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Abstract Drug–drug interactions (DDIs) occur commonly

and may lead to severe adverse drug reactions if not han-

dled appropriately. Considerable information to support

clinical decision making regarding potential DDIs is

available in the literature and through various systems

providing electronic decision support for healthcare pro-

viders. The challenge for the prescribing physician lies in

sorting out the evidence and identifying those drugs for

which potential interactions are likely to become clinically

manifest. P-glycoprotein (P-gp) is a drug transporting

protein that is found in the plasma membranes in cells of

barrier and elimination organs, and plays a role in drug

absorption and excretion. Increasingly, P-gp has been

acknowledged as an important player in potential DDIs and

a growing body of information on the role of this trans-

porter in DDIs has become available from research and

from the drug approval process. This has led to a clear need

for a comprehensive review of P-gp-mediated DDIs with a

focus on highlighting the drugs that are likely to lead to

clinically relevant DDIs. The objective of this review is to

provide information for identifying and interpreting evi-

dence of P-gp-mediated DDIs and to suggest a classifica-

tion for individual drugs based on both in vitro and in vivo

evidence (substrates, inhibitors and inducers). Further,

various ways of handling potential DDIs in clinical practice

are described and exemplified in relation to drugs inter-

fering with P-gp.

Key Points

P-glycoprotein (P-gp) is a drug transporting protein

that physicians should be aware of when evaluating

potential drug–drug interactions.

The evidence base for evaluating the role of P-gp in

potential drug–drug interactions is varying and

interpretation may be complex.

Potential drug–drug interactions should be identified

and appropriate management strategies applied.

1 Introduction

Adverse drug events (ADEs) are a common cause of hos-

pital admission [1, 2] and display a potential negative

impact on patient morbidity and mortality, treatment costs

and duration of hospitalization [3, 4]. In this context,

interactions between concomitantly used drugs may be a

cause of serious ADEs [5, 6]. Formally, a drug interaction

is defined as an alteration in a clinically meaningful way of

the effect of a drug (object or victim drug) as a result of co-

administration of another drug (precipitant or perpetrator
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drug) [7]. While not all potential drug–drug interactions

(DDIs) are clinically significant [8–10], the outcome

(therapeutic failure or toxicity) when actual DDIs occur

may be severe and sometimes fatal [9]. The clinical chal-

lenge lies in sorting out the unimportant interactions and

identifying the DDIs that are most likely to be clinically

manifest. The evidence base for particular DDIs may be of

varying quality and whether or not a particular DDI is

clinically meaningful may vary depending on a number of

individual patient characteristics such as age, organ func-

tion, genetic makeup, comorbidity as well as concurrent

medication.

The mechanisms responsible for DDIs may be phar-

macodynamic or pharmacokinetic. An example of a phar-

macodynamic interaction is excessive bleeding with

concurrent use of warfarin, which is a vitamin K antago-

nist, and low-dose aspirin, where warfarin affects bleeding

through decreased production of coagulation factors and

aspirin through inhibition of thrombocyte aggregation

[7, 11, 12]. Pharmacokinetic interactions can occur due to

changes in the absorption, distribution, metabolism and

elimination of a drug and may result in higher or lower

drug levels leading to potential toxicities or loss of effi-

cacy. These processes may be altered by drugs interfering

with drug metabolizing enzymes such as those belonging to

the cytochrome P450 system (CYP450), involved in phase

I reactions, or uridine diphosphate glucuronosyltransferases

(UGTs), involved in phase II reactions. Drugs may also

affect the pharmacokinetics of other drugs by interfering

with drug transporters such as the p-glycoprotein efflux

transporter (P-gp), breast cancer resistance protein (BCRP)

or the organic anion transporting polypeptides (OATPs)

[13]. Individual drugs may thus be substrates, inhibitors or

inducers of specific enzymes or transporters and concurrent

administration of, for example, an inhibitor of a transporter

or an enzyme may imply an increased concentration of a

drug that is a substrate of the same transporter or enzyme

and subsequently an increased risk of ADEs. Conversely,

administration of an inducer may decrease the concentra-

tion of a substrate of a particular enzyme or transporter,

and lead to decreased effect of the drug.

The focus of the present review is the P-gp drug trans-

porter in relation to DDIs. Particularly, we aim to synthe-

size the evidence for classifying various drugs as

substrates, inhibitors and inducers of P-gp according to

in vitro and in vivo evidence. We searched the literature

and drug labels/summaries of product characteristics

(SmPCs) to identify human in vitro and in vivo evidence to

support the particular P-gp modulatory status (substrate,

inhibitor, inducer) of the various drugs. The review consists

of the following main parts:

Section 2 is a short introduction to P-gp (gene, protein

and transport molecule).

