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Abstract
Over the past 2 decades, rapid advances in molecular profiling and the development of targeted therapies have dramatically 
improved the clinical course of advanced non-small-cell lung cancer (NSCLC). Mutations in the epidermal growth factor 
receptor (EGFR) gene are found in about a third of patients with advanced NSCLC, and the approval of first-generation EGFR 
targeted kinase inhibitors significantly improved survival when compared with platinum-based doublet chemotherapy (PBC), 
the previous standard of care. Inevitably, selective pressure from first-generation EGFR inhibitors led to acquired resistance 
mechanisms, such as the T790M mutation. The advent of third-generation EGFR inhibitors (e.g., osimertinib) successfully 
overcame the T790M resistance mechanism, and osimertinib subsequently became the first-line therapy for EGFR mutant 
NSCLC. Currently, research in EGFR mutant NSCLC is primarily focused on targeting resistance mechanisms to osimerti-
nib. Over the past several years, many important acquired and intrinsic mechanisms of resistance to osimertinib have been 
identified. Acquired resistance mechanisms include C797X, mesenchymal epithelial transition factor (MET) amplification, 
HER2/HER3 amplification, phosphoinositide 3-kinase (PI3K) pathway mutations, RAS/mitogen-activated protein kinase 
(MAPK) pathway mutations, cell–cycle gene alterations, oncogenic fusions, and histologic transformations. An important 
intrinsic resistance mechanism to osimertinib is the EGFR exon 20 insertion mutation, which is sensitive to the newly Food 
and Drug Administration (FDA)-approved tyrosine kinase inhibitor mobocertinib and the EGFR/MET bispecific antibody 
amivantamab. This review article aims to (1) summarize the advances in the treatment of EGFR mutant NSCLC, (2) deline-
ate known resistance mechanisms to the current first-line therapy, osimertinib, and (3) describe the development of targeted 
drugs that aim to overcome these resistance mechanisms.
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1 � Background

The clinical course of advanced non-small-cell lung cancer 
(NSCLC) has swiftly evolved over the past 20 years. Plati-
num-based doublet chemotherapy (PBC) was the standard 
of care for all patients with advanced NSCLC and a good 
performance status. However, PBC yielded disappointing 
results: an objective response rate (ORR) of about 30%, 
median progression-free survival (PFS) of 5–6 months, and 
median overall survival (OS) of 11–12 months [1, 2]. Fortu-
nately, improvements in molecular profiling and the approval 
of various targeted therapies have drastically improved the 
prognosis for patients with targetable mutations [3–6].

The detection of oncogenic driver mutations in the epi-
dermal growth factor receptor (EGFR) gene was a piv-
otal milestone in the diagnosis and treatment of NSCLC 
[7]. EGFR is a receptor tyrosine kinase that is commonly 
expressed in normal tissue and participates in cellular path-
ways leading to cell proliferation, migration, and survival. 
Activating mutations affecting the kinase domain of EGFR 
lead to ligand-independent downstream signaling of EGFR, 
thereby promoting cancer growth. Such mutations occur in 
up to half of patients with NSCLC, with the peak incidence 
in East-Asian, non-smoking, and female patients [8].

The classical EGFR L858R point mutation and exon 19 
deletions comprise up to 90% of EGFR mutant NSCLC and 
lead to conformational changes that destabilize the dormant 
form of the EGFR protein, effectively shifting the equilib-
rium towards the active form [9, 10]. This conformational 
change in the adenosine triphosphate (ATP) pocket of EGFR 
is the target of first- and second-generation tyrosine kinase 
inhibitors (TKIs) [7]. EGFR TKIs bind the ATP pocket 
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Key Points 

Osimertinib, a third-generation epidermal growth factor 
receptor (EGFR) inhibitor, is the standard of care for 
advanced EGFR mutant non-small-cell lung cancer in 
the first-line setting.

Identified mechanisms of resistance to osimertinib can 
be classified as EGFR-dependent versus EGFR-inde-
pendent and acquired versus intrinsic.

The EGFR exon 20 insertion mutation is more sensitive 
to novel tyrosine kinase inhibitor and antibody therapies 
than osimertinib or the earlier generation EGFR inhibi-
tors.

