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Abstract In the last decade, the systemic treatment

approach for patients with early breast cancer has partly

shifted from adjuvant treatment to neoadjuvant treatment.

Systemic treatment administration started as a ‘one size fits

all’ approach but is currently customized according to each

breast cancer subtype. Systemic treatment in a neoadjuvant

setting is at least as effective as in an adjuvant setting and

has several additional advantages. First, it enables response

monitoring and provides prognostic information; second, it

downstages the tumor, allowing for less extensive surgery,

improved cosmetic outcomes, and reduced postoperative

complications such as lymphedema; and third, it enables

early development of new treatment strategies by using

pathological complete remission as a surrogate outcome of

event-free and overall survival. In this review we give an

overview of the current standard of neoadjuvant systemic

treatment strategies for the three main subtypes of breast

cancer: hormone receptor-positive, triple-negative, and

human epidermal growth factor receptor 2-positive. Addi-

tionally, we summarize drugs that are under investigation

for use in the neoadjuvant setting.

Key Points

Neoadjuvant treatment is increasingly preferred over

adjuvant treatment in patients with early breast

cancer.

The best neoadjuvant regimens differ between breast

cancer subtypes.

Drugs under investigation in the neoadjuvant setting

include cyclin D-cyclin-dependent kinase (CDK) 4/6

inhibitors, mammalian target of rapamycin (mTOR)

inhibitors, phosphoinositide 3-kinase (PI3K)

inhibitors, poly(ADP-ribose) polymerase (PARP)

inhibitors, immune checkpoint inhibitors, vascular

endothelial growth factor receptor (VEGF)

inhibitors, antibody drug conjugates, and various

new combined treatment approaches.

1 Introduction

Breast cancer is the most common cancer among women

worldwide. An estimated 2.4 million women were diag-

nosed with breast cancer in 2015 and 523,000 patients died

of the disease [1]. Breast cancer can be divided into three

main subtypes based on expression of the estrogen receptor

(ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2), with differences in

prognosis, treatment options, and responses [2]. The hor-

mone receptor-positive subtype expresses ER, PR, or both

receptors, and has no HER2 overexpression or amplifica-

tion (i.e. HER2-negative). The HER2-positive subtype

shows overexpression or amplification of HER2 with or

& Gabe S. Sonke

g.sonke@nki.nl

1 Department of Medical Oncology, Netherlands Cancer

Institute, Plesmanlaan 121, 1066CX Amsterdam, The

Netherlands

Drugs (2017) 77:1313–1336

DOI 10.1007/s40265-017-0774-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s40265-017-0774-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40265-017-0774-5&amp;domain=pdf


without co-expression of ER and/or PR. Triple-negative

breast cancer (TNBC) refers to the absence of ER and PR

expression, and HER2 overexpression (or HER2 amplifi-

cation) in tumor cells.

The variety in these phenotypic subtypes is a reflection

of variation in gene expression. Perou and colleagues

defined at least five different molecular subtypes that are

clinically relevant: luminal A, luminal B, HER2-enriched,

basal-like, and normal breast-like [3–5]. For the purpose of

this review, we focus on the three major histological sub-

types mentioned earlier.

The main aim of systemic treatment in addition to local

treatment is to eradicate micrometastases in order to

maximize the chance of cure. Systemic treatment may

include chemotherapy, endocrine therapy, and targeted

therapy, and is either administered before surgery (neoad-

juvant) or after surgery (adjuvant). Neoadjuvant

chemotherapy is at least as effective as adjuvant

chemotherapy, but the neoadjuvant approach has several

additional advantages [6, 7]. First, it enables response

monitoring with the opportunity to stop ineffective treat-

ment and switch to a non-cross-resistant regimen [8–13].

Second, it enables downstaging of the tumor and involved

lymph nodes and allows more conservative surgery of the

breast and axilla [14, 15]. Additionally, it creates time to

await results of genetic tests and decide on type of surgery,

including preventive and reconstruction surgery. Third, it

facilitates research in identifying radiological, histological,

and molecular predictors for response [16, 17]. In addition,

the neoadjuvant approach expedites the evaluation of new

treatment strategies by using early surrogate endpoints.

Pathological complete response (pCR) is most widely used

as a surrogate endpoint and correlates with recurrence-free

survival (RFS) and overall survival (OS) [12, 18–21]. The

preferred and most commonly used definition of pCR is

absence of residual invasive tumor cells in the breast and

lymph nodes; we refer to this definition in this review

unless stated otherwise. The association between pCR and

long-term outcome varies across subtypes and remains

subject to some debate [19–21]. The US Food and Drug

Administration (FDA) and the European Medicines

Agency (EMA) recognize pCR as a valid endpoint of

neoadjuvant trials and as the basis for accelerated drug

approval, although full approval still requires a demon-

strated benefit in long-term outcome [18, 22]. Other sur-

rogate endpoints such as the residual cancer burden (RCB)

score need further evaluation and validation per subtype

[23].

The recommendation for systemic treatment is based on

tumor characteristics, extent of breast cancer, and patient

characteristics. The current European Society for Medical

Oncology (ESMO) [24], National Comprehensive Cancer

Network (NCCN) [25], and St. Gallen [26] guidelines

advise endocrine therapy for all patients with hormone

receptor-positive tumors. In addition, chemotherapy is

recommended for hormone receptor-positive, HER2-neg-

ative tumors larger than 5 cm, or when more than three

lymph nodes are involved. For patients with hormone

receptor-positive breast cancer, chemotherapy may be

withheld based on a low clinical risk or low genomic risk

profile [24–28]. Nearly all patients with TNBC should be

treated with chemotherapy. In addition, for almost all

HER2-positive breast cancers, chemotherapy in combina-

tion with HER2-directed treatment is recommended

[24–26, 29].

If systemic treatment is recommended, this can be

administered either in the adjuvant or neoadjuvant setting.

Neoadjuvant treatment is preferred over adjuvant therapy

in cases of locally advanced, inoperable breast cancer, or if

breast-conserving surgery (BCS) is desired but is not yet

possible. Primary surgery is advised if uncertainty exists

about the extent of the breast cancer, which potentially has

implications for the systemic treatment [16, 25].

In this review, we discuss established neoadjuvant

strategies in hormone receptor-positive, triple-negative,

and HER2-positive breast cancer. Additionally, we provide

an overview of recently approved and investigational drugs

for breast cancer treatment and discuss whether these

strategies are likely to have a future place in the neoadju-

vant management of breast cancer.

2 Hormone Receptor-Positive Breast Cancer

Approximately 70% of breast cancers are hormone recep-

tor-positive [30, 31]. Most tumors with[50% ER expres-

sion and a low proliferation index respond well to

endocrine therapy [32–35]. We describe currently applied

neoadjuvant treatment regimens (summarized in Table 1)

and promising strategies with new drugs.

2.1 Chemotherapy

The chemotherapy regimens to be used in the neoadjuvant

setting are the same as those used in the adjuvant setting

[24, 25]. A chemotherapy regimen containing an anthra-

cycline, cyclophosphamide, and a taxane is mostly rec-

ommended in the neoadjuvant setting. A meta-analysis of

the Early Breast Cancer Trialists’ Collaborative Group

(EBCTCG) in 44,000 patients showed that the addition of a

taxane to a fixed anthracycline-based regimen improves

breast cancer-specific survival (BCSS), with a hazard ratio

(HR) of 0.86 [standard error (SE) 0.04, p = 0.0005].

However, when anthracycline dose in the non-taxane

control arm was also increased, no added effect of taxanes

was seen (HR 0.94, SE 0.06, p = 0.1) [36]. Taxanes are
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equally effective if administered concurrently or sequen-

tially with anthracyclines, although concurrent regimens

such as docetaxel/doxorubicin/cyclophosphamide (TAC)

show increased toxicity and require prophylactic adminis-

tration of granulocyte colony-stimulating factor [37–39].

The choice between various anthracycline/taxane regimens

is therefore mainly a matter of toxicity and duration (see

Table 1). Within the sequential regimens, weekly pacli-

taxel improves disease-free survival (DFS) and OS com-

pared with 3-weekly paclitaxel. Three-weekly docetaxel

also improves DFS compared with 3-weekly paclitaxel, but

not OS [38, 40].

More frequent administration of cytotoxic therapy

(dose-dense) is a more effective way of minimizing

residual tumor burden than dose-escalation [41]. In a meta-

analysis of ten randomized controlled trials (RCTs), dose-

dense-administered chemotherapy improved OS by 16%

[HR 0.84, 95% confidence interval (CI) 0.72–0.98,

p = 0.03] and DFS by 17% (HR 0.83, 95% CI 0.73–0.94,

p = 0.005) [42]. In the few trials that were designed to

analyze the pure effect of dose-dense compared with

standard-dose chemotherapy, the benefit on both OS and

DFS was largest for hormone receptor-negative tumors

[39, 42–45]. A recent pooled analysis of two Italian trials

showed a larger benefit of the dose-dense regimen for

premenopausal women [46].