Section 3 includes methodological considerations for

compilation of the list of drugs to be evaluated for P-gp

modulatory properties and evaluation criteria. The com-

piled list of drugs was evaluated by means of a two-step

procedure evaluating (1) in vitro evidence (human P-gp)

and (2) if available, human in vivo studies.

Section 4 consists of five tables of drugs categorized

according to therapeutic groups as P-gp modulators (sub-

strates, inhibitors or inducers) for which we found com-

pelling evidence of potential clinical relevance. The

remaining drugs, for which we did not find compelling

evidence of clinical relevance, are presented in five similar

tables in the Electronic Supplementary Material (ESM,

Supplementary Tables 1–5). All tables in the main paper

and in the ESM provide the specific references forming the

basis of the classification of the individual drugs.

Section 5 consists of general considerations regarding

clinical management of potential DDIs including elabora-

tions on drugs from the tables in Sect. 4 as well as a dis-

cussion of limitations of the suggested classification of

drugs as P-gp modulators.

Section 6 consists of conclusions and perspectives.

2 Background

2.1 P-Glycoprotein: Gene, Protein and Transport

Molecule

P-gp is a protein encoded for by the ABCB1 (MDR1) gene,

which belongs to the group of adenosine triphosphate

(ATP)-binding cassette (ABC) genes [14] encoding the

widespread ATP-binding cassette transport proteins. At

present, 49 members of the ABC superfamily have been

identified and grouped into seven subfamilies: ABCA to

ABCG [15]. In eukaryotes, all ABC proteins are efflux

pumps and play a role in protecting the organism from

noxious substances [16].

ABCB1 is located on chromosome 7q21.2 and encodes

P-gp which consists of 1276–1280 amino acids and has a

molecular mass of around 170 kDa. The topological

structure of P-gp consists of two homologous halves, each

with six highly hydrophobic transmembrane domains and a

nucleotide-binding domain. ATP must bind to both

nucleotide-binding domains for activity of P-gp to occur.

Moreover, it contains multiple drug-binding sites and is

able to simultaneously bind multiple substrates at over-

lapping binding sites [17].

P-gp exhibits polarized expression and is found in the

plasma membranes of cells in barrier and elimination

organs. The transporter is expressed on the luminal-facing

epithelia of the gut and the bile-facing canaliculi of the

liver, where it plays a role in first-pass drug metabolism. It
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is also found on the luminal membrane in the proximal

tubules of the kidney, eliminating substances from the

systemic circulation. Further, it is present in the blood-

brain barrier and limits the permeability of many drugs into

the brain as well as into other specific organs such as the

placenta and testis [16].

P-gp substrates display a large diversity in structure

including both small molecules (e.g. organic cations, car-

bohydrates and amino acids) and macromolecules

(polysaccharides and proteins) [17–19]. Drugs that are

substrates of P-gp may or may not also be inhibitors or

inducers of P-gp, and vice versa [17, 20]. A number of

drugs that inhibit P-gp, however, have some chemical

properties in common, such as aromatic ring structures, a

tertiary or secondary amino group and high lipophilicity

[17]. Regarding induction of P-gp, this does not occur by

the drug binding directly to P-gp but instead by regulation

at the transcriptional level by nuclear factors [21]. For

instance, the xenobiotic nuclear receptor (PXR) regulates

ABCB1 expression and may be activated by, for example,

rifampicin [17]; in this context, animal studies demon-

strating presence of PXR at the level of the blood–brain

barrier might contribute to explaining the decreased effi-

cacy of CNS-acting drugs that are also P-gp substrates [22].

Genetic polymorphisms of clinical importance exist for

some of the drug metabolizing enzymes (CYP2C9,

CYP2C19 and CYP2D6). These account for a substantial

portion of interpersonal variability in drug metabolism

[13]. For MDR1, a vast number of commonly occurring

single nucleotide polymorphisms have been identified and

characterized. However, here results have been inconsis-

tent and no clear association with clinical risk profile has

been established. Thus, present evidence does not yield

support for recommendations of adjustment in drug dose

according to specific ABCB1 sequence variants

[16, 23, 24].