Several targeted therapies aiming to overcome resistance 
mechanisms to osimertinib are currently in development 
or being tested in clinical trials.

the presence of the T790M mutation prior to treatment with 
first- and second-generation TKIs led to intrinsic resistance 
and therefore poorer outcomes [13]. Additionally, 50–60% 
of patients who initially responded to first- or second-gener-
ation TKIs ultimately developed T790M mutations, leading 
to acquired resistance to therapy [14, 15].

The development of third-generation TKIs, particularly 
osimertinib, was essential in overcoming this resistance 
mechanism. Osimertinib covalently bonds with the C797 
residue of the ATP-binding site of EGFR regardless of the 
T790M mutation. Osimertinib was initially approved for 
treatment of EGFR mutant, T790M-positive NSCLC after 
progression on first-line TKI. Subsequently, the FLAURA 
trial in 2018 showed that osimertinib led to increased PFS 
(19 vs. 10 months) when compared to gefitinib and erlotinib 
in the first-line setting for advanced EGFR mutant NSCLC 
[6]. As osimertinib improved the median OS for advanced 
EGFR mutant NSCLC to 38.6 months and demonstrated 
a favorable toxicity profile compared to earlier generation 
TKIs, it was approved as first-line therapy for all advanced 
EGFR mutant NSCLC regardless of T790M status. [6, 16]

Notably, osimertinib also demonstrated improved effi-
cacy against central nervous system (CNS) disease, which 
is present in about 30% of EGFR mutant NSCLC at diagno-
sis [16]. First- and second-generation EGFR TKIs yielded 
variable activity against brain metastases [17–19], whereas 
in the FLAURA trial, front-line osimertinib demonstrated 
a PFS benefit in patients with CNS disease [6, 20]. In the 
phase I BLOOM study, 160 mg of osimertinib daily, which 
is double the normal dose, yielded an ORR of 62% and a 
median OS of 11 months in patients with leptomeningeal 
disease [21].

Recently, another third-generation TKI, lazertinib, also 
demonstrated a favorable safety profile and anticancer activ-
ity in a phase I/II trial of EGFR mutant, T790M-positive 
NSCLC [22], and there are other agents with similar activ-
ity in development worldwide. Because of these advances, 
T790M as a resistance mechanism has become less clinically 
relevant. When resistance develops to first-line osimertinib, 
plasma genotyping shows no evidence of emergence of 
T790M mutations [23]. Instead, due to selective pressure 
from osimertinib, acquired resistance is often associated 
with development of other EGFR-dependent and EGFR-
independent bypass pathways.

2.2 � C797S

Since osimertinib overcomes T790M resistance by binding 
to the C797 residue in the ATP pocket, it is not surpris-
ing that the most common EGFR-dependent mechanism of 
resistance to osimertinib are mutations at C797 [23]. C797 
mutations also confer resistance to similar third-generation 
EGFR TKIs (e.g., rociletinib, olmutinib, and nazartinib) 

of EGFR, leading to inhibition of kinase phosphorylation 
and downstream pathways. The approval of first-gener-
ation reversible EGFR TKIs (e.g., gefitinib, erlotinib) for 
advanced and metastatic EGFR mutant NSCLC dramatically 
improved ORR as high as 80% and median PFS to greater 
than 10 months, exceeding that observed from PBC [1, 2]. 
The success of these agents was pivotal in transforming the 
management of NSCLC from a histology-based approach 
to a personalized, targeted approach. However, despite such 
advancements in molecular profiling and targeted therapeu-
tics, selective pressure on the cancer cells inevitably led to 
drug resistance and disease progression [11]. While some 
of this was overcome in the landmark FLAURA trial with 
the T790M-active inhibitor osimertinib, up to 10% of EGFR 
mutant NSCLC had de novo or primary resistance either due 
to different EGFR mutations, such as EGFR exon 20 inser-
tion (ex20ins), or poorly understood initial tumor biology 
[6]. This article will review the tumor biology of resistance 
(Fig. 1) and current research to overcome this common clini-
cal challenge (Table 1). 

