly occur at the level of the CNS. It is also 
hypothesised that the beneficial effects of tirzepatide on 
weight loss could be attributed to its greater potency at the 
GIP receptors. This is in contrast to other dual agents, such 
as RG7697-NNC0090-2746, which display balanced activ-
ity at the receptors [40]. Tirzepatide thus improved insulin 
resistance, suggesting a potential insulin-sensitising effect 
secondary to visceral fat reduction. While greater efficacy 
on HbA1c resulting from agonist actions at both GLP-1 and 
GIP receptors is clearly desirable in T2DM, greater weight 
loss may again be a concern when using these drugs in neu-
rodegenerative diseases.

In a similar fashion, triple-acting agonists that activate 
receptors at GLP-1, GIP and glucagon have been evaluated 
in pre-clinical models of T2DM [43]. These compounds 
have been shown to have weight-reducing and anti-diabetic 
properties in mice [44], and perform similarly to clinical 
standard agents such as exendin-4 in glucose tolerance tests. 
They also have similar potency for cAMP stimulation in 
receptor-transfected cells [45]. However, there are reports 
of triagonists that have little or no effect on body weight 
despite glycaemia improvement in high-fat-fed mice [46]. 
While these results suggest unbalanced agonism or even sub-
maximal potency, they could be of potential value in condi-
tions where weight loss is not desired.

2.1.3  DPP‑4 Inhibitors (Gliptins)

Formulated as oral drugs to be taken daily, DPP-4 inhibitors 
minimise the rapid cleavage of GLP-1 and GIP to enhance 
their anti-glycaemic effects in patients with diabetes. They 
also affect other gastrointestinal substrates including peptide 
tyrosine tyrosine (PYY) and oxyntomodulin by qualitatively 
altering their biological receptor activity (as opposed to 
inactivating them completely) [47]. Both of these peptides 
have anorectic effects, which are significantly reduced by 

DPP-4 inhibition and potentially explain why these agents 
are not associated with weight loss [47].

There are currently five DPP-4 inhibitors available—
sitagliptin, saxagliptin, linagliptin, alogliptin (in the USA 
and Europe), and vildagliptin (only in Europe) (Table 3). 
Although they differ in terms of absorption and metabo-
lism, as well as potency and duration of action, all approved 
gliptins have similar and modest anti-glycaemic effects [48]. 
Corroborating this view, a mixed treatment meta-analysis 
demonstrated no differences between various DPP-4 inhibi-
tors in mean change from baseline in HbA1c and body 
weight [49]. There were no differences in the number of 
patients achieving HbA1c ≤ 7% with these agents except 
from those using alogliptin plus metformin; these individu-
als achieved HbA1c ≤ 7% more frequently than patients 
treated with saxagliptin plus metformin. Risk of hypogly-
caemia with DPP-4 inhibitors is also low given their GLP-1 
mediated glucose-dependent mechanism. Unlike GLP-1 
receptor agonists, DPP-4 inhibitors do not lower postpran-
dial glucose by altering gastric emptying or the rate at which 
ingested glucose enters the systemic circulation [50]. DPP-4 
inhibitors do not reduce appetite or cause weight loss.

3  Prospects for Incretin‑Based Therapies 
in Neurogenerative Diseases

The main purpose of this review is to review the data sup-
porting the potential role of incretin-based therapies in 
neurodegeneration and to consider the properties of the 
different incretin approaches and the potential relevance of 
these differences with respect to the likelihood for success. 
A detailed review of the neuronal cellular processes that 
are engaged following GLP-1 receptor stimulation has been 
previously published [51–53].

3.1  Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegen-
erative disease and manifests with progressive worsening of 
cognition. Pathological features of AD include aggregation 
of amyloid beta alongside neurofibrillary tangles, formed by 
hyperphosphorylated tau [54].

There is rapid growth in the literature pointing toward 
insulin deficiency and insulin resistance as mediators of AD-
type neurodegeneration. Post-mortem ex-vivo stimulation 
using Western blotting and quantitative immunohistochem-
istry in AD cases without diabetes has shown that the hip-
pocampal formation and cerebellar cortex exhibit reduced 
expression of insulin signalling in the IR-IRS1-PI3K path-
way and insulin-like growth factor 1 in the IGF1R-IRS2-
PI3K pathway. Basal activation states of insulin signalling 
were also closely related to cognitive ability [55]. Within 
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Table 2  Head-to-head studies comparing different GLP-1 receptor agonists in patients with T2DM

HbA1c reduc-
tion (%)

Body weight 
reduction (kg)

Gastrointestinal symptoms (%) Injection-site 
reactions (%)

Pancreatitis 
(N)

Nausea Vomiting Diarrhoea Constipation

Duration-1: 
Exenatide 
2 mg once 
weekly vs 
Exenatide 
10 μg twice 
daily

− 1.9 vs − 1.5 − 0.3.7 vs 
− 3.6

26.4 vs 34.5 10.8 vs 18.6 13.5 vs 13.1 10.8 vs 6.2 22.3 vs 11.7 No cases

Duration-5: 
Exenatide 
2 mg once 
weekly vs 
Exenatide 
10 μg twice 
daily

− 1.6 vs − 0.9 − 2.3 vs 1.4 14.0 vs 35.0 4.7 vs 8.9 9.3 vs 4.1 13.0 vs 10.0 0 vs 1

DURA-
TION-6: 
Exenatide 
2 mg once 
weekly vs 
Liraglutide 
1.8 mg

− 1.28 vs 
− 1.48

− 2.68 vs 
− 3.57

9.0 vs 21.0 4.0 vs 11.0 6.0 vs 13.0 5.0 vs 5.0 15.0 vs 3.0 2 vs 0

GETGOAL-X: 
Lixisenatide 
20 μg vs 
Exenatide 
10 μg

− 0.79 vs 
− 0.96

− 2.96 vs 
− 3.98

24.5 vs 35.1 10.1 vs 13.3 10.4 vs 13.3 8.5 vs 1.6 No cases

LEAD-6: 
Liraglutide 
1.8 mg vs 
Exenatide 
10 μg twice 
daily

− 1.12 vs 
− 0.79

− 3.24 vs 
− 2.87

25.5 vs 28.0 6.0 vs 9.9 12.3 vs 12.1 5.1 vs 2.6 8.9 vs 9.1 1 vs 0

HAR-
MONY-7: 
Albiglutide 
30 mg 
titrated to 
50 mg vs 
Liraglutide 
0.6 mg 
titrated to 
1.8 mg