2.2 Overlap in Drugs That Interfere with Both

P-Glycoprotein (P-gp) and CYP3A4

There is a substantial overlap in drugs that interact with

CYP3A4 and P-gp [25]. However, the overlap is by no

means complete, and no clear rules seem to exist for

determining whether or not an overlap exists [26]. P-gp and

CYP3A4 are found in many of the same organs and tissues

[25, 27, 28] and seem to function in a complementary

fashion to reduce systemic drug exposure: as a drug tra-

verses down the intestinal tract, repeated cycles of P-gp

extrusion followed by passive reabsorption facilitates

repeated cycles of exposure of the drug to CYP3A4 present

in the gut wall and thus to increased metabolism and

reduced bioavailability [29]. The structure–activity overlap

between CYP3A4 and P-gp may thus complicate a clear

determination of the relative contribution of P-gp versus

CYP3A4 to a particular DDI. However, various approaches

may increase the likelihood of isolating an effect

attributable to P-gp. These include use of an appropriate

and validated cellular system for in vitro studies, appro-

priate choice of substrate and inhibitors, and performing

in vivo studies when indicated by the results of in vitro

studies [30]. Examples of probe drugs are midazolam

(CYP3A4 substrate for which P-gp is not a barrier for

absorption) and digoxin, dabigatran etexilate or fexofe-

nadine (P-gp substrates that are not metabolized by

CYP3A4) [31, 32]. With respect to inhibitors, it is impor-

tant to note that dual inhibitors of CYP3A4 and P-gp do not

per se have the same inhibitory potency towards P-gp and

CYP3A4. For example, quinidine and amiodarone are

potent P-gp inhibitors (as defined by a[1.5-fold change in

fexofenadine or digoxin area under the concentration time

curve [AUC]) but weak CYP3A4 inhibitors, whereas itra-

conazole is a potent inhibitor of both CYP3A4 and P-gp

[32].

3 Methodological Considerations

3.1 Compilation of Drugs for Evaluation

and Literature Search

First, we compiled a list of drugs to be evaluated for P-gp

modulation. The list consisted of (1) drugs mentioned in

previous reviews of P-gp: substrates [16, 33–36], inhibitors

[16, 33, 36, 37] and inducers [16, 33, 36]; (2) drugs in the

list of newly marketed drugs within the last 6 months

approved by either the Danish Medicines Agency as of

January 2015 [38] and/or the European Medicines Agency

(EMA) as of October 2015 [39] and where P-gp modula-

tory properties were mentioned in the SmPC; and (3) drugs

mentioned with P-gp modulatory properties in papers

identified in step 1 or references therein. Second, we sought

to identify background evidence regarding the respective

P-gp modulatory property for each drug in the compiled

list. We did this by a reference search of the before-men-

tioned reviews and/or searched for information in the

SmPC from either the Danish Medicines Agency [40],

EMA [39] or in the drug label from the United States Food

and Drug Administration (FDA) [41]. If approved by the

EMA or FDA, we also searched supporting documents

available online (e.g. from the EMA, the Scientific Dis-

cussion or the European Public Assessment Report (EPAR)

and from the FDA, the Clinical Pharmacology and Bio-

pharmaceutics Review(s) [39, 41]. Finally, if necessary we

searched PubMed for additional evidence including by use

of the following search strings for substrates, inhibitors and

inducers, respectively. Substrates and inhibitors: ((‘‘P-
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Glycoprotein/agonists’’ [Mesh] OR ‘‘P-Glycoprotein/an-

tagonists and inhibitors’’ [Mesh] OR ‘‘P-Glycoprotein/

metabolism’’ [Mesh] OR ‘‘P-Glycoprotein/pharmacokinet-

ics’’ [Mesh] OR ‘‘P-Glycoprotein/pharmacology’’ [Mesh])

AND ‘‘P-Glycoprotein’’ [Mesh]) AND ‘‘Suspected Drug’’

[Mesh] AND ‘‘humans’’ [MeSH terms]. For inducers we

searched on combinations of the suspected drug as a Mesh-

term combined with ‘‘Digoxin’’ [Mesh], ‘‘talinolol’’ [Sup-

plementary Concept] or ‘‘fexofenadine’’ [Supplementary

Concept], respectively.

The evidence base for evaluating the potential for DDIs

varies substantially for newer versus older drugs likely due

to the increased regulatory focus on discovering potential

for DDIs during recent years [42]. Previous reviews and

database sources regarding DDIs involving P-gp vary quite

substantially both with respect to which drugs are men-

tioned as substrates, inhibitors or inducers and to what

constitutes potential clinical relevance. Explanations for

this are likely related to differential target audiences of the

data sources (e.g. a referential overview aiming to include

all possible evidence as opposed to tools for clinical

decision making, which may be more restrictive) as well as

different approaches to evaluation and categorization of the

available evidence. The scope of the present review is

clinical, that is, we aim to provide the clinician with a

compilation of the evidence base regarding the P-gp

modulatory status for various drugs as well as a classifi-

cation regarding clinical relevance. This is meant to be

used as a supporting document when, for example, per-

forming medication reviews, deciding on a new drug

treatment or retrospectively when trying to elucidate a

potential mechanistic basis for an observed DDI; that is, it

should not be seen as a list of clear-cut contraindications.