2 � Acquired Resistance: EGFR‑Dependent 
Mechanisms

2.1 � T790M

Soon after the advent of first-generation TKIs, a somatic 
mutation in EGFR, p.Thr790Met (T790M), was discovered. 
T790M alters a residue situated deep inside the ATP pocket 
of EGFR and thereby blocks the binding of first- and second-
generation TKIs to the ATP-binding site [12]. Therefore, 
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[24]. Mutations at C797 were detected in 15% of patients at 
disease progression to osimertinib in the second-line setting 
and 7% of patients at progression to first-line osimertinib 
[22]. Notably, similar resistance mutations at C797, includ-
ing C797G, have also been reported. [24]

In the absence of a T790M mutation, tumors resistant 
to osimertinib due to C797S mutations retain sensitivity 
to first- and second-generation EGFR TKIs (e.g., gefitinib, 
erlotinib, afatinib) [25, 26]. In the presence of a T790M 
mutation, which is only observed in patients who had a 
prior earlier generation EGFR TKI, if the T790M and C797S 
mutations are on different alleles (trans), then the tumor will 
likely retain sensitivity to first- and second-generation EGFR 
TKIs [27]. Retrospective data show that two-thirds of pro-
gressed cases have cis presentations, which would remain 
resistant to both first- and second-generation EGFR TKIs 
[28].

Adding first- or second-generation EGFR TKIs to osimer-
tinib in the first-line setting may prevent the clonal selection 
of C797S mutations [29]. Additionally, “fourth-generation” 
EGFR TKIs in development (e.g., EAI045, JBJ-04-125-02, 
BLU-945) may overcome both C797S and T790M mutations 
in vitro and in vivo, but have not been assessed in clinical tri-
als yet and may be dependent on the underlying core driver 
mutation [30]. Additionally, a novel anaplastic lymphoma 
kinase (ALK)/EGFR inhibitor, brigatinib, in combination 

with a fourth-generation EGFR TKI, has also demonstrated 
in vivo efficacy against triple-mutant (EGFR mutant, T790M 
positive, C797S mutant) NSCLC [31]. BBT-176 is another 
novel EGFR TKI designed to allosterically inhibit EGFR 
with C797S mutations (NCT04820023).

2.3 � Other EGFR‑Dependent Acquired Resistance 
Mechanisms

While mutations at C797 are the most common on-target 
resistance mechanisms in EGFR mutant NSCLC, other 
tertiary EGFR mutations have also been detected. For 
example, G796D/R/S and L792H mutations in exon 20 of 
EGFR lead to conformational changes that sterically hin-
der osimertinib [31–33]. On exon 18 of EGFR, rare muta-
tions at G719, L718, and G724 have been associated with 
osimertinib resistance, though in the absence of T790M 
mutation, they may also remain sensitive to first- and sec-
ond-generation EGFR TKIs [24, 32]. Interestingly, G724S 
mutations generally only lead to osimertinib resistance in 
the presence of exon 19 deletion. but not in the presence of 
L858R [33]. EGFR amplification, which is correlated with 
EGFR immunohistochemistry (IHC), is also associated with 
osimertinib resistance, though this association may be con-
founded by concurrent off-target bypass pathways [34, 35]. 
A phase I trial employing the combination of osimertinib 

Fig. 1   Approximate distribu-
tion of resistance mechanisms 
to first-line osimertinib. EGFR 
epidermal growth factor recep-
tor, ex20ins exon 20 insertion, 
MAPK mitogen-activated pro-
tein kinase, MET mesenchymal 
epithelial transition factor, PI3K 
phosphoinositide 3-kinase
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and necitumumab for patients demonstrated clinical activ-
ity against EGFR-dependent resistance (T790M+/C797S+) 
after progression on third-generation TKI (NCT02496663). 
Most recently, a phase I study utilizing the combination of 
amivantamab, a bispecific EGFR and c-mesenchymal epi-
thelial transition factor (c-MET) antibody, with lazertinib, a 
third-generation EGFR TKI, demonstrated promising results 
with an ORR of 36% in patients who progressed on osi-
mertinib and an ORR of 100% in TKI-naïve patients [36]. 
Overall, the lack of specific agents to target these EGFR-
dependent acquired resistance mechanisms is an important 
area of future research and drug development.