Patients unfit for anthracyclines (e.g. due to cardiac

symptoms) may benefit from four cycles of docetaxel/cy-

clophosphamide (TC) every 3 weeks. This regimen

improved OS compared with four cycles of adri-

amycin/cyclophosphamide (AC) after a median follow-up

of 7 years (HR 0.69, 95% CI 0.50–0.97, p = 0.032) [47]. A

joint analysis of the three ABC trials comparing six cycles

of TC with six cycles of TAC in HER2-negative breast

cancer patients after a median follow-up time of 3.3 years

was unable to demonstrate non-inferiority for the non-an-

thracycline regimen (HR 1.23, 95% CI 1.01–1.50,

p = 0.04). To determine the effect on survival, longer

follow-up is needed [48].

2.2 Endocrine Therapy

2.2.1 Premenopausal Patients

Neoadjuvant endocrine therapy for premenopausal women

is largely unstudied [34]. In the only neoadjuvant study

performed, more patients had a clinical response with

anastrozole plus ovarian function suppression (OFS) than

in the tamoxifen group (70 vs. 51%, respectively; estimated

difference between groups 20%, 95% CI 7–33%,

p = 0.004) [49]. Whether this is partly due to the longer

time required to achieve steady-state drug concentrations

for tamoxifen (±2 months) than for an aromatase inhibitor

[(AI); ±2 weeks] is unknown. Longer duration of treatment

(24 weeks) showed a higher response rate than shorter

duration (16 weeks) in both groups, but the optimal dura-

tion of endocrine therapy has yet to be determined [49].

OFS is required for premenopausal patients treated with

an AI as an AI does not suppress gonadal estrogen pro-

duction. OFS added to adjuvant tamoxifen in pre-

menopausal women showed non-significant improvement

in both DFS and OS in a combined analysis of two

Table 1 Established neoadjuvant treatment regimens per subtype

ER?/PR? low riska Endocrine therapy Premenopausal: tamoxifen or aromatase inhibitor ? LHRH agonist

Postmenopausal: aromatase inhibitor

ER?/PR? high riskb Chemotherapy 49 ddAC ? 129 P weekly, or 49 T 3-weekly

69 TAC 3-weekly

69 FEC ? 49 T 3-weekly

Anthracycline free: 49 TC

HER2? Chemotherapy ? anti-HER2c Anthracycline free: 6–99 taxaned ? Cb ? Tzt ? Ptz

69 T (3-weekly) ? Cb ? Tzt ? Ptz

Anthracycline containing: (F)EC ? Tzt ? Ptz ? taxaned ? Tzt ? Ptz

Triple-negative Chemotherapy 49 ddAC ? 129 P weekly (?49 Cb)

69 TAC

BCSS breast cancer-specific survival, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, LHRH

luteinizing hormone-releasing hormone, dd dose-dense (2-weekly), A adriamycin, C cyclophosphamide, P paclitaxel, T docetaxel, Cb carbo-

platin, Tzt trastuzumab, Ptz pertuzumab, F 5-Fluorouracil, E epirubicin
a Low risk is considered a predicted 10-year BCSS without systemic treatment[88% for hormone receptor-positive breast cancer
b High risk is considered a predicted 10-year BCSS without systemic treatment B88% for hormone receptor-positive breast cancer
c In cases of T1 and N0, paclitaxel plus trastuzumab can be considered
d Either weekly paclitaxel or 3-weekly docetaxel
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randomized trials (SOFT [50] and ECOG-3193 [51]) [52].

In a combined analysis of the adjuvant SOFT [50], TEXT

[53], and ABCSG-12 [54] trials, numerically better DFS

was seen in the AI plus OFS group compared with the

tamoxifen plus OFS group, but was not statistically sig-

nificant (HR 0.89, 95% CI 0.57–1.39). OS was numeri-

cally, but not statistically significant, worse in the AI plus

OFS group (HR 1.31, 95% CI 0.93–1.84) [52]. In general,

the addition of OFS results in more pronounced endocrine

side effects (such as hot flushes and sweats), which are

more frequently reported in patients using tamoxifen plus

OFS compared with those using an AI plus OFS. In both

groups, the side effects improved over time but did not

reach baseline. Persistent vaginal dryness, sexual issues,

and short-term bone or joint pain are more often reported

for an AI plus OFS. No difference in quality of life was

reported between the two groups [55].

Based on higher response rates with the addition of OFS

to endocrine therapy in the metastatic setting, OFS may

improve pCR rates when added to neoadjuvant endocrine

therapy. In concordance with the updated American Soci-

ety of Clinical Oncology (ASCO) guideline, the choice for

an AI versus tamoxifen in both the adjuvant and neoadju-

vant setting should be based on adverse events (AEs) [56].

2.2.2 Postmenopausal Patients

For postmenopausal women, an AI is preferred over tamox-

ifen. A subset-analysis within a larger meta-analysis com-

prising seven prospective RCTs and approximately 1400

patients demonstrated a highly statistically significant benefit

favoring an AI over tamoxifen for the clinical response rate

[CRR; odds ratio (OR) 1.69, 95% CI 1.36–2.10, p\ 0.001],

radiological response rate (OR 1.49, 95% CI 1.18–1.89,

p\ 0.001), and BCS rate (OR 1.62, 95% CI 1.24–2.12,

p\ 0.001) [34]. Several trials compared 3–4 months of

treatment with an AI with treatment duration up to 8–12

months. In these trials, longer treatment increased pCR and

BCS rates [57–60]. One study reported 7.5 months of treat-

ment with an AI as optimal duration to achieve maximum

tumor reduction sufficient for BCS [61]. Taken together, for

postmenopausal women who will be treated with neoadjuvant

endocrine therapy, an AI is recommended and longer treat-

ment duration showed higher pCR and BCS rates.

2.3 Overcoming Endocrine Resistance

De novo resistance to endocrine therapy occurs in a small

group of patients with hormone receptor-positive early

breast cancer (EBC). Additionally, approximately one-third

of patients eventually relapse and are considered to be

resistant to endocrine therapy [62–66]. For these patients,

alternative endocrine strategies are crucial. Several

mechanisms are described to play a role in endocrine

resistance, including dysregulation of the cyclin D-cyclin-

dependent kinase (CDK) 4/6-INK4-retinoblastoma (Rb)

pathway and activation of the mammalian target of rapa-

mycin/protein kinase B/phosphoinositide 3-kinase (mTOR/

Akt/PI3K) pathway (Fig. 1) [66–70]. Below we describe

promising strategies targeting these pathways and their

potential role in the neoadjuvant setting.

2.3.1 Cyclin D-Cyclin-Dependent Kinase (CDK) 4/6

Inhibitors

When intact, CDK4/6 functions as an important switch in

the progression from G1 to S-phase via the cyclin-D-

CDK4/6-INK-Rb-pathway (Fig. 1) [71]. However, in many

cancers this pathway is disrupted through mutations or

amplifications of CDK4/6, which in turn promotes cell

proliferation and resistance to endocrine therapy [34, 72].

Targeting CDK4/6 with selective inhibitors (palbociclib or

ribociclib) combined with endocrine treatment in first- and

second-line treatment improves progression-free survival

(PFS) in patients with hormone receptor-positive meta-

static breast cancer (MBC); median PFS for ribociclib and

letrozole was not reached (95% CI 19.3–not reached) in the

Monaleesa-2 trial and was 24.8 months (95% CI 22.1–not

reached) in the Paloma-2 trial [73–75]. Subgroup analyses

of the Paloma-2 and Monaleesa-2 trials showed that the

benefit of CDK4/6 inhibition (with palbociclib and ribo-

ciclib, respectively) was also seen in patients with de novo

MBC [73]. The objective response rate (ORR; complete

response ? partial response) for ribociclib and letrozole

was 47% (38–57%), compared with 34% (25–42%) with-

out ribociclib [76].

Most common AEs for palbociclib and ribociclib

include neutropenia, which resolves more rapidly than

neutropenia caused by cytological agents, and results less

often in febrile neutropenia and non-hematological AEs

such as nausea, fatigue, diarrhea, and asthenia [77, 78]. The

third developed CDK inhibitor, abemaciclib, is more

selective in targeting CDK6 and has a slightly distinct

toxicity profile than the other CDK4/6 inhibitors. It is less

myelotoxic but induces more gastrointestinal-related AEs.