With this aim in mind, we chose a restrictive approach

focusing on maximizing the likelihood of clinical rele-

vance. In terms of classification, this implied disregarding

evidence from studies using non-human P-gp and focusing

on evidence from in vitro studies of human P-gp and cor-

responding in vivo studies. The final classification (defined

in Sects. 3.2 and 3.3) contained one level for inducers

(solely based on in vivo evidence) and two levels for

substrates and inhibitors (one based on in vitro evidence

and one on in vivo evidence). An initial evidence search

and grading of the evidence for all drugs in the compiled

list formed the basis for a discussion of the classification of

each drug among co-authors and the final classification for

each drug was based on a consensus agreement.

3.2 Substrates and Inhibitors

In the 2012 FDA draft guidance on investigation of

potential DDIs, it is advised that all newly marketed drugs

should be evaluated in vitro to determine whether they are

a P-gp substrate and, depending on the therapeutic use (e.g.

probability of being prescribed with digoxin, a P-gp sub-

strate with a narrow therapeutic index), evaluation of P-gp

inhibitory properties should be considered [32]. Flowcharts

for assessment of both P-gp substrate and inhibitor status

have previously been published [30] and incorporated by

the FDA in their guidance [32]. A similar guidance is

provided by EMA [31]. Aiming to construct a classification

that would acknowledge and accommodate the differential

levels of evidence available for newer versus older drugs,

we used the FDA classifications (see Figs. 1, 2) to guide

our criteria for evidence needed to obtain the different

classifications described below. Overall, the classification

was based on two steps for substrates and inhibitors: the

first step was based on in vitro evidence and the second

step on in vivo evidence.

In the first step, based on in vitro studies of human P-gp,

we categorized evidence of clinical relevance for substrates

and inhibitors of P-gp as ‘yes’, ‘no’ or ‘uncertain’. To

qualify for categorization ‘yes’ as a substrate, we required

evidence for polarized transport from a study using cells

overexpressing P-gp in a bidirectional assay with a net efflux

above 2. If, with the addition of a known P-gp inhibitor, the

positive net efflux was not inhibited by 50% or more or the

efflux ratio was not attenuated towards 1, we took this as

evidence that other drug transporters were likely to be

responsible for the observed polarized net efflux [43].

Acceptable cells for categorization ‘yes’ were (for both

substrates and inhibitors) Caco-2 cells (human colon carci-

noma cell monolayers) or either of the recombinant

epithelial cell lines MDR1-MDCK (Madine-Darby canine

kidney cells transfected with the human MDR1 gene) or

L-MDR1 cells (porcine kidney epithelial cells, LLC-PK1,

transfected with the human MDR1 gene). To qualify for

categorization ‘yes’ as an inhibitor, we required evidence for

likely clinically relevant inhibition based on calculation of

[I]1/IC50 or [I]2/IC50 (as defined in Fig. 2), and if this was

not found we classified as ‘no’. If evidence was in various

ways insufficient or incomplete (e.g. by being based on other

cell lines or by lacking a positive control but otherwise

indicating that the drug was a P-gp substrate), we would

classify as ‘uncertain’. We also used categorization as

‘uncertain’ if evidence from established cell lines was con-

flicting (for both substrates and inhibitors). If the drug was

marketed within recent years and the label or SmPC

explicitly mentioned that the drug had been shown to be an

in vitro P-gp substrate or P-gp inhibitor but did not mention

specifically which cells had been used, we classified as ‘yes’

assuming that this was likely to be one of the established cell

lines (except if mentioned that this was not thought to be

clinically relevant in which case we categorized as ‘no’).

In the second step, for drugs classified as ‘yes’ or

‘uncertain’ (as substrates or inhibitors) in the first step, we
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then classified evidence of clinical relevance as ‘yes’, ‘no’

or ‘uncertain’ based on in vivo evidence. For substrates, we

classified evidence of clinical relevance based on changes

in the AUC and/or adverse effects taking into account the

specific pharmacokinetics of the particular object drug in

question such as the therapeutic window (i.e. no global

AUC cut-off for substrates). For a drug to qualify for cat-

egorization ‘yes’ as an inhibitor, we used an increase in

AUC for a model P-gp substrate (digoxin, talinolol, fex-

ofenadine or dabigatran etexilate) of at least 25% as cut-off

for assessing clinical relevance [32]. For increases in

AUC\ 25% we classified as ‘no’, and if results were

conflicting, based on a non-model substrate, or if no rele-

vant in vivo evidence was identifiable or otherwise unclear,

we categorized as ‘uncertain’.