− 0.78 vs 0.99 − 0.64 vs 
− 2.19

9.9 vs 29.2 5.0 vs 9.3 14.9 vs 13.5 6.9 vs 1.2 1 vs 2

AWARD-1: 
Dulaglutide 
1.5 mg vs 
Dulaglutide 
0.75 mg vs 
Exenatide 
10 mg twice 
daily

− 1.51 vs 
− 1.30 vs 
− 0.99

− 1.30 vs 0.20 
vs − 1.07

29.0 vs 17.0 
vs 28.0

17.0 vs 6.0 vs 
12.0

13.0 vs 9.0 vs 
8.0

6.0 vs 2.0 vs 
2.0

1 vs 0 vs 0

AWARD-6: 
Dulaglutide 
1.5 mg vs 
Liraglutide 
1.8 mg

− 1.42 vs 
− 1.36

− 2.90 vs 
− 3.61

20.0 vs 18.0 7.0 vs 8.0 12.0 vs 12.0 4.0 vs 6.0 < 1.0 No cases
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this vein, feasibility studies have investigated the efficacy 
and safety of intranasal insulin infusions for 12 months in 
patients with mild cognitive impairment or AD dementia 
[56]. No differences were observed, however, between the 
placebo and insulin arms in terms of cognitive or functional 
outcomes and CSF biomarkers. While these findings are 
negative, interpretation of the study results are confounded 
by the fact that the delivery device was changed mid-trial. 
Indeed, other pilot studies using a different device have 
reported improvements in both cognition and cerebral glu-
cose metabolism [57, 58]. Furthermore, in a mouse model 

of genetically induced AD, peripheral glucose intolerance 
was observed. Treatment with pioglitazone (a peroxisome 
proliferator-activated receptor gamma agonist that increases 
insulin sensitivity), however, significantly improved cogni-
tive impairment in these mice, perhaps indicating a neuro-
trophic role of insulin [59].

GLP-1 receptor agonists have also shown neuroprotec-
tive effects in several preclinical studies of AD [60]. In 
the 12-month-old female APP/PS1/tau transgenic mouse, 
administration of lixisenatide was associated with a marked 
reduction in both neurofibrillary tangles and amyloid 

Efficacy and tolerability data is presented
T2DM type 2 diabetes mellitus

Table 2  (continued)

HbA1c reduc-
tion (%)

Body weight 
reduction (kg)

Gastrointestinal symptoms (%) Injection-site 
reactions (%)

Pancreatitis 
(N)

Nausea Vomiting Diarrhoea Constipation

SUSTAIN-3: 
Semaglutide 
1.0 mg vs 
Exenatide 
2 mg once 
weekly

− 1.5 vs − 0.9 − 5.6 vs − 1.9 22.3 vs 11.9 7.2 vs 6.2 11.4 vs 8.4 6.4 vs 5.2 1.2 vs 22.0 2 vs 3

SUSTAIN-7: 
Semaglutide 
0.5 mg or 
1.0 mg vs 
Dulaglutide 
0.75 mg or 
1.5 mg

Low dose: 
− 1.5 vs 
− 1.1

− 4.6 vs − 2.3 23.0 vs 13.0 10.0 vs 4.0 14.0 vs 8.0 5.0 vs 3.0 1.0 vs 1.0 No cases

High dose: 
− 1.8 vs 
− 1.4

− 6.5 vs − 3.0 21.0 vs 20.0 10.0 vs 10.0 14.0 vs 18.0 5.0 vs 5.0 2.0 vs 3.0

SUSTAIN-10: 
Semaglutide 
1.0 mg vs 
Liraglutide 
1.8 mg

− 1.7 vs − 1.0 − 5.8 vs 1.9 21.8 vs 15.7 10.4 vs 8.0 15.7 vs 12.2 5.9 vs 3.5 0 vs 1

PIONEER-4: 
Oral 
Semaglutide 
14 mg vs 
Subcutane-
ous Liraglu-
tide 1.8 mg

− 1.2 vs − 1.1 − 4.4 vs 3.1 20.0 vs 18.0 9.0 vs 5.0 15.0 vs 11.0 8.0 vs 4.0 1 vs 1

Table 3  Differentiating pharmacokinetics and clinical characteristics of currently approved DPP-4 inhibitors

Drug Year of approval Elimination half-life Bioavail-
ability (%)

Dosing Formulation

Sitagliptin 2006 8–14 h 87 100 mg daily Oral tablet
Vildagliptin 2007 2–3 h 85 50 mg twice daily when used as monotherapy, 50 mg 

once daily if used in combination with sulfonylurea
Oral tablet

Saxagliptin 2009 2.5 h (saxagliptin), 
3.1 h (main metabo-
lite)

75 2.5 mg or 5.0 mg once daily Oral tablet

Linagliptin 2011 24 h 30 5 mg once daily Oral tablet
Alogliptin 2013 12–21 h 100 25 mg once daily Oral tablet
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plaques within the hippocampi [61]. Lixisenatide also 
prevented synaptic damage induced by aggregated beta 
amyloid peptide accumulation in a rat model of AD, and 
additionally strengthened spatial memory by affecting the 
signalling pathways involving AKT and phosphatidylinositol 
3-kinase (PI3K). In a similar manner, exenatide has been 
shown to reduce neuroinflammation by suppressing tumour 
necrosis factor (TNF)-α levels in rats and preventing the 
loss of hippocampal neurons, with an associated improve-
ment in memory impairment [62]. These findings have been 
replicated in studies of liraglutide, including its ability to 
increase neuronal progenitor cells within the dentate nucleus 
and enhance long-term potentiation in both the hippocampus 
and cortex [63]. While there are reports of liraglutide also 
reducing amyloid plaque load, these findings are inconsist-
ent [64, 65].