3 � Acquired Resistance: EGFR‑Independent 
Mechanisms

3.1 � MET Amplification

In classical EGFR mutant NSCLC, the most common 
EGFR-independent mechanism that confers resistance to 
osimertinib is MET amplification, which bypasses EGFR 
by leading to constitutive activation of downstream signal-
ing pathways, such as those mediated by mitogen-activated 
protein kinase (MAPK), signal transducer and activator of 
transcription (STAT), and phosphoinositide 3-kinase (PI3K)-
Akt [37, 38]. Like EGFR amplification, MET amplification 
is strongly correlated with MET IHC [39]. MET amplifica-
tions can also be identified through routine circulating tumor 
DNA (ctDNA) analysis [38].

In the AURA3 study, MET amplification was found 
through plasma next-generation sequencing (NGS) in 19% 
of patient samples at disease progression [40]. Through NGS 
ctDNA analysis, after progression on first-line osimertinib, 
MET amplification was found in 15% of patient samples 
[41]. Because it is more challenging to detect amplifications 
than mutations diagnostically, the incidence of MET amplifi-
cation may be underestimated by these data. Based on exist-
ing retrospective data, MET amplification occurs regardless 
of the presence or loss of the T790M mutation [42–44] and 
co-occurs with EGFR C797S in 5–10% of cases. [45]

To overcome resistance to osimertinib due to MET 
amplification, c-Met inhibitors may be utilized. Given the 
availability for other indications, crizotinib with osimerti-
nib was initially tested and found to be efficacious against 
tumors that acquire resistance to osimertinib through MET 
amplification [46, 47]. In the phase Ib TATTON trial, the 
combination of the MET TKI savolitinib with osimertinib 
yielded an ORR of 30% and a PFS of 5.4 months in patients 
with acquired resistance to third-generation EGFR TKIs in 
the setting of MET amplification [48]. The phase II trial for 
this combination is currently underway (NCT03778229). 
The combination of another MET TKI (capmatinib) with EG
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gefitinib has also yielded favorable results in a phase II trial 
of patients with MET amplification who were previously 
treated with an EGFR TKI. In this trial, ORR for all patients 
was 27%, but it increased to 47% in the subset of patients 
who had six or more MET gene copies [49]. In another phase 
Ib/II trial of patients with MET overexpression or amplifi-
cation who had progressed on a previous EGFR TKI, the 
combination of gefitinib and the MET TKI, tepotinib, led to 
higher ORR compared with standard PBC [50]. As previ-
ously mentioned, the combination of the bispecific EGFR 
and c-MET antibody amivantamab and the third-generation 
EGFR TKI lazertinib has recently demonstrated an ORR of 
36% in patients who progressed on osimertinib and an ORR 
of 100% in TKI-naïve patients. [36]

3.2 � HER2 and HER3 Amplification

The ErbB2 tyrosine kinase receptor is encoded by HER2 
and is responsible for activating downstream PI3K-Akt and 
MAPK pathways. HER2 amplification is found in about 2% 
of patients with resistance to first-line osimertinib [41]. The 
anti-HER2 antibody-drug conjugated (ADC) trastuzumab-
emtansine (T-DM1) has shown efficacy in preclinical models 
and in patients harboring concurrent HER2 amplification 
and EGFR mutation after progressing on an EGFR TKI [51]. 
Further clinical studies are needed to optimize the role of 
HER2 inhibitors in overcoming osimertinib resistance in 
EGFR mutant NSCLC.

HER3 (ERBB3) is another receptor that is often overex-
pressed in EGFR mutant NSCLC, and it leads to cell growth 
and proliferation through dimerization with either EGFR or 
HER2 [52]. Patritumab deruxtecan is a novel HER3 directed 
ADC that is demonstrating favorable results in patients pre-
viously treated with an EGFR TKI, yielding an ORR of 
25% and a disease control rate of 70%. Interestingly, the 
performance of patritumab deruxtecan was not affected by 
the presence or absence of other oncogenic mutations, sug-
gesting that HER3 antagonism may serve as a therapeutic 
approach that is relatively agnostic to the mechanism of 
resistance (NCT03260491).