Results from the combination of abemaciclib and letrozole

or anastrozole for locally recurrent breast cancer or MBC

in the phase III Monarch-3 (NCT02246621) study are still

awaited. At this moment, palbociclib in combination with

letrozole or fulvestrant [77] is approved by the FDA and

EMA for treatment of women with hormone receptor-

positive/HER2-negative MBC. Ribociclib in combination

with an AI is also approved by the FDA and is currently

under review by the EMA [74].

Given the benefit of CDK4/6 inhibition in patients with

MBC, implementation in the neoadjuvant setting seems a
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promising approach. All three CDK4/6 inhibitors are cur-

rently evaluated in the neoadjuvant setting. In the Neo-

Monarch trial (NCT02441946), postmenopausal patients

with hormone receptor-positive/HER2-negative breast

cancer were randomized between anastrozole, abemaciclib,

or the combination for 2 weeks, followed by 14 weeks

combination treatment in all patients. Abemaciclib alone

and in combination with anastrozole significantly

Fig. 1 Schematic overview of drug class targets in breast cancer.

GFRs growth factor receptors, IGF1R insulin-like growth factor 1

receptor, EGFR epidermal growth factor receptor, HER2 human

epidermal growth factor receptor 2, HER3 human epidermal growth

factor receptor 3, SOS Son of Sevenless, SHC SHC adaptor protein,

GRB2 growth factor receptor-bound protein 2, P phosphorylation, ER

estrogen receptor, IRS1 insulin receptor substrate 1, PI3K phospho-

inositide 3-kinase, p85 regulatory subunit of PI3K, p110 catalytic

subunit of PI3K, RAS-GDP rat sarcoma guanosine diphosphate, RAS-

GTP rat sarcoma guanosine triphosphate, RAF rapidly accelerated

fibrosarcoma, MEK MAPK/ERK kinase, MAPK mitogen-activated

protein kinase, mTORC2 mechanistic target of rapamycin complex 2,

AKT protein kinase B, RHEB RAS homolog enriched in brain,

mTORC1 mechanistic target of rapamycin complex 1, S6K ribosomal

S6 kinase, ERE estrogen receptor response element, CoA coactivators,

CDK4 cyclin-dependent kinase-4, RB retinoblastoma protein, E2F E2

factor family of transcription factors, MDM2 mouse double minute 2

homolog, LHRH luteinizing hormone-releasing hormone. 1 Antibod-

ies against HER2 (trastuzumab, pertuzumab), against HER3 (e.g.

patritumab, seribantumab), and antibody-drug conjugates (e.g.

T-DM1, SYD985). 2 Therapy that reduces systemic estrogen levels,

including aromatase inhibitors (e.g. letrozole, anastrozole, exemes-

tane) and ovarian function suppression (e.g. LHRH agonists,

oophorectomy). 3 Drugs targeting the estrogen receptor (e.g. tamox-

ifen, fulvestrant). 4 Tyrosine kinase inhibitors (e.g. lapatinib,

neratinib, afatinib). 5 PI3K inhibitors (e.g. buparlisib, pictilisib,

alpelisib, taselisib). 6 Akt inhibitors (e.g. MK-2206). 7 mTOR

inhibitors (e.g. everolimus, temsirolimus). 8 CDK4/6 inhibitors (e.g.

palbociclib, ribociclib, abemaciclib). Adapted with permission from

Macmillan Publishers Ltd. [273]. Copyright (2015)
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decreased Ki-67 levels after 2 weeks of treatment com-

pared with anastrozole alone. Therewith, the study met its

primary endpoint [79]. Results from a neoadjuvant single-

arm, phase II study (n = 50) showed that palbociclib added

to anastrozole completely arrested cell cycle in 87% of the

patients with stage II–III breast cancer after 15 days of

treatment compared with 26% of patients in the first cycle

with anastrozole alone, regardless of PIK3CA, PTEN or

TP53 mutation status. However, Ki67 levels at surgery

after a median washout period of 29 days were lower than

after 15 days of treatment within the same patients. This

was not observed for patients (n = 8) who continued with

palbociclib until surgery. None of the patients achieved

pCR [80]. Results from other trials evaluating the efficacy,

optimal duration of treatment, and predictive biomarkers

for the combination of a CDK4/6 inhibitor and endocrine

treatment in the neoadjuvant setting are eagerly anticipated

[examples include NCT01723774, NCT02296801 (Pallet),

NCT02712723 (Feline), and NCT02520063].

2.3.2 Phosphoinositide 3-Kinase/Protein Kinase

B/Mammalian Target of Rapamycin (PI3K/Akt/

mTOR) Inhibitors

The most intensively studied inhibitors of the PI3K/Akt/

mTOR pathway are inhibitors of the mTOR. They inhibit

tumor growth and restore sensitivity to endocrine treatment

in tumors with upregulated Akt signaling [81, 82]. Ever-

olimus, the first approved mTOR inhibitor, in combination

with exemestane, substantially improved DFS (HR 0.36,

95% CI 0.27–0.47, p\ 0.001) in postmenopausal patients

with hormone receptor-positive/HER2-negative MBC who

progressed on treatment with an AI [82]. However, the

improvement in DFS with everolimus plus exemestane in a

similar group of patients in the BOLERO-2 trial did not

translate into a significantly improved OS (HR 0.89, 95%

CI 0.73–1.10, p = 0.14) [83, 84]. Everolimus combined

with tamoxifen resulted in a similar improvement in DFS

in AI-resistant MBC patients (HR 0.54, 95% CI 0.36–0.81,

p = 0.0021) and improvement in OS after a median follow-

up of 24 months (HR 0.45, 95% CI 0.24–0.81, p = 0.007).

Exploratory subgroup analysis showed a larger benefit in

patients with acquired endocrine resistance compared with

primary resistance [85]. Side effects of mTOR inhibitors

include stomatitis, rash, hyperglycemia, diarrhea, nausea,

and anorexia, and are usually mild to moderate, but can be

life-threatening in cases of non-infectious pneumonitis

[82, 84, 86–89].

A trial with temsirolimus combined with letrozole in

patients with AI-naive MBC was prematurely stopped as

no improvement in DFS was seen at the second interim

analysis [89]. Several reasons may explain the disap-

pointing results, including the high number of HER2-

positive tumors (23% and an additional 36% of tumors

with unknown HER2 status in the temsirolimus arm),

selection of AI-naive patients, and the intermittent sched-

ule of temsirolimus. Perhaps dual mTOR1/mTOR2 inhi-

bitors can overcome incomplete inhibition seen with

mTOR inhibitors. Phase I/II trials with dual mTOR1/

mTOR2 inhibitors [Sapanisertib (Tak228): NCT02619669,

NCT02988986; and AZD2014: NCT01597388,

NCT02216786] are still ongoing [90].

Everolimus combined with letrozole as neoadjuvant

treatment for postmenopausal women improved the response

rate measured by ultrasound (58 vs. 47%, p = 0.035) com-

pared with letrozole plus placebo. However, only two

patients had a pCR compared with one in the placebo group

[86]. Long-term efficacy results are still awaited. The small

benefit with the addition of everolimus came along with

more grade 3–4 AEs (23 vs. 4%), and subsequent dose

reductions were necessary in 53% of patients treated with the

combination compared with 8% in the placebo group.

The PI3K/Akt/mTOR pathway may also be targeted

more upstream. A diverse set of PI3K inhibitors is explored

in early-phase clinical trials, including pan-class I PI3K

inhibitors (buparlisib, pictilisib) and selective PI3Ka inhi-

bitors (alpelisib, taselisib). In the two BELLE trials,

buparlisib in combination with fulvestrant improved PFS

modestly in postmenopausal women with MBC who pro-

gressed on endocrine treatment [91, 92]. The small benefit

with PI3K inhibitors observed in the above-mentioned

trials suggests a biological response in a subset of patients.

In both trials, patients with a PIK3CA-mutation derived the

most benefit [92]. Nevertheless, a validated biomarker to

select patients for these inhibitors is still lacking [67, 93].

Noteworthy, treatment with buparlisib induced serious

AEs, including transaminitis, hyperglycemia, rash, mood

disorders, and suicidal attempts [86, 91, 92]. Toxicity

profiles of the PI3Ka inhibitors seem to be much more

favorable [94, 95]. First results of studies that directly

compare pan-PI3K inhibitors with PI3Ka inhibitors (both

in combination with letrozole) (NCT01923168) and large

phase III studies with a PI3Ka inhibitor [e.g.

NCT02340221 (Sandpiper)] are eagerly awaited.