Dual and triple receptor agonists have shown promising 
results in animal models of AD. A GLP-1/GIP dual ago-
nist, DA5-CH, strengthened working and long-term spatial 
memory in 9-month-old transgenic mice. This behavioural 
change was accompanied by a reduction in hippocampal 
amyloid senile plaques and phosphorylated tau proteins [66]. 
DA-JC4, another dual agonist, similarly decreased phospho-
rylated tau levels in the rat cerebral cortex and hippocampus 
and prevented spatial learning difficulties. It also reduced 
apoptosis, attenuated chronic inflammation and reactivated 
insulin signalling pathways [67]. Agonists activating GLP-
1, GIP and glucagon receptors (triple agonists) have also 
been investigated in mouse models of AD and show similar 
beneficial effects on both memory ability and reducing the 
aberrant mechanisms contributing to Alzheimer’s pathology 
[68]. These dual and triple agents may also have superior 
effects compared with GLP-1 receptor agonists. While lira-
glutide and the dual receptor agonist DA-JC1 were equally 
efficient in stimulating neurogenesis, DA-JC1 was better at 
decreasing inflammatory markers such as reactive astrocytes 
in the hippocampus [69].

Despite the large amount of supporting evidence, human 
studies of GLP-1 receptor agonists in AD patients are scant 
and inconclusive. Pilot investigations of exenatide twice 
daily in AD found no significant effects on clinical or cog-
nitive measures, in addition to imaging or CSF biomarkers 
[70]. Yet, a reduction of amyloid plaques in plasma neu-
ronal extracellular vesicles was noted. These results are dif-
ficult to evaluate, however, as the study terminated early 
due to insufficient patient recruitment. Similarly, a 26-week, 
randomised, double-blind trial of liraglutide was shown to 
improve glucose consumption in the brains of people with 
AD compared with placebo controls. No effect on the accu-
mulation of neurofibrillary amyloid plaques, or an improve-
ment in cognition, was found. The authors suggest that the 
size of the cohort and the duration of the study could have 
precluded definite clinical conclusions. As with other GLP-1 

receptor agonists, the most common side effects were gas-
trointestinal (i.e. nausea) and transient in nature. Weight loss 
was also seen, but this abated after 2–3 months of treatment. 
The effects of liraglutide on Alzheimer’s neurodegenera-
tion have been further investigated using a multicentre and 
randomised, double-blind, placebo-control design over 12 
months (ClinicalTrials.gov identifier: NCT01843075), with 
conference results recently announced indicating that while 
the trial failed to meet the primary outcome (cerebral glu-
cose metabolic rate), there was nevertheless an advantage in 
hippocampal volume and executive function [71].

While not directly studied in the AD population, there are 
also reports to indicate that the hazard of substantive cogni-
tive impairment was reduced by 14% in diabetic patients 
treated long term with dulaglutide [72]. Similarly, the pooled 
post-hoc analysis from three large cardiovascular outcome 
trials (LEADER, SUSTAIN-6, PIONEER-6), which uti-
lised liraglutide or semaglutide in T2DM, has indicated 
that dementia was significantly reduced by 53% in favour 
of this GLP-1 receptor agonist compared with placebo [73]. 
These promising findings have encouraged Novo Nordisk 
to recently announce that they will enter phase III develop-
ment in AD with oral semaglutide 14 mg, aiming to recruit 
3700 people in the early disease stages for a 2-year period. 
This will be the largest study of its kind and will hopefully 
provide more conclusive evidence with regards to the effi-
cacy and safety of repurposing GLP-1 receptor agonists in 
neurodegeneration.

Gliptins can protect neurons against amyloid beta-
induced cytotoxicity and prevent the activation of glycogen 
synthase kinase and tau hyperphosphorylation by restoring 
insulin downstream signalling pathways. Animal models of 
AD have provided evidence to support these claims. Saxa-
gliptin elevated hippocampal GLP-1 levels, increased beta 
amyloid and tau protein clearance rate and improved the 
global neuroinflammatory profile [74]. Linagliptin increased 
brain incretin levels and dampened both amyloid burden and 
tau phosphorylation. Chronic administration of sitagliptin in 
triple transgenic AD mice was also associated with increased 
levels of brain GLP-1 and dose-dependent reductions in 
inflammatory biomarkers, amyloid precursor protein levels 
and amyloid beta deposition. The effectiveness of these com-
pounds was related to their ability to rescue insulin cascade.

3.2  Parkinson’s Disease

Parkinson’s disease (PD) is a progressive and chronic dis-
order of the nervous system. Cardinal motor manifestations 
comprise resting tremor, increased muscular tone (rigidity) 
and slowed imprecise movement (bradykinesia), alongside 
non-motor symptoms such as cognitive decline, constipation 
and anosmia [75]. The disease is hallmarked by progressive 
damage to dopaminergic neurons within the substantia nigra 
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as part of a more widespread pathological process affect-
ing multiple brain cell types as well as non-neural tissues, 
and the concomitant formation of intracellular Lewy bod-
ies (abnormal aggregates of alpha synuclein) thought to be 
responsible for initiating the processes of cellular toxicity 
[76]. The main current treatment options for PD, including 
dopamine replacement therapies and deep brain stimula-
tion, are entirely symptomatic and have little impact on the 
progression of the underlying disease. Patients will develop 
dopamine refractory problems or worsening of symptoms 
over time, causing detriment to their quality of life [77]. 
There is therefore a clear need for treatments that slow down, 
stop or reverse the condition [78]. There are growing data to 
support the view that re-purposing incretin-based therapies 
may have therapeutic potential in PD [79].