3.3 � PI3K Pathway Mutations

Activation of the PI3K pathway, either through PIK3CA 
mutation or PTEN deletion, is implicated in up to 5% of 
patients who develop resistance to first-generation EGFR 
TKIs and 5–12% of patients who develop resistance to osi-
mertinib [30]. Though PIK3CA mutations commonly co-
occur with other driver mutations in NSCLC and generally 
portend worse prognosis, evidence suggests that in EGFR 
mutant NSCLC, the presence of a concurrent PIK3CA muta-
tion has no significant impact on the clinical benefit from 
EGFR TKI monotherapy [53]. Targeted therapies against 

PIK3CA mutations have not demonstrated clinical benefit 
thus far.

3.4 � RAS‑MAPK Pathway Mutations

Mutations along the RAS-MAPK pathway have also been 
implicated in TKI resistance in patients with EGFR mutant 
NSCLC. In the FLAURA trial, variable mutations in NRAS 
and KRAS were found in 1% of patients who progressed on 
first-generation TKIs and 3% of patients who progressed 
on first-line osimertinib [41]. NRAS mutations include the 
E63K mutation, while KRAS mutations include the G12S, 
G13D, Q61R, and G12D mutations [44]. BRAFV600E 
mutations were found in 3% of patients who progressed on 
first- or second-line osimertinib [54, 55]. There has also 
been a reported case of MAPK1 mRNA overexpression in 
one patient who progressed on second-line osimertinib [56]. 
BRAF inhibitors or the vascular endothelial growth factor 
receptor (VEGFR)/MET/AXL inhibitor cabozantinib may 
confer efficacy against osimertinib resistance due to such 
mutations, but robust clinical trial data are lacking [54, 57]. 
Similarly, MEK inhibitors such as selumetinib may help 
overcome this resistance mechanism to osimertinib. Indeed, 
the combination of selumetinib and osimertinib overcame 
TKI resistance attributed to NRAS mutations both in vitro 
and in vivo, but further clinical evidence supporting these 
combination strategies with EGFR and MAPK active TKIs 
are needed [58].

3.5 � Cell‑Cycle–Related Gene Mutations

In the AURA3 and FLAURA trials, alteration of cell-
cycle–related genes was found in about 10% of patients 
who progressed on first-line osimertinib and 12% of patients 
who progressed on second-line osimertinib [40, 41]. The 
most common cell-cycle gene alterations are mutations or 
amplifications of genes encoding cyclin D1, D2, and E1, 
cyclin-dependent kinase (CDK) 4 and 6, and CDK inhibi-
tor 2A. Such mutations have been reported in other studies 
and are associated with poorer prognosis after progression 
on osimertinib [59]. There is currently one phase Ib/II trial 
utilizing lerociclib, a CDK4/6 inhibitor, in conjunction 
with osimertinib in patients with EGFR mutant NSCLC 
(NCT03455829).

3.6 � Oncogenic Fusions

Chromosomal rearrangements involving driver oncogenes, 
also known as oncogenic fusions, are rare events that have been 
identified in about 5% of patients who progress on first-line 
osimertinib [40]. These include FGFR3–TACC3, RET–ERC1, 
CCDC6–RET,  NTRK1–TPM3,  NCOA4–RET,  GOPC-
ROS1, AGK–BRAF, ESYT2–BRAF, and SPTBN1–ALK. [40, 
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44] In two patients with acquired resistance attributed to 
CCD6-RET fusion, the combination of osimertinib with the 
Ret inhibitor pralsetinib (BLU-667) was well-tolerated and 
led to rapid response in both patients [60]. The other fusions, 
while unusual, might be amenable to combination TKI ther-
apy as well.