Lastly, the mTOR/PI3K/Akt pathway may be targeted

via Akt inhibitors. Akt kinase activity is increased in up to

55% of breast cancers [96] and is associated with worse

outcome in ER-positive breast cancer [97]. One potent Akt

inhibitor is MK-2206, which, combined with anastrozole or

fulvestrant, resulted in a clinical benefit rate (CBR) of 37%

(including two patients with partial response and nine with

stable disease for[6 months) in a phase I study for patients

with ER-positive MBC [93]. A neoadjuvant trial with the

same Akt inhibitor is now ongoing (NCT01776008).

Taken together, the modest benefit seen in endocrine

treatment-naive patients, lack of data on survival, serious
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AEs, and lack of good biomarkers currently limit the role

of mTOR/PI3K/Akt pathway inhibitors in the neoadjuvant

setting. Studies to further explore the mechanism of action

and biomarkers for mTOR/PI3K/Akt pathway inhibitors

and the most optimal combinational approach, including

triple combinations with endocrine therapy (tamoxifen or

an AI), an mTOR/PI3K/Akt pathway inhibitor, and a

CDK4/6 inhibitor in the neoadjuvant setting, are ongoing

(e.g. NCT02520063).

2.4 Bisphosphonates

Bisphosphonates are established drugs for the prevention of

skeletal-related events in MBC. In the last decade, interest

has grown in their antitumor effects. In a meta-analysis of

26 trials, including the AZURE trial [98, 99], zoledronic

acid added to standard adjuvant treatment improved the

risk of distant recurrence, bone recurrence, and breast

cancer mortality in postmenopausal women [100]. As bis-

phosphonates have no effect on pCR rates [101–104], their

role as adjunct to neoadjuvant treatment seems limited.

3 Triple-Negative Breast Cancer

The triple-negative subtype accounts for 15% of breast

cancers [105, 106]. This subtype is associated with a higher

risk of recurrence and breast-cancer-related death than other

subtypes in the first years after diagnosis. After 5–7 years,

very few recurrences are seen [107–110]. Patients who

develop TNBC at a young age (\50 years) or who have a

family history of breast and/or ovarian cancer have a higher

risk of harboring deleterious BRCA1 or BRCA2 germline

mutations, with incidences ranging from 12 to 29% for

BRCA1 and 9 to 17% for BRCA2 [111–113]. In TNBC

patients unselected for BRCA1/2 mutation risk, the preva-

lence is 11–16% for BRCA1 mutations and 4% for BRCA2

mutations [114, 115]. Besides a mutation in the BRCA1/

BRCA2 gene, hypermethylation of the BRCA1 promotor, or

hypermethylation of the Fanconi anemia gene FANCF,

results in a BRCA-like phenotype [116, 117]. Approxi-

mately 50% of the triple-negative tumors in young women

are BRCA-like [118, 119], and incidence declines with age

[118]. BRCA-mutated and BRCA-like tumors share

homologous recombination deficiency (HRD), which makes

them more sensitive to DNA double-strand break (DSB)-

inducing agents, such as anthracyclines, cyclophosphamide,

and platinum salts. However, tumors can adapt during

treatment and regain their ability to repair DNA DSBs. HRD

can be determined with various genomic tests, which par-

tially, but not completely, overlap [118, 120–125].

TNBC has a significantly higher percentage of tumor-

infiltrating lymphocytes (TILs), higher expression of

programmed death-ligand 1 (PD-L1) [126–131], and

higher mutational load compared with other breast cancer

subtypes [69, 132]. These findings provide a basis for

studying immunotherapy approaches in TNBC. Neverthe-

less, the mainstay treatment for TNBC is chemotherapy,

while many efforts are made to optimize chemotherapeutic

regimens, targeted strategies, and immune checkpoint

blockade for this aggressive breast cancer subtype. Current

standard treatment and promising new drugs are discussed

below.

3.1 Chemotherapy

Similar to what we described under the chemotherapy

section for hormone receptor-positive breast cancer, the

preferred chemotherapy regimen in TNBC is dose-dense

anthracyclines plus cyclophosphamide followed by a tax-

ane (Table 1) [42–44]. In TNBC, the addition of carbo-

platin to 12-times-weekly paclitaxel increased pCR from

41 to 54% (OR 1.71, one-sided p = 0.003). This beneficial

effect translated into improved BCS rates [133]. Although

underpowered, the addition of carboplatin did not result in

a survival benefit after a median follow-up of 39 months. A

significantly improved 3-year event-free survival [(EFS);

HR 0.30, 95% CI 0.19–0.45] and 3-year OS (HR 0.20, 95%

CI 0.11–0.36) was observed for patients who achieved pCR

compared with patients who did not [134]. In the Gepar-

Sixto trial, the addition of carboplatin to doxorubicin,

paclitaxel and bevacizumab in patients with stage II–III

breast cancer increased the pCR rate to 53%, compared to

37% without carboplatin (OR 1.94, 95% CI 1.24–3.04,

p = 0.005) [135]. The GeparSixto trial has not yet pub-

lished OS data on the effect of carboplatin; however, pCR

is strongly associated with OS in TNBC and this argument

is often used to add carboplatin to neoadjuvant treatment in

TNBC [21]. The addition of carboplatin comes at a cost of

increased grade 3–4 neutropenia, thrombocytopenia, ane-

mia, and diarrhea [133, 135]. Several studies evaluating the

addition of carboplatin to neoadjuvant chemotherapy in

TNBC are ongoing, including one specifically for tumors

harboring HRD (NCT01042379).

Patients with a tumor harboring HRD may benefit more

from intensified alkylating chemotherapy supported by

autologous peripheral stem cell transplantation (PSCT)

than from standard chemotherapy. A meta-analysis

including 15 RCTs and 6211 breast cancer patients (in-

cluding 379 TNBC patients) showed the greatest reduction

in risk of death (33%) compared with other subtypes [136];

however, the included trials have limitations. Among the

most important, patients in the control arms of 5 of the 15

trials received a higher cumulative chemotherapy dose than

patients in the ‘intensified’ arms. In a retrospective analysis

of one of the studies, a significant benefit for intensified
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chemotherapy was seen among patients with HRD (ad-

justed HR 0.19, 95% CI 0.08–0.48, p = 0.001) [120]. Other

studies confirmed this striking observation [137, 138]. The

predictive value of HRD for intensified chemotherapy

benefit is now being prospectively tested in two RCTs

(NCT01057069 and NCT02810743) [139]. While awaiting

the results of these trials, intensified chemotherapy should

not be used outside the context of a clinical trial.

Based on the beneficial effect and acceptable safety

profile of capecitabine in MBC, interest has grown in using

capecitabine in both the neoadjuvant and adjuvant setting

[140]. In a recent meta-analysis of seven trials in the

adjuvant and neoadjuvant setting, the addition of capeci-

tabine to a anthracycline/taxane chemotherapy regimen

improved DFS in patients with TNBC (HR 0.73, 95% CI

0.59–0.91, p = 0.005) and in patients with three or more

positive axillary lymph nodes regardless of subtype (HR

0.74, 95% CI 0.59–0.94, p = 0.012) [141]. However, an

OS benefit for TNBC with neoadjuvant or adjuvant cape-

citabine has only been reported in two trials—the FinXX

and Create-X trials [142–144]. Preliminary results of the

FinXX trial showed significantly improved OS in 202

patients with TNBC after a median follow-up of 10 years

(HR 0.55, 95% CI 0.31–0.96, p = 0.037) with the addition

of capecitabine to an anthracycline/taxane-based regimen

(T-CEF) [144]. The Create-X trial addresses the issue of

residual disease, which is one of the strengths of a

neoadjuvant treatment approach. In that trial, Asian

patients with residual disease after neoadjuvant

chemotherapy were randomized to receive adjuvant cape-

citabine for six to eight 14-day treatment cycles (with a

7-day break) or no chemotherapy. Patients with hormone

receptor-positive disease received adjuvant endocrine

therapy. Adjuvant capecitabine improved 5-year DFS (HR

0.70, 95% CI 0.53–0.93, p\ 0.005) and OS (HR 0.60,

95% CI 0.40–0.92, p\ 0.01). Patients with TNBC bene-

fitted most from adjuvant capecitabine (HR 0.58, 95% CI

0.39–0.87). More cases of neutropenia, hand-foot syn-

drome, and gastrointestinal-related AEs were observed

with capecitabine [142]. The incorporation of capecitabine

in neoadjuvant or adjuvant strategies seems beneficial for

at least the subset of TNBC patients with residual disease

after standard systemic therapy.