Population-based longitudinal cohort studies have found 
a lower incidence of PD among people with T2DM using 
GLP-1 receptor agonists or DPP-4 inhibitors [80]. A recent 
UK study used propensity scores to take into account the 
potential bias associated with differences between T2DM 
patients that may influence the choice of anti-diabetic treat-
ment used, and still found a major reduction in the risk of 
PD among T2DM patients using GLP-1 receptor agonists 
[81]. The study did not have sufficient power nor duration 
of follow up to discriminate between the different GLP-1 
receptor agonists or DPP4 inhibitors.

3.2.1  GLP‑1 Receptor Agonists and Dual Agonists

To study therapeutics that may ameliorate disease symp-
toms and progression, traditional animal models utilise tox-
ins methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 
6-hydroxydopamine (6-OHDA). These are toxic to dopamin-
ergic cells by inhibiting mitochondrial activity and evoking 
a heightened inflammatory response within the brain. The 
administration of GLP-1 receptor agonists protects against 
these toxic insults [82, 83].

Exenatide, liraglutide and lixisenatide prevent motor dys-
function in 6-OHDA models of PD, while liraglutide and lix-
isenatide induced a marked increase in anti-apoptotic path-
ways compared with exenatide [84]. However, post-lesioning 
treatment with exenatide protected and increased striatal 
tissue dopamine concentrations, in addition to the number 
of nigral TH neurons [85]. These 6-OHDA models further 
show that exenatide normalised both abnormal behaviours 
including apomorphine and amphetamine-induced rota-
tions [82, 85]. In a rotenone-induced PD model, liraglutide 
in combination with sitagliptin increased striatal dopamine 
and tyrosine hydroxylase (TH) protein levels. Neuroinflam-
mation and neuronal loss was also reversed [86]. Compa-
rable findings have been found in MPTP mouse models; 
exenatide increased the number of viable dopaminergic 
neurons [87], in addition to increasing TH-positive neurons 

and concentrations of both dopamine and its metabolites 
[88]. Semaglutide demonstrates similar results in addition 
to improving motor impairment and reducing alpha synu-
clein aggregation, a finding that was not observed with other 
agents [89, 90]. Together, these findings suggest GLP-1 
receptor agonists have neuroprotective effects against dopa-
minergic toxins.

A limitation of these animal models is that the neuro-
toxins tend to cause a fixed neurological deficit rather than 
a progressive form of neurodegeneration. Newer animal 
models that are more representative of the human disease 
have been developed using stereotactic injections of alpha 
synuclein preformed fibrils in healthy or alpha synuclein 
transgenic rodents. In these models, a progressive neuro-
degenerative process is observed including aggregation 
of alpha synuclein and a motor phenotype reminiscent of 
human PD [91]. A pegylated form of exenatide (NLY01) 
has been shown to have neuroprotective effects in an alpha 
synuclein transgenic model of alpha-synucleinopathy-
induced neurodegeneration. NLY01 protects against the loss 
of dopamine neurons and behavioural deficits [92]. On the 
basis of these positive results, a phase II, multicentre clinical 
study with 240 de novo (untreated) PD patients is currently 
underway in Northern America (ClinicalTrials.gov identi-
fier: NCT04154072). The treatment arms comprise NLY01 
2.5 mg, NLY01 5.0 mg or placebo subcutaneous injections, 
and the primary outcome measure will assess the change in 
both motor experiences of daily living and motor symptom 
severity.

Dual GLP-1/GIP agonists have been reported to 
show superior effects to single GLP-1 receptor agonists, 
although it is not clear whether equivalent optimal doses 
were used in the experiments published to date. In an 
MPTP mouse model of PD, the novel dual agonist DA3-
CH was compared with liraglutide [93]. Motor coordina-
tion and grip strength was significantly improved by both 
agents, but more so by DA3-CH. Levels of TH expressed in 
substantia nigra neurons and striatal axon fibres were also 
increased in both treatment groups, yet DA-CH3 was better 
at reversing MPTP toxicity. Inflammation and microgliosis 
was reduced largely in DA3-CH-treated animals than in 
those receiving liraglutide, while glial cell-derived neuro-
trophic factor (GDNF) levels were higher. Similar findings 
have been reported with other dual GLP-1/GIP receptor 
agonists (e.g. DA-JC4, DA-JC5, DA-CH5), demonstrat-
ing an enhanced level of protective growth factors and 
reduction in pro-inflammatory cytokines compared with 
liraglutide [94, 95].

Oxyntomodulin is a natural dual agonist, activating both 
GLP-1 and glucagon receptors. Its analogue (d-Ser2-oxyn-
tomodulin) shows protective effects in MPTP mouse models 
whereby treatment prevented or reversed motor impairment 
and normalised the MPTP-induced reduction in TH-positive 
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neurons within the substantia nigra and striatum [96]. While 
promising, further work is needed to fully evaluate these 
effects compared with other single and dual agonists.

Based on these encouraging preclinical data, two human 
clinical trials of exenatide in patients with moderate stage 
PD have been conducted. A small proof-of-concept open-
label trial evaluating the safety and efficacy of exenatide 
10 μg twice daily in PD showed significant improvement 
in motor scores and cognitive efficiency at 12 months [97], 
which was maintained even 1 year after stopping the drug 
[98]. Weight loss was the most commonly reported adverse 
event and prevented trial completion in one participant. 
Other gastrointestinal symptoms included constipation and 
nausea, neither of which compromised trial participation. 
These were similar to trials of exenatide in T2DM, and 
weight loss was fully reversible on cessation of the drug 
(Table 4).