3.7 � Histologic and Phenotypic Transformations

Histologic transformation from EGFR mutant NSCLC to 
small-cell lung cancer (SCLC) has been observed in up to 
14% of patients who progressed on first-generation TKIs 
and between 4% and 15% of patients who progressed on 
first- or second-line osimertinib [61–64]. At time of transfor-
mation, the founder EGFR mutation is generally preserved 
[62, 65]. While the mechanism of transformation is unclear, 
concurrent loss of function mutations in TP53 and RB1 are 
associated with a significantly increased risk of transforma-
tion [66–68]. Therefore, patients with EGFR mutant NSCLC 
and concurrent pretreatment alterations in TP53 or RB1 may 
warrant monitoring for transformation into SCLC [66]. 
Unlike gene mutations, the occurrence of histologic or phe-
notypic transformation is not apparent through plasma analy-
sis and therefore necessitates tissue biopsy. Unfortunately, 
there are no targeted therapies for such transformations, and 
treatment with standard PBC generally yields modest out-
comes with chemotherapy and little to no observed efficacy 
with immunotherapy [65]. The combination of osimertinib 
with carboplatin and etoposide is being studied in a phase 1 
study aiming to prevent transformation to SCLC in patients 
with EGFR mutant NSCLC and concurrent TP53 and RB1 
alterations (NCT03567642). Transformation to squamous 
cell cancer has been similarly noted in about 15% of patients 
who progress on first- or second-line osimertinib, and the 
EGFR mutation is generally preserved in this scenario as 
well [69–71]. Lastly, resistance to osimertinib has also been 
attributed to epithelial-to-mesenchymal transition (EMT) 
and over-expression of TWIST-1 (an EMT transcription 
factor) by NSCLC cells, leading to active investigation of 
TWIST-1 inhibitors in animal models [72, 73].

3.8 � Strategies to Prevent Resistance to Osimertinib

Simultaneously targeting EGFR as well as known bypass 
pathways may prevent EGFR-independent resistance. There 
are multiple clinical trials testing EGFR TKIs in combina-
tion with targeted inhibitors, and many more rational com-
binations, as described in the previous sections.

For commonly emerging mechanisms of resistance, mov-
ing the combination to the frontline may improve PFS. Since 

chemotherapy is a standard second-line approach now, there 
are trials combining chemotherapy in the first-line setting 
with EGFR TKIs. Concurrent use of chemotherapy with 
gefitinib versus gefitinib alone did not confer survival benefit 
in patients with untreated EGFR mutant NSCLC [74, 75]. 
However, for selected patients in the second-line setting, 
the combination of various chemotherapies with osimertinib 
appears to be tolerable and may better control CNS disease 
than chemotherapy alone [76]. Now, the same concept is 
being tested in the phase III FLAURA2 trial, comparing 
PBC plus osimertinib versus osimertinib alone in untreated 
EGFR mutant NSCLC (NCT04035486).

Increased vascular endothelial growth factor (VEGF) has 
been associated with EGFR TKI resistance in preclinical 
models [77], and some Japanese studies have shown that 
the combination of VEGF inhibitors with first-generation 
TKIs increase PFS [78, 79]. However, the combination of 
osimertinib with VEGF inhibitors has failed to prolong 
PFS or survival when compared to osimertinib alone [80]. 
The phase III EA5182 study is testing the combination of 
bevacizumab plus osimertinib with osimertinib alone in the 
frontline setting (NCT04181060).

Immune checkpoint inhibitors appear generally less 
effective in EGFR mutant NSCLC, without clear predictive 
biomarkers of response [81]. In pre-clinical studies, EGFR 
activation led to upregulated programmed death-ligand 1 
(PD-L1), but the combination of EGFR inhibitors and pro-
grammed cell death protein 1 (PD-1) inhibitors did not lead 
to synergistic effects [82]. Early combination trials of osi-
mertinib and durvalumab were halted due to high rates of 
immune-related adverse events, particularly pneumonitis, so 
only chemotherapy combinations are now being investigated 
[83]. Identifying effective combinations of targeted therapy 
and immunotherapy is an unmet need in treating EGFR 
mutant NSCLC, and the reduced efficacy of checkpoint 
inhibitors is likely from lower tumor immunogenicity, but 
may be augmented by future combination therapies [84]. In 
the IMpower130 trial, the addition of atezolizumab to PBC 
in the first-line setting conferred no benefit when compared 
to PBC alone [85]. Interestingly, in the IMpower150 trial, 
the addition of both atezolizumab and bevacizumab to PBC 
(ABCP regimen) demonstrated improved PFS and OS when 
compared to other arms, suggesting a synergistic efficacy of 
VEGF and immune checkpoint inhibitors [86].