3.2 Poly(ADP-Ribose) Polymerase (PARP)

Inhibitors

Poly(ADP-Ribose) polymerase (PARP) inhibitors disturb

the repair of single-strand DNA breaks (SSB), mainly via

two mechanisms. The first is inhibition of the PARP-1

enzyme, preventing binding to SSBs and accumulation of

repair enzymes by PARP-1. Second, PARP inhibitors trap

PARP-1 enzymes onto the DNA, which obstructs the

replication fork necessary for DNA repair [145]. The

subsequent persisting SSBs are converted to DSBs during

DNA replication. If repair via homologous recombination

is not possible, error-prone repair mechanisms take over

(e.g. non-homologous end-joining), leading to accumula-

tion of DSBs, which ultimately become lethal to the cell.

BRCA1- and BRCA2-mutated tumors are specifically sen-

sitive to PARP inhibitors; this concept is known as syn-

thetic lethality (Fig. 2) [146]. The PARP inhibitor olaparib

is approved for the treatment of relapsed BRCA-mutated

ovarian cancer, and in BRCA-mutated MBC showed an

ORR of 41% and a median PFS of 5.7 months [147]. In the

neoadjuvant setting, the addition of both carboplatin and

veliparib to a neoadjuvant anthracycline/taxane-containing

regimen was evaluated in the I-Spy-2 trial [148]. The

addition led to a doubling of the pCR rate in patients with

TNBC, from 26 to 52%; however, more patients in the

veliparib group had a BRCA1/2 mutation (17 vs. 7%) [148]

and further research is necessary to evaluate whether this

gain in pCR rate could also be reached with the addition of

carboplatin alone. Exploratory analysis showed that HRD

[149] and a PARP1–7 signature [124] could predict sen-

sitivity to veliparib [139]. Whether these results can be

translated to all patients with an HRD breast tumor (in-

cluding hormone receptor-positive tumors), and which test

can best identify these patients, remains to be seen. In vivo

experiments with HRD tumors showed conflicting results,

indicating there might be a gradient in HRD influencing the

response to PARP inhibitors [150, 151]. HRD as a pre-

dictive biomarker for the more potent PARP inhibitor

niraparib will be evaluated in the ABC study

(NCT02826512). Talazoparib is currently being evaluated

in the neoadjuvant setting, followed by standard (neo)ad-

juvant treatment (NCT02282345). Preliminary results show

a mean decrease in tumor volume of 78% (range 30–98%),

assessed by ultrasound in all 13 patients, and no grade 4

toxicities [152]. Olaparib added to standard neoadjuvant

chemotherapy and carboplatin will be evaluated in three

trials—NCT02561832, NCT02789332 (GeparOla), and

NCT02624973. The combination rucaparib and cisplatin

will be evaluated in patients with residual disease after

standard neoadjuvant chemotherapy, in a phase II trial

[NCT01074970 (BRE09-146)]. Lastly, olaparib will be

evaluated as adjuvant treatment up to 12 months after

completion of (neo)adjuvant treatment in the Olympia trial

(NCT02032823).

The main toxicities with olaparib and veliparib are mild

(grade 1–2) hematological toxicities, nausea and vomiting,

diarrhea, dyspepsia, fatigue, and dizziness. Grade 3–4

toxicities occurred in 18–25% of patients, mainly consist-

ing of nausea, vomiting, and anemia [147, 153, 154]. A

similar rate of grade 3–4 toxicities were reported in patients

using olaparib maintenance therapy for more than 2 years
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[155, 156]. Concerns were raised on the development of

myelodysplastic syndromes (MDS) and acute myeloid

leukemia (AML) during maintenance treatment. Until now,

the effect of prior chemotherapy on the development of

MDS/AML cannot be distinguished from a possible effect

of PARP inhibition. Patients receiving maintenance ther-

apy need to be carefully monitored. Given the favorable

toxicity–benefit ratio in BRCA-mutated breast cancers,

PARP inhibitors offer a promising additive to neoadjuvant

treatment for this subgroup.

3.3 Immune Checkpoint Inhibitors

Immunotherapeutic interventions that reactivate the

endogenous T-cell compartment represent the most sig-

nificant development in oncology in the past decade. There

are several ‘immune checkpoints’ that regulate the immune

system. Programmed death-1 (PD-1) is an immune

checkpoint that is found on the surface of T cells. When

PD-1 is bound by its ligand PD-L1, the function of T cells

is inhibited. Cancer cells express PD-L1 and can thereby

efficiently suppress T-cell activity. Antibodies against the

checkpoint molecules cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4) and PD-1 have now been approved for

melanoma, lung cancer, and renal cell cancer.

Early trials with anti-PD-(L)1 show durable responses in

approximately 3–19% of MBC patients [157–160]. With

response rates around 9–19%, patients with TNBC seem to

benefit relatively more often from anti-PD-(L) compared

with patients with other breast cancer subtypes [157–159].

In Keynote-012, a phase Ib study with pembrolizumab

(anti-PD1) in patients with advanced PD-L1-positive

TNBC, the ORR was 18.5% (5 of 27 evaluable subjects),

with one complete response and four partial responses

[159]. Limited preliminary data from phase I/II trials

suggest that response rates are higher in metastatic TNBC

patients receiving chemotherapy plus PD-1 blockade

[161, 162]. Numerous clinical trials with (combina-

tion)immunotherapy are ongoing in metastatic TNBC (e.g.

NCT02499367 and NCT02425891), and we expect that

immune checkpoint blockade will become part of the

standard treatment for a subset of patients with metastatic

TNBC.

No data on the efficacy of neoadjuvant immune check-

point blockade in TNBC are available yet, but many

neoadjuvant trials are ongoing. Most trials evaluate anti-

PD-(L)1 together with standard chemotherapy (e.g.

NCT02489448 and NCT02622074) or in patients with

residual disease after neoadjuvant chemotherapy

(NCT02530489 and NCT02954874). Given the power of

immunotherapy to induce durable responses, it is possible

that in a small subgroup of high-risk primary TNBC

patients, anti-PD-(L)1 becomes standard of care. However,

the central research goal for the coming years will be to

determine which high-risk TNBCs will benefit from

immunotherapy.

3.4 Angiogenesis Inhibitor

Bevacizumab is a monoclonal antibody against the vascu-

lar endothelial growth factor (VEGF), especially isoform

VEGF-A, which is a ligand for the VEGF receptor and

which promotes angiogenesis [163–165]. The addition of

bevacizumab to an anthracycline/taxane chemotherapy

regimen increased pCR rates in some studies [166, 167] but

not in all [133, 168]. Moreover, the increase in pCR has,

Fig. 2 Simplified

demonstration of synthetic

lethality by PARP inhibitors in

BRCA-mutated tumors. PARP

Poly (ADP-ribose) polymerase.

Adapted with permission from

Macmillan Publishers Ltd.

[274]. Copyright (2014)
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until now, not translated into improved RFS or OS [134].

In addition, bevacizumab, when added to adjuvant

chemotherapy (anthracyclines with or without taxanes), did

not result in long-term clinical benefit in terms of either

invasive DFS or OS (HR 0.87, 95% CI 0.72–1.07 for

invasive DFS, and HR 0.84, 95% CI 0.64–1.12 for OS)

[169]. Lastly, bevacizumab added to chemotherapy causes

serious toxicities, including febrile neutropenia, hyperten-

sion, and mucositis [133, 167, 170, 171]. Taken together,

these data leave little evidence to incorporate bevacizumab

or other VEGF inhibitors in neoadjuvant treatment

regimens.

3.5 Anti-Androgens

The androgen receptor (AR) is expressed in approximately

70–80% of all breast cancers, including one-third of

TNBCs [172–174]. The anti-androgens bicalutamide and

enzalutamide induced a CBR of 19 and 38%, respectively

(including two complete responses and five partial

responses in the latter), in a small group of women with

AR-positive/triple-negative, pretreated MBC [175, 176].

Although the response rate was relatively low, the efficacy

of anti-androgen therapy is noteworthy in this subtype for

which chemotherapy is still the mainstay of treatment and

chemotherapy resistance is a major problem. Moreover,

anti-androgen treatment has mild AEs, with the only grade

3 event being fatigue.

Enzalutamide is the first anti-androgen to be evaluated

in the neoadjuvant setting in combination with paclitaxel in

patients with TNBC (NCT02689427). Interestingly, com-

binations of bicalutamide and palbociclib (NCT02605486)

and enzalutamide and taselisib (NCT02457910) are now

under investigation in patients with AR-positive/triple-

negative MBC [177]. Optimization of such combinations

might be an interesting approach for a subset of patients

with TNBC.