A limitation of this study, however, was that it was an 
open-label design with a relatively small sample size, which 
may therefore have been influenced by placebo effects. Con-
sequently, a double-blind clinical trial in 62 patients with 
moderate stage PD was conducted thereafter, with patients 
randomised to receiving exenatide 2 mg once weekly or pla-
cebo [99]. At 60 weeks, motor ability in the off-medication 
state was significantly better in patients using exenatide 
compared with placebo. Post-hoc analyses also showed 
that non-motor symptoms such as mood and emotional 
well-being also improved with exenatide use. These dem-
onstrated effects were later associated with augmented brain 
insulin signalling as evidenced by tyrosine phosphorylation 
of IRS-1 and activated downstream Akt pathways [100]. As 
with the previous study, similar adverse events were seen in 
both trial arms, including injection-site reactions and gastro-
intestinal symptoms. Six serious adverse events occurred in 
the exenatide group and two in the placebo group, although 
it was concluded that none of these were related to the study 
interventions. A phase III trial of exenatide once weekly is 
currently being conducted across multiple centres within the 
UK over 96 weeks to fully evaluate whether the drug has 
effects that accumulate with prolonged exposure (Clinical-
Trials.gov: NCT04232969), with additional trials in Sweden 
(ClinicalTrials.gov: NCT04305002) and South Korea (Clini-
calTrials.gov: NCT04269642).

In a similar manner, liraglutide is the subject of a clinical 
trial in 57 patients with PD in California (ClinicalTrials.
gov: NCT02953665). The primary outcome will include 
an assessment of motor function, non-motor symptoms and 
cognition. It is estimated that this study will be completed in 
December 2021. Lixisenatide is also under trial in France, 
where 158 early-stage PD patients (< 3 years since diagno-
sis) have been randomised to receive lixisenatide injections 
once daily or placebo for 12 months, followed by a 2-month 
washout period. As with other studies, the primary outcome 

will be a comparison of motor function at the end of the 
treatment period (ClinicalTrials.gov: NCT03439943).

3.2.2  DDP‑4 Inhibitors

The administration of several DPP-4 inhibitors (sitagliptin, 
saxagliptin, vildagliptin) in the rotenone neurotoxic animal 
model of PD has been associated with marked improve-
ments in both cognitive and motor abilities and resilience to 
dopaminergic cell loss in the substantia nigra pars compacta 
and striatal terminals [86, 101, 102]. While saxagliptin also 
decreased oxidative stress, it did not improve cognitive or 
motor deficits in 6-OHDA toxin rodents nor did it restore 
dopaminergic neurons in the substantia nigra [103]. Simi-
larly, rats acutely or chronically pre-treated with supramaxi-
mal doses of sitagliptin were not protected against MPTP-
induced striatal dopaminergic degeneration. Despite these 
discrepancies, DPP-4 inhibitors appear to have intrinsic 
anti-inflammatory and anti-apoptotic abilities, and further 
enhance neurotrophic factors. As yet, DPP-4 inhibitors are 
yet to be tested in patients with PD, but alogliptin is the 
subject of a multi-arm trial of disease-modifying drugs to 
be opened in Australia (https:// theapm. org. au/ clini cal- trials).

3.2.3  Multiple System Atrophy

Multiple system atrophy (MSA) is a rare adult-onset neuro-
degenerative disease characterised by a variable combina-
tion of parkinsonism, cerebellar impairment and autonomic 
dysfunction [104]. Its pathological hallmark comprises accu-
mulation of alpha synuclein aggregates in oligodendrocytes, 
forming glial cytoplasmic inclusions [105].

There are no treatments that have been shown to slow 
down the rate of clinical deterioration of MSA, with survival 
prognosis estimated at approximately 6–9 years from the 
time of diagnosis. As with PD, increasing evidence sug-
gests impaired peripheral insulin/insulin-like growth fac-
tor-1 (IGF-1) signalling in MSA, as shown by increased 
insulin and IGF-1 plasma concentrations in MSA patients 
and reduced IGF-1 brain levels in transgenic mouse mod-
els of MSA [106, 107]. In a recent study, the serine phos-
phorylation (at serine sites 312 and 616) of insulin receptor 
substrate-1 (IRS-1), a marker of neuronal insulin resistance, 
was also increased in neurons and oligodendrocytes within 
the putamen of MSA patients compared with healthy con-
trols [108]. The same study showed that mouse models of 
MSA have elevated serine [312] IRS-1 expression levels in 
the striatum compared with wild-type littermates. Treatment 
with exenatide decreased the expression of these markers, 
facilitated the preservation of dopaminergic neurons within 
the substantia nigra and reduced monomeric alpha synuclein 
load in the striatum.

https://theapm.org.au/clinical-trials
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To our current knowledge, there is only one human 
phase II clinical trial that aims to investigate the effects 
of GLP-1 receptor agonists in MSA (ClinicalTrials.gov: 
NCT04431713). Fifty patients with a probable or possible 
diagnosis of MSA (including both cerebellar and Parkinso-
nian phenotypes) will be randomised to receive exenatide 
once weekly for 48 weeks or to act as controls in an open-
label design. The primary endpoint will be the difference 
in the total Unified Multiple System Atrophy Rating Scale 
(UMSARS) score (Part I and II), a scale designed to measure 
disease progression in MSA.

4  Factors Relevant to Incretin‑Based 
Therapies for Neurodegeneration

4.1  Tolerability and Safety

4.1.1  Delayed Gastric Emptying

Gastrointestinal adverse events are associated with the use of 
all GLP-1 receptor agonists and are usually mild to moderate 
in severity. Nausea is the most common side effect reported 
across all agents, with up to 50% of patients being affected. 
It is dose dependent and tends to resolve with ongoing treat-
ment. A meta-analysis of 35 studies showed that exenatide 
twice daily (10 μg) had a higher probability of producing 
nausea compared with long-acting exenatide and liraglutide. 
On the other hand, higher doses of dulaglutide were asso-
ciated with an increased incidence of vomiting compared 
with exenatide [32]. Albiglutide and lixisenatide also cause 

nausea, but the rate of occurrence is much smaller compared 
with treatment with liraglutide or exenatide. Semaglutide 
carries similar gastrointestinal adverse events; nausea was 
reported in 20–24% and 11–24% of patients receiving inject-
able or oral semaglutide, respectively [109, 110]. Vomiting 
and diarrhoea was noted in a smaller proportion of patients 
receiving either preparation, and these events occurred more 
frequently with oral semaglutide than liraglutide [111]. 
Liraglutide, instead, was highly associated with constipa-
tion [111].