3.3 Inducers

Since in vitro methods for studying P-gp induction do not

currently provide clear evidence, we based classification of

inducers solely on in vivo evidence of clinical relevance as

‘yes’, ‘no’ or ‘uncertain’—in the latter case, such as if a

drug has been observed to be an inducer of enzymes via

nuclear receptors such as PXR, but where no direct in vivo

evidence was found [31, 43]. To qualify for classification

as ‘yes’, we required a [20% reduction in AUC with

digoxin, talinolol, fexofenadine or dabigatran etexilate as

substrates [32]. If less was observed, we classified as ‘no’,

and if evidence was conflicting or otherwise unclear, or

other substrates had been used, we classified as ‘uncertain’.

A few drugs were both inhibitors and inducers of P-gp with

inhibition being dominant in the acute phase and induction

in the chronic phase (rifampicin, ritonavir and tipranavir).

3.4 Notes on Interpretation of Tables

In the main tables (Tables 1, 2, 3, 4, 5), we highlight the

drugs for which the evidence regarding the potential for

clinically manifest P-gp-mediated DDIs was most com-

pelling; that is, substrates and inhibitors classified as either

(in vitro evidence–in vivo evidence): ‘yes’–’yes’, ‘uncer-

tain’–’yes’, or ‘yes’–’uncertain’, and inducers classified as

‘yes’. Drugs with the remaining combinations of in vitro

and in vivo classifications are presented in five similar

tables in the ESM (Supplementary Tables 1–5). For drugs

classified as ‘no’ in the first step based on in vitro evidence

(substrates or inhibitors), no evaluation of in vivo evidence

was undertaken (assuming that transporters other than P-gp

would be responsible for any in vivo evidence).

Before using the results from the present review to guide

daily clinical practice, a number of challenges regarding

classification and interpretation merit discussion. For

instance, an effect attributed to P-gp may in fact be driven

by other (known or unknown) drug transporters or drug-

metabolizing enzymes and isolating an effect

attributable to P-gp may not always be possible. For this

Is the efflux significantly inhibited 
(>50%) by one or more P-gp-inhibitors?

Is the net flux ra�o of the inves�ga�onal drug ≥ 2 in a bi-direc�onal transporter assay
(e.g. in Caco-2 or MDR1-overexpressing polarized epithelial cell lines)?

Poor or non-P-gp 
substrate

Net flux ra�o ≥ 2 Net flux ra�o < 2

Yes

Probably a P-gp 
substrate

No

Other efflux transporters are 
responsible for the observed data

Complete an assessment of clinical and non-
clinical informa�on to determine whether an 

in vivo DDI study is warranteda

Fig. 1 Decision tree for

determining status as

P-glycoprotein substrate used

for regulatory guidance

(modified from [30]).
aPreclinical and clinical

information should be assessed

to determine whether a new

molecular entity is a P-gp

substrate. Particularly, the

relative contribution of the

transporter-mediated pathway to

the overall clearance of the drug

is the primary determinant of

whether an inhibitor will have a

major effect on the disposition

of the new molecular entity; i.e.

an in vivo interaction study may

not be needed for a drug that has

high solubility, high

permeability and/or is highly

metabolized since it is less

likely to be affected by a P-gp

inhibitor [30]. DDI drug–drug

interaction, P-gp P-glycoprotein
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reason, if there was evidence qualifying the drug as a P-gp

substrate in vitro (classification ‘yes’) and in vivo evidence

of a clinically relevant change in AUC, which may be

driven by P-gp but also by other enzymes or transporters,

we classified as ‘yes’ in the second step with respect to

clinical relevance. To acknowledge shared contribution

from P-gp and CYP3A4 in vivo, a column denoting whe-

ther a drug is a known substrate, inhibitor or inducer of

CYP3A4 is included in the tables presented in the main

paper. One example of this is the protein kinase inhibitor,

dabrafenib, which is an in vitro substrate of human P-gp.

Dabrafenib has a high oral bioavailability of 94.5% and a

high metabolic clearance. When dabrafenib is co-admin-

istered with ketoconazole, which is a potent inhibitor of

both CYP3A4 and P-gp, the AUC of dabrafenib increased

by 57% [44]. However, given the high oral bioavailability

and high metabolic clearance of dabrafenib, this increase in

AUC is likely driven by the inhibitory effects on CYP3A4

decreasing the clearance of dabrafenib rather than by the

inhibitory effects of P-gp on extent of absorption (cf.