Concurrent local radiotherapy with a third-generation 
EGFR inhibitor versus third-generation EGFR inhibitor 
alone has improved PFS and OS in patients with oligometa-
static disease in the first-line setting (NCT02893332). This 
suggests that radiotherapy, when appropriate, may prevent 
or delay the development of resistance mechanisms.
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4 � Intrinsic Resistance to EGFR TKIs

Each of the acquired mechanisms of resistance to EGFR 
TKIs described in this paper can also present as intrinsic 
mechanisms of resistance prior to any treatment. For exam-
ple, though T790M is considered an acquired mechanism 
of resistance to earlier generation TKIs, germline T790M 
mutations have been observed in 1% of NSCLC cases [87]. 
Though third-generation TKIs like osimertinib have made 
germline T790M mutations less clinically relevant, finding 
this mutation warrants a genetics evaluation and counseling 
for the patient and their family [88]. Another rare but well-
described mechanism of intrinsic resistance to third-gener-
ation EGFR TKIs is MET amplification [89]. Beyond these, 
there are other types of EGFR mutations that have been rela-
tively resistant to TKI therapy until recently.

4.1 � EGFR Exon 20 Insertion

A rare but important subset of EGFR mutant NSCLC 
with intrinsic resistance to third-generation TKIs is EGFR 
ex20ins NSCLC. EGFR ex20ins comprises about 4% of all 
EGFR mutant NSCLC and is associated with intrinsic resist-
ance to currently available EGFR TKIs and poorer outcomes 
for patients [90, 91]. EGFR proteins with ex20ins mutations 
have binding pockets that are inaccessible to existing EGFR 
TKIs [92]. Retrospective studies of first-generation EGFR 
TKIs in EGFR ex20ins NSCLC demonstrated ORR between 
8% and 27% and median PFS of less than 3 months [93]. 
Third-generation EGFR inhibitors, such as osimertinib, 
show only slightly better activity against EGFR ex20ins 
NSCLC, and most patients have a short duration of response 
[37]. Interestingly, a few variants of EGFR ex20ins NSCLC, 
such as A763_Y764insFQEA insertion, are significantly 
more responsive to existing EGFR TKIs [94].

Therefore, most EGFR ex20ins NSCLC patients are 
treated with PBC with or without antiangiogenic therapy or 
immunotherapy as first-line therapy, though some patients 
may be prescribed first-line osimertinib, with variable 
results. In clinical trials of EGFR inhibitors versus PBC 
in classical EGFR mutant NSCLC, PBC yields an ORR of 
about 30% and median PFS of about 5–6 months [1, 10, 
95]. Existing literature suggests that immunotherapy is rela-
tively ineffective against EGFR mutant NSCLC, whereas 
data on the utility of antiangiogenic therapy in EGFR 
mutant NSCLC are mixed [96, 97]. Retrospective studies 
have described the clinical course of EGFR ex20ins NSCLC 
treated with first-line PBC, finding ORR of 20–30% and 
PFS of 6–7 months, similar to the course of classical EGFR 
mutant NSCLC treated with first-line platinum-based chem-
otherapy [98–100].

Amivantamab, a novel bispecific antibody target-
ing EGFR and MET receptor, was recently approved 
for patients with locally advanced or metastatic EGFR 
ex20ins NSCLC after progression on or after platinum-
based chemotherapy [101]. This accelerated approval was 
based on results from the multicenter, multicohort, non-
randomized, open-label clinical trial CHRYSALIS. In the 
subset of 81 patients with EGFR ex20ins NSCLC who had 
progressed on platinum-based chemotherapy, the ORR was 
40% and the median duration of response was 11.1 months 
(NCT02609776).