Similarly, dual GLP-1/GIP receptor agonists are associ-
ated with gastrointestinal adverse events. In the study inves-
tigating tirzepatide, there was a high incidence of vomit-
ing, particularly with higher doses that were not titrated 
gradually. Importantly, these compounds are not related to 
an increase in gastrointestinal-related side effects compared 
with single GLP-1 receptor agonists; a similar proportion 
of patients receiving RG7697-NNC0090-2746 or liraglu-
tide reported at least one event; in fact, adverse events were 
slightly higher with liraglutide use.

Nausea and vomiting result from dose-dependent 
delayed gastric emptying that is mediated by action on 
both central and peripheral receptors. While nausea is 
reported by users of both short- and long-acting agents, 
it is attenuated more quickly with long-acting agents 
because of their relatively reduced effects on gastric emp-
tying. Another possible mechanism is the activation of 
centres involved in appetite regulation and nausea dur-
ing peak GLP-1 plasma concentrations. The mechanisms 
causing diarrhoea induced by GLP-1 receptor use are 
less clear, although some studies suggest that these drugs 

Table 4  Tolerability and safety of incretin-based therapies in neurodegenerative diseases

AD Alzheimer’s disease, PD Parkinson’s disease
a Developed pancreatic cancer shortly after the end of the trial monitoring
b Number not provided in paper

Disease N Drug Gastrointestinal side effects

Weight loss (N) Nausea (N) Vomiting (N) Diarrhoea (N) Constipation 
(N)

Injection-site 
reactions (N)

Pancreatitis or 
pancreatic cancer 
(N)

PD 44 Exenatide 10 μg 
twice daily vs 
placebo

19 vs 8 13 vs 8 7 vs 5 18 vs 14 2 vs 0

PD 60 Exenatide 2 mg 
once weekly 
vs placebo

24 vs 18 16 vs 10 2 vs 0 8 vs 6 12 vs 11 27 vs 26 0 vs  1a

AD 21 Exenatide 10 μg 
twice daily vs 
placebo

4 vs 0 5 vs 0 3 vs 1 1 vs 1

AD 38 Liraglutide 
1.8 mg once 
weekly vs 
placebo

Yesb Yesb
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may accelerate colonic transit or affect the physiological 
secretion of bile acids [112]. The consequence of delayed 
gastric emptying may have profound effects on patients 
who are reliant on the regular and predictable absorption 
of medication, as is the case in PD. Delay of levodopa 
absorption or complete dose failures after oral intake can 
lead to profound and disabling OFF periods during which 
patients may struggle to walk, or experience pain, stiffness 
or severe tremor. Short-acting exenatide and lixisenatide 
slow gastric emptying markedly compared with longer-
acting agents [25, 113], and should therefore be used with 
caution in patients who already suffer substantially with 
delayed gastric emptying.

4.1.2  Weight Loss

Patients with T2DM are typically overweight, and thus ben-
efit from weight loss associated with GLP-1 receptor ago-
nist use. However, patients with neurodegenerative diseases 
may already be under-weight due to several factors including 
reduced appetite, depression, and excessive calorie expendi-
ture from tremor or dyskinesia. Weight loss would therefore 
be undesirable in this cohort, and could cause further issues 
(e.g., increased risk of fractures from falls). Poorer prog-
nostic outcomes comprising low quality of life and higher 
mortality rates have also been associated with weight loss 
in PD and AD, while the development of dyskinesia has 
further been correlated with both lower initial body weight 
and weight loss in PD [114]. From this perspective, albiglu-
tide and dulaglutide could perhaps be considered as better 
treatment options as they are known to cause less weight 
loss in comparison with liraglutide, exenatide or semaglutide 
(however, see section on CNS penetration).

It should also be noted that weight loss is not simply 
related to direct gastrointestinal effects. The central effects 
of the incretins lead to both the loss of appetite and taste, 
which (as well as affecting weight and nutritional status) can 
affect the ability of patients to enjoy food. This is a super-
added issue in PD, as patients may already have a degree of 
anosmia (loss of sense of smell) as part of their neurodegen-
erative condition.

4.1.3  Injection‑Site Reactions

Injection-site reactions (e.g. nodules, itching, redness) are 
common with GIP/GLP-1 receptor agonist use, and this 
is particularly true for longer-acting agents. Only 5.1% of 
T2DM patients receiving exenatide twice daily reported skin 
side effects, while this increased to 16% of those receiving 
exenatide once weekly and 15% of those receiving albiglu-
tide. This is attributed to the known properties of polymeric 
microspheres that enable the slow release of agents like 

exenatide. Although this may be considered a negative, reac-
tions are most often transient (resolving in 4–8 weeks) and 
patients remain asymptomatic. Optimisation of administra-
tion practises, including good hygiene and selection of the 
best site and direction/angle of administration, are known 
to alleviate skin reactions in PD patients receiving apomor-
phine infusions and could therefore be applied here. Still, 
an oral approach may be highly favoured by patients with 
neurodegeneration. Compliance may also be higher with 
treatments that are less invasive and adherence to treatment 
with weekly injections is significantly better compared with 
daily injections in patients with T2DM [115]. Chronic com-
pliance with incretin-based therapies is extremely important 
in the context of neurodegeneration as it is hypothesised 
that prolonged use may have cumulative effects on disease 
modification. Interestingly, a once-yearly exenatide implant 
device is currently being developed (Intarcia) that would 
remove the issue of nodule formation and greatly facilitate 
compliance.

4.1.4  Pancreatic Safety

There was some initial concern regarding the association of 
GLP-1 receptor agonist treatment with pancreatitis or pan-
creatic cancer. These were based on early observational data 
that identified an increased risk for both of these adverse 
effects [116], leading to an FDA warning. Two subsequent 
studies with exenatide and liraglutide in rodents further cor-
roborated these findings, showing an elevation in pancreatic 
enzymes [117, 118]. However, several meta-analyses and 
retrospective cohort studies have ultimately failed to show 
any significant association between GLP-1 mimetic therapy 
and pancreatic safety [119, 120]. Despite these data, GLP-1 
receptor agonists have a black box warning of pancreatitis, 
as well as a risk for thyroid C-cell tumours, although this is 
purely based on toxicity studies in animal models.