4 Human Epidermal Growth Factor Receptor 2
(HER2)-Positive Breast Cancer

Approximately 15–20% of breast cancers are HER2-posi-

tive [178–181]. Without HER2-directed treatment, HER2-

positive breast cancer is characterized by an aggressive

course of disease and a poor prognosis [182, 183].

4.1 Current Standard Neoadjuvant Therapy

4.1.1 HER2 Antibodies

Trastuzumab, the first approved HER2-targeted agent, is a

monoclonal antibody directed towards the extracellular

domain (subdomain IV) of HER2. Trastuzumab blocks

HER2 activation, inhibits intracellular signaling pathways,

initiates antibody-dependent cellular cytotoxicity (ADCC),

and prevents the formation of the constitutive active

p95HER2 fragment (Fig. 2) [184–188]. The introduction of

trastuzumab has substantially improved the outcome of

patients with HER2-positive breast cancer [189–193]. In a

meta-analysis including eight randomized trials in EBC,

trastuzumab reduced the risk of recurrence or death by 40%

at an overall median follow-up of 2.4 years [194]. A sus-

tained benefit was seen at 10 years, with DFS rates of

69–74% with trastuzumab compared with 62–67% without

[195–197]. In two trials, neoadjuvant-administered trastu-

zumab at least doubled the pCR rate compared with

chemotherapy alone, and improved EFS [198–200].

Therefore, trastuzumab-based therapy is the standard of

care in HER2-positive breast cancer. In EBC, trastuzumab

is administered for 1 year as a longer duration has not

shown to be superior and the non-inferiority of a shorter

duration could not be demonstrated [201–203]. Results of

other trials examining shorter treatment duration are still

awaited [NCT00712140 (Persephone), NCT00629278

(Short-HER), and NCT00593697 (SOLD)]. Furthermore,

trastuzumab concurrent with, at least the taxane part of,

chemotherapy is preferred over sequential use [204].

Pertuzumab is a monoclonal antibody directed towards

the extracellular dimerization domain (subdomain II) of

HER2. Binding prevents heterodimerization with other

HER receptors, of which HER2/HER3 blockade seems

clinically the most relevant; ADCC might also play a role

[184]. In the Neosphere trial, docetaxel plus dual HER2

blockade with trastuzumab and pertuzumab was superior to

trastuzumab or pertuzumab alone, with pCR rates of 46%

compared with 29 and 24%, respectively [205]. More

recently, the survival results also revealed a numerically

higher efficacy of dual blockade, with a 5-year PFS (defi-

nition equivalent to EFS) of 86% compared with 81% with

trastuzumab alone (HR 0.69, 95% CI 0.34–1.40), although

lacking statistical significance [206]. The trastuzumab/

pertuzumab combination with different chemotherapy

backbones resulted in pCR rates of 55–64% in the Try-

phaena trial [207] and 63–69% in the GeparSepto trial

[208]. A pCR rate of 91% has been reported with trastu-

zumab/pertuzumab plus paclitaxel in 42 HER2-positive/

hormone receptor-negative tumors [209]. Pertuzumab

received accelerated approval for neoadjuvant use in

combination with trastuzumab-based chemotherapy [25];

however, definitive approval in EBC awaits survival results

of the large (n = 4806) randomized adjuvant Aphinity trial

(NCT01358877). Neoadjuvant pertuzumab can be consid-

ered for patients with a high risk of recurrence, which the

NCCN guideline defines as primary tumors measuring

more than 2 cm, and/or node-positive disease [25].
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Of major public interest are trastuzumab biosimilars.

Although they do not convey new drug targets, they will

impact price development and are expected to reduce the

costs of healthcare. As such, they are an important devel-

opment for the treatment of patients. A high degree of

similarity with regard to efficacy and safety has been

observed between biosimilars and original trastuzumab

[210–212]. The first biosimilars are under review at regu-

latory health agencies.

4.1.2 Chemotherapy Backbone for HER2-Targeted

Therapy

Although trastuzumab is generally well-tolerated, its use is

associated with an increased risk of cardiotoxicity, espe-

cially when combined with anthracyclines [189, 213–215];

therefore, anthracycline-free regimens were investigated.

In the adjuvant BCIRG-006 trial, 10-year DFS and OS

were similar with a carboplatin/taxane/trastuzumab regi-

men compared with a sequential anthracycline, taxane and

trastuzumab regimen (DFS 73 vs. 75%, and OS 83 vs.

86%). However, the study was not powered to test a sta-

tistical difference between the two trastuzumab-containing

arms. Cardiotoxicity and secondary hematological malig-

nancies were less frequent with the anthracycline-free

regimen [190, 195]. The neoadjuvant Tryphaena trial

compared the cardiac tolerability of carboplatin/docetaxel

with two sequential epirubicin-taxane arms in the presence

of trastuzumab and pertuzumab. Significant decline in left

ventricular ejection fraction (C10% points from baseline to

\50%) during treatment was seen in 4–6% of patients

[207].

In a lower-risk population, with the majority having node-

negative disease, adjuvant TC plus trastuzumab resulted in

2-year DFS and OS estimates of 98 and 99%, respectively

[216]. Similarly, a 3-year DFS of 99% was seen with adju-

vant trastuzumab plus paclitaxel in patients with predomi-

nantly stage I HER2-positive disease [217]. In an attempt to

further reduce treatment-related toxicity, this paclitaxel-

trastuzumab regimen is being compared with adjuvant tras-

tuzumab-emtansine (T-DM1) in the ongoing Atempt trial,

which has recently completed enrollment (NCT01853748).

Patients with stage I disease may receive their systemic

treatment as neoadjuvant therapy, just as patients with stage

II–III disease do, although the need for downstaging is less

obvious; however, these patients may still benefit from other

advantages of neoadjuvant therapy, including monitoring of

the response. Different chemotherapy backbones with dual

HER2 blockade are currently being evaluated in ongoing

neoadjuvant studies, including weekly paclitaxel/carbo-

platin regimens [e.g. NCT01996267 (Train-2),

NCT02789657 (BrUOG308), and NCT02436993] and

T-DM1 [e.g. NCT02073487 (Teal) and NCT02326974].

In conclusion, in stage I HER2-positive EBC, anthra-

cyclines can be safely withheld in the presence of trastu-

zumab, and the addition of pertuzumab is not likely to

improve outcome further. While neoadjuvant systemic

treatment is a reasonable option in stage I disease, most of

these patients will receive their systemic treatment in an

adjuvant setting. Currently available data suggest that

carboplatin/taxane regimens are good alternatives for

anthracycline-containing regimens in combination with

trastuzumab plus/minus pertuzumab for stage II–III dis-

ease. Results of trials directly comparing anthracycline-

containing and anthracycline-free regimens are soon

expected [e.g. NCT01996267 (Train-2), NCT02510781,

NCT02041338].

4.1.3 Anti-HER2 Therapy in Hormone Receptor-Positive/

HER2-Positive Breast Cancer

Significantly lower pCR rates in HER2-positive breast

cancer are observed in hormone receptor-positive tumors

compared with hormone receptor-negative tumors. A pos-

sible explanation is that these tumors use the ER pathway

as an escape mechanism when HER2 is blocked (Fig. 1). In

the randomized NSABP-B52 trial, the addition of concur-

rent endocrine therapy to trastuzumab-based chemotherapy

plus pertuzumab increased the pCR rate from 41 to 46%,

which was non-significant as the study was powered to

detect an absolute increase of 15% [218]. Of note, the

addition of endocrine therapy to chemotherapy was also

not antagonistic, as had been observed in preclinical studies

[219, 220].

4.1.4 De-Escalation

Currently available treatment regimens with dual HER2

blockade are highly effective and pCR without the use of

chemotherapy has been observed. In the Neosphere study,

17% of patients achieved a pCR after 12 weeks of trastu-

zumab plus pertuzumab without chemotherapy [205]. In

hormone receptor-negative tumors, the same treatment

resulted in a pCR rate of 34% [209], and pCR breast rates

of 18–43% were seen with 12–24 weeks of trastuzumab

plus lapatinib [221–223]. Strikingly, a pCR breast rate of

11% has been observed after only 10–12 days of trastu-

zumab plus lapatinib [224]. These results raise the question

whether we can de-escalate treatment and omit or reduce

chemotherapy. Research focusing on reducing treatment

instead of adding additional compounds and prolonging

treatment duration is desired.