Supplementary Table 1, ESM). On the other hand, aliski-

ren (an antihypertensive drug, cf. Table 2) is an example of

a P-gp substrate that is eliminated mainly as an unchanged

compound in the faeces and where only approximately

1.4% of the total oral dose is metabolized [45]. Thus, in

this case the 4- to 5-fold increase in aliskiren AUC with co-

administration of ciclosporin A is likely driven by P-gp as

opposed to by CYP3A4.

Cobicistat, a CYP3A4 inhibitor used for pharmacoki-

netic boosting of HIV-protease inhibitors, is an example

of a newly marketed drug where the information avail-

able on results of in vitro testing for P-gp and CYP3A4

modulatory properties is more extensive as compared

with older drugs. In addition, cobicistat is an example of

a drug where the interpretation of P-gp modulatory status

is especially complex. In vitro cobicistat has been shown

to be both a substrate and an inhibitor of P-gp and

CYP3A4 and according to our classification qualifies for

classification ‘yes’ in the first step based on in vitro data

[46]. With respect to concurrent in vivo administration

with digoxin, AUC of digoxin is, however, only

increased by 8% with co-administration of cobicistat.

Thus, in the second step based on in vivo data, cobicistat

classifies as ‘no’ as an inhibitor and is consequently

Probably a P-gp-inhibitor

Bi-direc�onal transport assay with a probe P-gp-substrate e.g. in Caco-2 or MDR1-
overexpressing cell lines.

Poor or non-P-gp 
inhibitor

Net flux ra�o of a probe substrate decreases with 
increasing concentra�ons of the inves�ga�onal drug

[I]1/IC50 (or Ki) ≥ 0.1

or

[I]2/IC50 (or Ki) ≥ 10a

An in vivo drug 
interac�on study 

with a P-gp substrate  
such as digoxin is 

recommended

Net flux ra�o of a probe substrate is not affected with 
increasing concentra�ons of the inves�ga�onal drug

Determine Ki or IC50 of the inhibitor

[I]1/IC50 (or Ki) < 0.1

or

[I]2/IC50 (or Ki) < 10a

An in vivo drug 
interac�on study 

with a P-gp substrate  
is not needed

Fig. 2 Decision tree for determining status as P-glycoprotein

inhibitor used for regulatory guidance (modified from [30]). a[I]1

represents the mean steady-state total (free and unbound) maximum

serum concentration (Cmax) following administration of the highest

proposed clinical dose. [I]2 represents concentration of a therapeutic

dose of the inhibitor dissolved in 250 mL. IC50 is defined as the

concentration of the inhibitor needed to inhibit half the transport rate

of the substrate. P-gp P-glycoprotein
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Table 1 Anticancer and immunomodulatory drugs with p-glycoprotein modulatory properties classified according to in vitro and in vivo

evidence

Drug Property Classification CYP3A4a Pharmacokinetic details and/or clinical

implications (e.g. AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Actinomycin D Sub Yes Uncertain [53, 54]

Afatinib Sub Uncertain Yes AUCafatinib ? rif/AUCafatinib = 0.66 [55, 56]

Apremilast Sub Yes Yes Sub AUCapremilast ? rif/AUCapremilast = 0.28

AUCapremilast ? ket/AUCapremilast = 1.36

[57, 58]

Carbozantinib Inh Yes Uncertain Sub [59]

Ceritinib Sub Yes Uncertain Ind/inh/sub AUCceritinib ? ket/AUCceritinib = 2.8 [60, 61]

Ciclosporin A Inh Yes Yes Inh/sub AUCdig ? CsA/AUCdig * 2 [43, 62–69]

Sub Yes Yes AUCCsA ? ery/AUCCsA = 2.1

Darunavir Inh Yes Yes Inh/sub AUCdig ? darunavir/AUCdig = 1.35 [70, 71]

Daunorubicin Sub Yes Uncertain [65, 72]

Docetaxel Sub Yes Yes Sub AUCdocetaxel?CsA/AUCdocetaxel = 7.3 [73–75]

Doxorubicin Sub Yes Yes Sub AUCdxr ? PSC833/AUCdxr = 1.54

AUCdxrol ? PSC833/AUCdxrol * :10-fold

[76–82]

Enzalutamide Inh Yes Uncertain Ind/sub Perhaps also P-gp inducer (Table S1) [83, 84]