Examining clinical trials, the prevalence of these serious 
adverse reactions is very low. Asymptomatic increases in 
pancreatic enzymes were observed in five subjects receiving 
exenatide once weekly, compared with patients receiving 
insulin glargine [121]. Increased pancreatic enzymes were 
further noted in one patient receiving the dual GLP-1/GIP 
receptor agonist tirzepatide, who discontinued the study 
[41]. Pancreatitis has not been reported in patients using 
semaglutide (oral and injectable), although cholelithiasis 
was seen in a small number of patients receiving injectable 
semaglutide compared with placebo [109].

Similarly, there is no association between DPP-4 inhibi-
tors and pancreatic cancer, but a small risk for acute pan-
creatitis has been reported in one study [122]. This increased 
incidence has been observed in patients receiving either 
sitagliptin or linagliptin. It is also recommended that renal 
function and liver function should be monitored when using 
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sitagliptin or vildagliptin, respectively. Despite these poten-
tial biochemical adverse events, DDP-4 inhibitors are well 
tolerated.

4.1.5  Hypoglycaemic Events

One of the major benefits of incretin-based therapies is that 
they rarely cause hypoglycaemic events unless used in com-
bination with sulfonylureas [123]. Crucially, this suggests 
non-diabetic patients with adult-onset neurodegenerative 
diseases could potentially use these drugs without the risk 
of developing low blood sugar [124].

4.2  Penetration of the CNS

Intuitively, incretin-based agents that are hypothesised to 
have effects on neuronal survival in the brain must be able 
to reach the CNS to engage with the receptors on the target 
tissue. However, the concept of the ‘gut–brain axis’ [125] 
may mean that peripheral effects mediated by GLP-1/GIP 
receptor stimulation can be associated with beneficial brain 
effects mediated by changes in pro or anti-inflammatory 
agents, changes in bile acid composition or changes in short-
chain fatty acid signalling [126]. From the literature dis-
cussed here, it becomes clear that CNS penetration through 
blood–brain barrier (BBB) crossing is a key aspect in the 
potency of neuroprotection provided by different agents. As 
such, it would seem wise to place greater priority on those 
that have been shown to access the CNS and influence cen-
tral GLP-1 receptors.

4.2.1  Incretin Mimetics

Animal models with liraglutide and lixisenatide have dem-
onstrated that both agents are able to cross the BBB [127]. 
For lixisenatide, there is as much detected in the brain when 
administered with the lowest dose as with the highest dose 
[127]. There was also a 1.8-fold increase in cell proliferation 
and the level of cyclic adenosine monophosphate (cAMP) 
was enhanced post-injection with lixisenatide [127]. Fur-
ther, liraglutide directly targets mouse hypothalamic GLP-1 
receptors located on arcuate nucleus neurons, and these neu-
rons are likely mediators of liraglutide-induced weight loss 
[128]. In the rodent brain, liraglutide uptake has also been 
observed in the paraventricular nucleus of the hypothalamus, 
medial eminence of the hypothalamus and area postrema 
(vomiting centre) in the hindbrain. Together, these regions 
form important autonomic control centres in the brain and 
contribute to widespread processes including endocrino-
logical activities [129, 130]. While the animal data appears 
promising, transfer of liraglutide from blood to CSF is mini-
mal in human patients with T2DM [131]. The authors of this 
paper suggest that weight loss by GLP-1 receptor agonist 

occurs without the agent entering the CSF. Instead, they may 
interact with sensory vagal afferents and circumventricular 
organs of the brain—both of which in rodent models are 
readily accessible to circulating GLP-1 receptor agonists, 
express GLP-1 receptors and have neuronal projections to 
hypothalamic nuclei [131].

Exenatide reaches the mouse brain intact, with almost 
90% reaching the parenchyma [85]. The agent penetrates 
the brain even more efficiently than native GLP-1, without 
depending on circumventricular uptake. These findings have 
been replicated in human trials, which showed a neuropro-
tective effect in PD [99]; indeed, exenatide crossed the BBB 
and was detectable in CSF at concentrations equivalent to 
those found in preclinical animal models (approximately 
1.5–2.0%) [132]. These findings are also in line with levels 
found in CSF in a pilot evaluation of exenatide in AD [70]. 
The entry rate from blood, however, is limited when high 
doses of exenatide are administered with the peptide show-
ing weak self-inhibition [85]. Exenatide is therefore com-
patible with a transport system of limited capacity, which 
has practical implications when considering its therapeu-
tic potential since it might limit the effectiveness of very 
high doses. In any case, exenatide may also support and 
preserve the integrity of the BBB as evidenced from stroke 
studies with mice [133]. It ameliorates BBB breakdown and 
reduces inflammation from cerebral ischaemia, potentially 
via reducing the oxygen–glucose deprivation-induced astro-
cyte-derived vascular endothelial growth factor [133]. This 
is of considerable importance for AD, where cerebral blood 
flow reductions and breakdown of the BBB contributes to 
cognitive decline.

Dual GLP-1/GIP receptor agonists, which have neuro-
protective abilities, are also able to penetrate the CNS in 
a significant manner. DA5-CH, known to reduce tau phos-
phorylation and intracerebroventricular streptozocin-induced 
insulin desensitisation in rat models of AD, crosses the BBB 
at a higher rate compared with acetylated dual agonist DA1-
JC and single GLP-1 receptor agonists (exenatide and lira-
glutide) [134]. Using DA5-CH, one study further demon-
strated that transactivator of transcription (TAT) sequence 
modification enhanced penetration of the BBB significantly 
compared with dual receptor agonist (DA3-CH), which was 
a pegylated version [95]. This sequence is well recognised as 
a ligand to cell membrane receptor binding site, facilitating 
cell reuptake and BBB penetration.