In hormone receptor-positive tumors, 12 weeks of tras-

tuzumab plus endocrine therapy resulted in a pCR rate of

15% [225], and 12–24 weeks of trastuzumab and endocrine

therapy plus lapatinib resulted in pCR breast rates of
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9–18% [221–223]. A pCR rate of 27% was observed with

dual HER2 blockade with pertuzumab plus endocrine

therapy and the CDK4/6 inhibitor palbociclib [226]. Sev-

eral ongoing studies are evaluating different chemother-

apy-free regimens [e.g. NCT02689921 (NeoAdapt) and

NCT02907918 (Paltan)]. Withholding chemotherapy while

maintaining efficacy is highly desirable, although it has yet

to be discovered which patients and tumors qualify for this

approach. Image-guided treatment adaptation may be a

strategy to selectively reduce treatment. Intensifying or

switching to an alternative regimen based on interim-

imaging has received most attention in studies to date

[10, 11, 13], but it is worth evaluating whether

chemotherapy can be stopped prematurely in case of an

early complete response on imaging. Starting off with

biologicals alone and adding chemotherapy only in patients

with insufficient response is another reasonable approach

that deserves further exploration [221].

4.2 Antibody Drug Conjugates (ADCs)

Antibody drug conjugates are drugs composed of a cyto-

toxic agent linked to an antibody that targets antigens that

are specific to or overexpressed in tumor cells. Addition-

ally, the cytotoxic agent should be inactive when bound.

After tumor binding, the complex is internalized and the

cytotoxic agent is released intracellularly. This so-called

‘targeted chemotherapy’ improves selective drug delivery

while minimizing systemic exposure to the cytotoxic agent

[227].

4.2.1 Trastuzumab-Emtansine (T-DM1)

T-DM1 is an ADC composed of trastuzumab and the

microtubule inhibitor emtansine, a derivate of maytansine.

In this composite form, trastuzumab retains its mechanisms

of action [227, 228]. Due to its activity and apparent

favorable toxicity profile in MBC [229–231], T-DM1 has

also been evaluated in EBC. Twelve weeks of neoadjuvant

T-DM1 after three to four cycles of AC induced a pCR rate

of 56%, with good cardiac tolerability [232].

In the neoadjuvant I-Spy-2 trial, 83 patients received

either T-DM1 plus pertuzumab, or paclitaxel plus trastu-

zumab, both followed by AC. The pCR rate was higher in

the T-DM1-pertuzumab arm (52%) than in the paclitaxel-

trastuzumab arm (22%) [233]. However, in the Kristine

trial, pCR rates were significantly lower with T-DM1 plus

pertuzumab compared with docetaxel/carboplatin plus

trastuzumab and pertuzumab (44 vs. 56%, p = 0.015),

although the safety profile was better with T-DM1 (grade

3–4 AEs in 13% of patients vs. 64%) [234]. In HER2-

positive/hormone receptor-positive tumors, pCR rates were

42% with T-DM1 plus endocrine therapy, 41% with

T-DM1 alone, and 15% with trastuzumab plus endocrine

therapy [225]. The randomized Katherine trial (n = 1487)

will provide more insight into the relative efficacy of

T-DM1 versus trastuzumab as adjuvant therapy in ‘no

pCR’ cases after completion of neoadjuvant therapy

(NCT01772472).

In conclusion, neoadjuvant T-DM1 is not superior to

standard polychemotherapy with trastuzumab and per-

tuzumab, but harbors a favorable toxicity profile when

compared with trastuzumab–docetaxel combinations.

T-DM1 currently has no role in the neoadjuvant or adju-

vant setting, but this may change if non-inferiority with

significantly less toxicity can be demonstrated compared

with the taxane plus trastuzumab part of therapy in the

presence of pertuzumab in both arms [e.g. NCT01966471

(Kaitlin)].

4.2.2 ADCs Under Investigation

SYD985, composed of trastuzumab plus the DNA-alky-

lating agent duocarmycin (seco-DUBA), has shown

promising preclinical activity and is currently being tested

in metastatic cancers (NCT02277717) [235]. More ADCs

are under development or are currently in clinical trials for

advanced disease, including XMT-1522, which includes a

HER2 antibody plus the antimitotic agent auristatin

(NCT02952729), and U3-1402, consisting of a HER3-an-

tibody and a topoisomerase I inhibitor (NCT02980341).

4.3 Other Antibodies

4.3.1 Anti-Vascular Endothelial Growth Factor

In the randomized adjuvant Beth trial ([3500 patients), the

addition of bevacizumab to trastuzumab-based chemother-

apy did not improve DFS (92% in both arms, stratified HR

1.00, 95% CI 0.79–1.26) or OS (97 vs. 96%, stratified HR

0.87, 95% CI 0.60–1.25) at a median follow-up of

38 months. Grade 3–4 AEs were significantly more com-

mon with bevacizumab, including hypertension, bleeding,

proteinuria, gastrointestinal perforations, and chronic heart

failure [236]. In another trial, patients with insufficient

response at first positron emission tomography evaluation

randomized to bevacizumab added to neoadjuvant doc-

etaxel plus trastuzumab, had a pCR rate of 44% compared

with 24% without bevacizumab [11]. In a third trial, the

pCR rate was similar with and without bevacizumab com-

bined with a trastuzumab-based anthracycline-taxane regi-

men (57 vs. 58%), but higher if combined with a taxane-

only regimen and trastuzumab (41 vs. 36%) [237].

Although bevacizumab has shown to increase the pCR

rate in some subgroups in the neoadjuvant setting, it lacks

survival benefit in the adjuvant setting and is associated
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with potentially severe side effects. Therefore, beva-

cizumab should not be incorporated in current neoadjuvant

regimens for HER2-positive EBC.

4.3.2 Anti-HER3

Antibodies against HER3 have been developed in view of

the importance of HER3 in oncogenic signaling and its

potential role in trastuzumab resistance. These antibodies

capture HER3 in the inactive conformation by preventing

ligand-binding (AMG888/patritumab, MM-121/seriban-

tumab, AV-203) or by other means (LJM716) [238]. Of

these, only MM-121 is currently evaluated in the neoad-

juvant setting, although in HER2-negative EBC

(NCT01421472).

4.3.3 Bispecific Antibodies

Bispecific antibodies have two different antigen-binding

sites. MM-111 binds HER2 and HER3 with formation of a

trimeric complex [238]. In a phase I study, patients with

different HER2-positive tumors received MM-111 com-

bined with other HER2-directed agents and/or chemother-

apy. Depending on the treatment arm 17-44% had complete

or partial response [239]. Ertumaxomab is a trifunctional,

bispecific antibody targeting HER2 on tumor cells and

CD3 on T cells, and recruits FcY receptor-positive cells,

with subsequent activation of these immune cells [240].

Although it has shown activity in a phase I trial [241] and is

theoretically promising, no ongoing study currently eval-

uates ertumaxomab in breast cancer. ZW25 is a bispecific

antibody targeting two different epitopes of the HER2

receptor, with promising preclinical tumor activity. It is

currently under investigation in a phase I trial

(NCT02892123) [242].

4.4 Tyrosine Kinase Inhibitors

Lapatinib is an orally available, reversible inhibitor of the

tyrosine kinase activity of HER1 and HER2. It has been

evaluated extensively in the metastatic, adjuvant, and

neoadjuvant settings. A meta-analysis of six neoadjuvant

trials showed a significant absolute 13% (95% CI 8–19%)

increase in pCR rate (either pCR breast or pCR breast and

axilla) with trastuzumab plus lapatinib compared with

trastuzumab alone [243]. Lapatinib results in lower pCR

rates than trastuzumab [244–250]. Neoadjuvant lapatinib

plus trastuzumab improved 3-year EFS non-significantly

compared with trastuzumab alone (84 vs. 76%, HR 0.78,

95% CI 0.47–1.28) [251]. In addition, no significant DFS

benefit was seen after a median follow-up of 4.5 years with

adjuvant lapatinib plus trastuzumab over trastuzumab alone

(HR 0.84, 95% CI 0.70–1.02) [252]. In the Teach trial,

1-year lapatinib after completion of chemotherapy without

trastuzumab did not significantly improve DFS or OS,

although a significant DFS benefit was seen in the hormone

receptor-negative subgroup [253].

The TKI afatinib irreversibly targets HER1, HER2, and

HER4. In the neoadjuvant setting, 6 weeks of afatinib

monotherapy resulted in a partial response in 70% of

patients (7/10) versus 75% (6/8) with lapatinib and 36% (4/

11) with trastuzumab; a complete response was not seen

[254]. In the neoadjuvant Dafne trial, 65 patients received

12 weeks of afatinib with concurrent paclitaxel and tras-

tuzumab from week 6 followed by epirubicin/cyclophos-

phamide and trastuzumab. With 71% hormone receptor-

positive tumors, the pCR rate was 49%, which was lower

than the predefined lower boundary of 55%. Additionally,

eight patients developed clinical progression during afa-

tinib monotherapy and treatment was discontinued in 28%

of patients [255].