Erlotinib Sub Yes Yes Inh/sub AUCerlotinib ? ket/AUCerlotinib = 1.86 [85, 86]

Etoposide Sub Yes Yes Sub AUCetoposide ? CsA/AUCetoposide = 1.80

AUCetoposide ? PSC833/

AUCetoposide = 1.89

[87–90]

Everolimus Sub Yes Yes Inh/sub AUCeverolimus ? ket/AUCeverolimus = 15.3

AUCeverolimus ? ver/AUCeverolimus = 3.5

[91–94]

Inh Yes Uncertain

Gefitinib Sub Yes Uncertain Sub [95]

Ibrutinibb Inh Yes Uncertain Inh/sub DDI perhaps avoidable by staggered adm [96]

Idelalisib Sub Yes Yes Inh/sub AUCidelalisib ? ket/AUCidelalisib = 1.79 [97]

Imatinib Inh Yes Uncertain Inh/sub [98–101]

Sub Yes Yes AUCimatinib ? ket/AUCimatinib = 1.40

Irinotecan Sub Yes Uncertain Sub [102–104]

Lapatinib Inh Yes Yes Inh/sub AUCdig ? lapatinib/AUCdig = 1.80 [105, 106]

Sub Yes Yes AUClapatinib ? ket/AUClapatinib = 3.6

Methylprednisolone Sub Yes Uncertain Inh/sub [107, 108]

Nilotinib Sub Yes Yes Sub AUCnilotinib ? ket/AUCnilotinib * :3-fold [109, 110]

Paclitaxel Sub Yes Yes Sub AUCpct ? R-ver/AUCpct * :2-fold [111–113]

Regorafenib Inh Yes Uncertain Inh/sub [114, 115]

Sirolimus Sub Yes Yes Sub AUCsirolimus ? ket/AUCsirolimus = 10.9 [91, 116]

Tacrolimus Inh Yes Uncertain Inh/sub [62, 91, 117–123]

Sub Yes Yes AUCtacrolimus ? ket/AUCtacrolimus = 3.03

Teniposide Sub Yes Uncertain [124]

Topotecan Sub Yes Uncertain [125, 126]

Trastuzumab

emtansinec
Sub Yes Uncertain Sub [127, 128]

Vinblastine Sub Yes Yes Sub Dose reduction of vinblastine needed

with concurrent adm of e.g. PSC-833

[73, 113, 129, 130]
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mentioned in Supplementary Table 3 (ESM) [46]. Of

note, the manufacturer still recommends monitoring

digoxin levels (and also levels of dabigatran etexilate) on

co-administration [47]. While cobicistat is a (high-per-

meability) P-gp substrate in vitro [46], in vivo evidence

is sparse. According to the SmPC, concurrent adminis-

tration with inhibitors or inducers of CYP3A4 (i.e.

potentially also P-gp) is warned against. These interac-

tions have not always been studied in vivo (e.g. azole

antibiotics) but are based on theoretical extrapolations

and the disentangling of the interaction potential may

further be complicated by the fact that cobicistat is

administered for clinical purposes as a pharmacokinetic

enhancer together with the HIV-protease inhibitors dar-

unavir or azatanavir or with the HIV-integrase inhibitor

elvitegravir [47, 48]. Thus, the individual effect of P-gp

on cobicistat may be hard to isolate, and this is why,

based on the current evidence, we have classified evi-

dence of clinical relevance for its status as substrate as

‘uncertain’ (cf. Table 3).

Ketoconazole is an antifungal agent and a dual inhibitor

of CYP3A4 and P-gp. However, the clinical relevance of

this for potential in vivo DDIs appears to be dose depen-

dant. For instance, when ketoconazole is administered with

digoxin (200 mg per day for 4 days), a 9% increase in

AUC has been observed [49]. Further, for administration of

fexofenadine, an 8% decrease in fexofenadine AUC has

been observed with pretreatment with ketoconazole

200 mg daily for 5 days [50], but a 164% increase with

coadministration of ketoconazole 400 mg once daily [51]

(cf. Table 3). Likewise, for coadministration of ketocona-

zole 400 mg with dabigatran etexilate, the AUC of the

latter increases by approximately 2.5-fold and the combi-

nation is contraindicated according to the manufacturer

[52].

4 Main Tables of Drugs with P-Glycoprotein-
Modulatory Properties Classified According
to In Vitro and In Vivo Evidence

See Tables 1, 2, 3, 4 and 5.