TKIs targeting the ex20ins EGFR protein are also being 
tested against PBC in the first-line setting. Mobocertinib 
(TAK-788) is a novel TKI with higher affinity binding 
to the ex20ins mutant EGFR than other available TKIs. 
A phase II, open-label, cohort expansion demonstrated 
that mobocertinib leads to an ORR of 28% with a median 
duration of response of 17.5 months, leading to the recent 
Food and Drug Administration (FDA) approval of this 
agent (NCT02716116). Other TKIs are in clinical develop-
ment as well, such as poziotinib, DZD9008, and CLN-081 
(NCT03318939, NCT03974022, and NCT04036682)

While currently the EGFR ex20ins agents are approved in 
the second-line setting, both have ORR similar to what we 
observe with platinum-based chemotherapy in the first-line 
setting. In the EXCLAIM-2 study, mobocertinib is being 
tested against PBC in the frontline setting (NCT04129502). 
A phase III study of combination amivantamab and carbo-
platin-pemetrexed therapy compared with carboplatin-pem-
etrexed therapy in advanced EGFR ex20ins NSCLC is also 
currently underway (NCT04538664).

5 � Future Directions

Upon the development of resistance to third-generation 
TKIs, most EGFR mutant NSCLC is treated with stand-
ard PBC. However, as targeted therapies against specific 
resistance mechanisms are developed, there will likely be a 
myriad of agents and their combinations that may be used 
to overcome resistance, as summarized in Fig. 2. Notably, 
the phase II ORCHARD trial follows a biomarker-driven 
approach to assigning targeted therapies to be given simul-
taneously with osimertinib when specific resistance mecha-
nisms arise (e.g., add savolitinib for MET alteration, add 
gefitinib for C797X mutation) [102].

To facilitate a biomarker-driven approach, we anticipate 
widespread utilization of liquid biopsy as a complement to 
repeat tissue biopsy or empiric PBC. Monitoring ctDNA, 
released from tumor cells into the bloodstream, is a non-
invasive and feasible method of detecting tumor alterations 
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pertinent to NSCLC [103]. Compared with tissue biopsy, 
monitoring ctDNA for EGFR mutations has a 67% sensi-
tivity and 94% specificity [104]. Polymerase chain reaction 
(PCR)-based and NGS-based analysis of ctDNA has high 
specificity, but lower sensitivity due to lack of tumor shed-
ding in up to 20% of patients with NSCLC [105]. The other 
limitations of NGS-based analysis are reduced sensitivity 
in detecting gene amplifications, which is ideally assessed 
through fluorescence in situ hybridization (FISH), and ina-
bility to detect histologic transformation, which requires 
tissue biopsy. Despite these limitations, NGS-based liquid 
biopsy is clinically useful and relatively feasible for not only 
detecting initial driver mutations, but also predicting recur-
rence and identifying genetic modifiers of resistance [106]. 
One study profiling ctDNA in patients with stage I–III lung 
cancer found that post-treatment ctDNA reliably identified 
minimal residual disease and preceded radiographic recur-
rence by a median of 5.2 months, suggesting that ctDNA 

profiling may allow for personalized adjuvant therapy while 
disease burden is at its lowest [107]. Importantly, NGS-
based biopsy for patients with NSCLC appears to be more 
time efficient for personnel and more cost-effective for 
patients [108]. Standardization of NGS-based liquid biopsy 
in monitoring for resistance in NSCLC is likely to become 
more standard in the future as costs continue to drop.

Ultimately, further molecular profiling, active sur-
veillance of resistance mechanisms, and development of 
targeted therapeutics will continue to transform the land-
scape of EGFR mutant NSCLC. Concurrent investigation 
of immune checkpoint inhibitor, antiangiogenic therapy, 
and radiation therapy will likely augment the efficacy of 
targeted treatment regimens and move toward the goal of 
personalized, gene-directed therapy in most patients with 
NSCLC.

Fig. 2   Overview of oncogenic pathways and examples of targeted 
inhibitors to overcome resistance to treatment in EGFR mutant 
NSCLC. CDK cyclin-dependent kinase, EGFR epidermal growth 

factor receptor, MAPK mitogen-activated protein kinase, MET mes-
enchymal epithelial transition factor, NSCLC non-small-cell lung can-
cer, PI3K phosphoinositide 3-kinase
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