Neratinib is another irreversible TKI that binds to the

ATP site of the tyrosine kinase domain of HER1, HER2,

and HER4. The neoadjuvant I-Spy-2 trial compared nera-

tinib and trastuzumab with a sequential taxane-anthracy-

cline regimen; pCR rates were higher with neratinib (39 vs.

23%) [256]. In another neoadjuvant trial, neratinib did not

increase the pCR rate compared with trastuzumab (33 vs.

38%), while the combination of trastuzumab and neratinib

had the highest pCR rate (50%) [257]. The randomized

phase III I-Spy-3 trial will evaluate the addition of nera-

tinib to trastuzumab and pertuzumab [256]. Neratinib after

completion of chemotherapy and trastuzumab in high-risk

EBC patients (n = 2840) resulted in a marginal increase in

2-year DFS of 94% with neratinib versus 92% with placebo

(HR 0.68, 95% CI 0.50–0.91, p = 0.010). In the 721

neoadjuvantly treated patients with residual disease, DFS

was not significantly different between the treatment arms

(HR 0.78, 95% CI 0.50–1.21) [258]. The most common

grade 3–4 toxicity of neratinib is diarrhea, occurring in

31–40% of patients [256–258].

Tucatinib (ONT-380) is a TKI with high selectively for

HER2, which could potentially reduce the side effects

associated with HER1 inhibition. Tucatinib plus T-DM1

has an ORR of 41% (all partial responses) in previously

treated MBC patients, of whom 60% had CNS metastases

[259]. Another study also demonstrated activity for CNS

metastases [260]. Less than 5% experienced grade 3–4

diarrhea [259].

Varlitinib (ASLAN001/ARRAY-334543) is a reversible

TKI against HER1, HER2, and HER4. It is currently

investigated in combination with capecitabine in HER2-

positive MBC in a single arm [261] and a randomized

phase II trial (NCT02338245), and also in combination

with weekly paclitaxel/carboplatin as neoadjuvant therapy

in EBC (NCT02396108).

Neoadjuvant Therapy for Breast Cancer 1325



Overall, the available data do not justify the routine use

of any of the above-described TKIs in the neoadjuvant

setting, neither as a single blockade nor as dual blockade

with trastuzumab. The selective use of a TKI (or other

agent) in patients with residual disease after completion of

neoadjuvant treatment is an interesting and clinically rel-

evant new research field. Neratinib has been examined in

this setting but failed to show a convincing benefit in light

of its associated toxicity. However, further research may

identify a subgroup with substantial benefit of this

approach with either neratinib or another drug.

4.5 PI3K/mTOR Inhibitors

Everolimus has been examined thoroughly in HER2-posi-

tive breast cancer as a constitutively active PI3K/mTOR

pathway and has been described to be involved in trastu-

zumab resistance [262, 263]. Everolimus added to trastu-

zumab-based chemotherapy as second-line treatment or

higher modestly increased PFS in women with MBC

(median PFS 7.0 vs. 5.8 months; HR 0.78, 95% CI

0.65–0.95, p = 0.007) [262]. However, everolimus added

to first-line trastuzumab-based chemotherapy did not

improve DFS (median PFS 15.0 vs. 14.5 months; HR 0.89,

95% CI 0.73–1.08, p = 0.12) [263]. In both studies, the

effect of everolimus was more pronounced in hormone

receptor-negative tumors [262, 263], and more on-treat-

ment and AE-related deaths occurred with everolimus

[263]. Trials of everolimus in HER2-positive EBC are

scarce. One randomized trial reported lower pCR breast

rates after 6 weeks of neoadjuvant everolimus plus trastu-

zumab compared with trastuzumab monotherapy (8 vs.

15%) [264].

Buparlisib, a pan-PI3K inhibitor, added to trastuzumab

and paclitaxel did not increase the pCR breast rate (32 vs.

40%), but significantly increased grade 3–4 rash and hep-

atotoxicity [265]. There are currently no ongoing neoad-

juvant studies with buparlisib, or any other PI3K inhibitor,

in HER2-positive EBC.

Due to the absence of a clear treatment benefit and

potentially severe toxicity, everolimus and buparlisib have

no role in the neoadjuvant treatment of HER2-positive

EBC.

4.6 Immune Checkpoint Inhibitors

Together with the TNBC subtype, HER2-positive breast

cancers have more TILs [128] and a relatively high

mutational load [69]. Based on the presence of these

putative predictive markers and recent preclinical work

[266–268] showing that anti-HER2 treatment in combina-

tion with checkpoint blockade results in significant tumor

control, it could well be that HER2-positive breast cancer

has a special benefit when treated with checkpoint block-

ade in combination with anti-HER2 treatment. In the

Javelin phase I trial with avelumab (anti-PD-L1), 26

patients with HER2-positive MBC were included and only

one objective response was observed, however this was in

the absence of HER2-directed treatment [157]. Many

clinical trials evaluating the efficacy of anti-PD-(L)1

together with HER2-blockade in the metastatic disease

setting are ongoing. For example, in the Panacea phase Ib/

II trial (NCT02129556), pembrolizumab (anti-PD1) com-

bined with trastuzumab will be administered to trastuzu-

mab-resistant, HER2-positive MBC patients. Awaiting the

efficacy data in the metastatic disease setting, some

immunotherapy trials are already ongoing in the neoadju-

vant setting. For example, in a phase Ib trial with three

neoadjuvant cohorts, atezolizumab (anti-PD-L1) is com-

bined with T-DM1 or trastuzumab and pertuzumab

(NCT02605915). In cohort 2A, EBC patients with a tumor

greater than 2 cm will receive atezolizumab in combination

with trastuzumab/pertuzumab, followed by docetaxel/car-

boplatin/trastuzumab/pertuzumab. Cohort 2B researches

atezolizumab plus T-DM1 followed by standard treatment,

and cohort 2C investigates the effect of neoadjuvant ate-

zolizumab plus T-DM1. Since no efficacy data on anti-PD-

(L)1 plus HER2-directed therapy are available yet, and

given the already favorable outcome of most primary

HER2-positive breast cancers, it is too early to speculate on

the future role of immune checkpoint inhibition in HER2-

positive EBC.

4.7 Heat Shock Protein 90 Inhibitors

Heat shock protein 90 (HSP90) is a regulatory protein

involved in the maturation and stabilization of several pro-

teins, including HER2. By inhibiting HPS90, HER2 becomes

unstable and undergoes degradation [269–271]. Several

HSP90 inhibitors, including ganetespib, tanespimycin, and

AUY22, have been evaluated in phase I/II trials with ORRs

(complete response ? partial response) when applied as

monotherapy in 15% of patients [270], and when combined

with trastuzumab in 22% of patients [269, 272] with previ-

ously treated HER2-positive MBC. Despite these results, the

field of HSP-90 inhibitors has become quiet and a role in the

neoadjuvant setting seems unlikely.

5 Discussion and Conclusions

Adjuvant systemic treatment has greatly improved survival

for EBC patients. Shifting systemic treatment from the

adjuvant to the neoadjuvant setting has several additional

benefits, including an accelerated evaluation of new drugs.

This strategy has opened a window of opportunity to
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facilitate patient access to promising new drug combina-

tions; however, new studies that incorporate sufficiently

powered long-term outcome measures are still needed for

definitive approval [19].

With the wide range of available drugs, combinational

strategies, and better predictive biomarkers, we are

increasingly able to tailor treatment according to breast

cancer subtypes. This approach can be further optimized by

identification of specific molecular drug targets and pre-

dictive markers. Predictive markers will allow better

patient selection to increase the benefit while safely with-

holding toxic drugs for others. The future place of the

described new and investigational therapies in the neoad-

juvant setting awaits results from neoadjuvant trials. The

introduction of CDK4/6 inhibitors as an addition to stan-

dard treatment for patients with high-risk, ER-positive

tumors seems appealing. In addition, for patients with

TNBC the treatment options are gradually expanding to

less toxic-targeted therapies, including PARP inhibitors for

patients with a BRCA mutation and anti-PD-(L)1.

Whether residual tumor after neoadjuvant treatment can

reliably identify patients that may benefit from further

adjuvant treatment with known or new drugs must be

further evaluated. In contrast, for some subtypes, excellent

outcomes have redirected focus to de-escalation strategies.

In particular, the high pCR rates in HER2-positive breast

cancer have led to several trials being conducted to explore

strategies to de-escalate chemotherapy.
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