Semaglutide exhibits limited brain access following 
peripheral administration in mice [135]. It can directly 
access the brainstem (area postrema and nucleus tractus 
solitarius), septal nucleus and hypothalamus. However, it 
cannot cross the BBB and instead interacts with the brain 
through circumventricular uptake. Within the arcuate 
nucleus, semaglutide stimulates anorexigenic cocaine-and-
amphetamine-regulated transcript and proopiomelanocortin 
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(CART/POMC) neurons, and further inhibits neuropeptide 
Y/agouti-related peptide (NPY/AgRP). These mechanisms 
work to mediate food intake and weight loss, and similarly 
occur when liraglutide is administered. Similarly, the larger 
albumin-based molecule sizes of albiglutide and dulaglu-
tide hinders their transport across the BBB. It is difficult 
for either to diffuse into the brain at the area postrema or 
hypothalamus where there is a breakdown in the BBB. This 
could account for the relative lack of difference in weight 
loss with both albiglutide and dulaglutide compared with 
liraglutide [136].

Despite these results, there is still uncertainty whether 
GLP-1 receptor agonists can penetrate the BBB as some 
authors have argued that brain capillary binding or seques-
tration may not have been considered. To address this issue, 
a recent study has compared nine different agents in adult 
CD-1 mice [137]. They found that non-acylated and non-
pegylated GLP-1 receptor agonists (exenatide and lixisena-
tide) had significant rates of blood-to-brain influx, as did 
dual GLP-1/GIP receptor agonists (DA3-CH and DA-JC4). 
However, acylated GLP-1 receptor agonists (liraglutide 
and semaglutide) did not measurably cross the BBB, even 
though both have been found to ameliorate many forebrain 
and midbrain pathologies in mouse models of AD and PD. 
It is possible that these agents may instead exert their neu-
roprotective effects by influencing the levels of another sub-
stance that can cross the BBB, by binding to brain endothe-
lial cells and triggering release of an abluminal substance, 
or by influencing afferent nerve transmission [137]. The 
authors, however, suggest that liraglutide and semaglutide 
affect brain function by accumulating in brain regions out-
side of the BBB rather than being transported across it. This 
obviously has clear implications when evaluating whether an 
agent is suitable for disease modification, and future studies 
should aim to comprehensively compare the level of clinical 
improvement with the amount of CNS penetration.

4.2.2  Incretin Enhancers

Approved DPP-4 inhibitors are unable to penetrate the BBB. 
Their neuroprotective effects are thought to be peripheral 
relating to increases in circulating GLP-1 levels rather than 
directly within the CNS, as demonstrated by studies with 
linagliptin. While the GLP-1 receptor is expressed in both 
neurons and glia, in addition to being widely distributed 
throughout the CNS [138], neuroprotection from linaglip-
tin is thought to occur at the neuronal level. A recent study 
in rodents, however, showed BBB crossing of an oral once-
weekly DPP-4 inhibitor (omarigliptin) compared with trela-
gliptin [139], which the authors attribute to its low molecular 
weight and lipophilic properties. Intranasal administration 
of omarigliptin further showed a significantly higher brain/
plasma ratio by 3.3-fold compared with the oral group, 

which was accompanied by a 2.6-fold increase in brain 
GLP-1 concentration.

While the site of action of GLP-1 stimulation that results 
in beneficial effects may not be exclusively on CNS neurons, 
it seems likely that CNS penetration would be a desirable 
property in the development of an incretin-based approach. 
Agents such as semaglutide fail to cross the BBB in rodent 
models but whether this extends to humans with neurode-
generation needs clarification. If it can be demonstrated that 
CNS penetration is not necessary to have equivalent neu-
roprotective effects, then agents restricted to the periphery 
may be favoured assuming that some of the adverse effects 
of the GLP-1 receptor agonists such as weight loss, while 
generally very desirable in people with T2DM, may be less 
well tolerated in AD or PD.

5  Conclusion

There are mounting data to suggest a role for brain insulin 
resistance, as well as neuroinflammation, either with or 
separately from T2DM, that may both contribute to the 
risk of and progression of neurodegenerative diseases. As 
such, GLP-1 analogues, dual/triple receptor agonists and 
DPP-4 inhibitors are emerging as promising therapeutic 
agents to slow down, stop or reverse progression of the 
neurodegenerative processes. They may exert their effects 
through multiple mechanisms that involve insulin-like 
growth factors, IRS-1 phosphorylation and insulin signal-
ling via AKT pathways, or as anti-inflammatory agents. 
Maximising the translational potential of this approach is 
thus crucial. Significant pharmacokinetic differences exist 
between the different drug classes and compounds. This 
is reflected by the extent to which they exert glycaemic 
control and their tolerability, but also in the penetration of 
CNS that is potentially of considerable importance when 
evaluating putative disease-modifying effects on the brain. 
To this end, some agents may be more useful in treating 
neurodegenerative conditions. However, comparable data 
in the context of neurodegenerative models are sparse and 
more studies are needed to fully elucidate which agent, if 
any, has greater neuroprotective effects. A key question 
relates to whether CNS penetration is essential, as this 
route is also the source of potential adverse effects such as 
nausea and weight loss. As the number of agents entering 
human clinical trials rises, an optimistic view is that their 
effect sizes and tolerability may be compared between 
studies and including agents that do not penetrate the CNS. 
However, in the existing competitive commercial climate, 
it is unlikely that any direct head-to-head comparisons of 
incretin-based agents will be performed, unless driven for-
ward in academic institutions rather than in the commer-
cial sector. Despite the enthusiasm for these approaches 
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based on existing laboratory data, epidemiological evi-
dence and proof-of-concept clinical trials, the definitive 
evidence of efficacy of any incretin-based approach in 
the field of neurodegeneration is still awaited. It must be 
hoped that further positive results from formal efficacy 
trials add sufficient momentum to clinical research in this 
field to formally address which of the members of this 
class of drugs offers the best balance between efficacy and 
side effects in older adults with neurodegenerative disease.
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