5 Clinical Implications

Once a potential DDI has been identified, the next step is to

predict the likelihood that this may result in a clinically

manifest DDI and decide on the appropriate measures to be

taken. These could span from no additional measures (i.e.

if the potential DDI is rendered harmless), to additional

monitoring (e.g. treatment with closer than usual follow-up

with appropriate laboratory tests, physical exams or ther-

apeutic drug monitoring), dose adjustment, staggered

administration or in some cases frank contraindication

coupled with a search for alternative treatments. Appro-

priate measures to be taken depend on a number of factors

relating to characteristics of both the precipitant and object

drugs as well as patient characteristics.

5.1 Considerations Relating to Individual Drug

Characteristics

5.1.1 Dose

For P-gp, dose-dependent DDIs may occur. In particular,

loperamide, an anti-diarrhoeal agent that reduces motility of

the gut by interfering with the opioid receptor in the gut wall

[320], is an example of a P-gp substrate for which the

clinical relevance of a potential DDI is dose dependent.

Sadeque et al. [276] conducted a study in eight healthy

volunteers who received a single dose of loperamide 16 mg

Table 1 continued

Drug Property Classification CYP3A4a Pharmacokinetic details and/or clinical

implications (e.g. AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Vincristine Sub Yes Uncertain Sub [76, 131]

Drugs that are classified as P-gp inhibitors and for which the AUC ratio with and without addition of the P-gp inhibitor in question is[2 (i.e.

strong inhibitors) are highlighted in bold

adm administration, AUC area under the concentration time curve, CsA ciclosporin A, DDI drug–drug interaction, dig digoxin, dxr doxorubicin,

dxrol doxorubicinol, ery erythromycin, ind inducer, inh inhibitor, ket ketoconazole, pct paclitaxel, P-gp p-glycoprotein, PSC-833 valspodar (a

second generation P-gp antagonist developed to reverse multidrug resistance), rif rifampicin, R-ver R-verapamil, sub substrate, Table S1

Supplementary Table 1 in the ESM, ver verapamil, : indicates increase
a Denotes whether the drug is also a substrate, inhibitor or inducer of the drug-metabolizing enzyme cytochrome P450 type 3A4 (CYP3A4)

according to [132] or the Summary of Product Characteristics/label for the particular drug
b Aspects further discussed in the main text
c In this case, the P-gp substrate is not the drug itself but emtansine that is released during lysosomal degradation of trastuzumab
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in the presence of either quinidine 600 mg (P-gp inhibitor)

or placebo. The study showed a significant difference in the

occurrence of respiratory depression in individuals who

were administered quinidine as opposed to placebo. A

subsequent study investigated the effects of quinidine and

HM30181 (third-generation P-gp inhibitor with a very low

Table 2 Cardiovascular drugs and anticoagulants with p-glycoprotein modulatory properties classified according to in vitro and in vivo evidence

Drug Property Classification CYP3A4a Pharmacokinetic details and/or clinical

implications (e.g. AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Aliskirenb Sub Yes Yes (Sub) AUCaliskiren ? CsA/AUCaliskiren = :4- to 5-fold [45, 133, 134]

Ambrisentan Sub Yes Yes Sub AUCambrisentan ? CsA/AUCambrisentan = :2-fold [135, 136]

Amiodarone Inh Yes Yes Inh/sub AUCdig ? amiodarone/AUCdig = 1.68 [69, 137]

Apixabanb Sub Yes Yes Sub AUCapixaban ? ket/AUCapixaban = :2-fold [138, 139]

Atorvastatin Sub Yes Yes Sub AUCatorvastatin ? tip ? rit/AUCatorvastatin = 9.4 [140–143]

Carvedilolb Inh Yes Yes (Sub) AUCdig ? carvedilol/AUCdig * 1.15–1.56 [69, 144–148]

Sub Yes Yes AUCcarvedilol ? rif/AUCcarvedilol = 0.30

Dabigatran

etexilateb
Sub Yes Yes AUCDE ? ver/AUCDE =\1.20–2.50 [122, 149–151]

Digoxin Sub Yes Yes AUCdig ? qnd/AUCdig = 1.76 [152–155]

Diltiazem Inh Yes Uncertain Inh AUCdig ? diltiazem/AUCdig = 1.44

AUCfex ? diltiazem/AUCfex = 1.07

[69, 156, 157]

Dronedarone Inh Yes Yes Inh AUCdig ? dronedarone/AUCdig = 2.5 [158, 159]

Edoxaban Sub Yes Yes Sub AUCedoxaban ? ver/AUCedoxaban = 1.53

AUCedoxaban ? CsA/AUCedoxaban = 1.73

[160–162]

Irbesartan Inh Yes Uncertain [163]

Labetalol Sub Yes Uncertain [164–166]

Lomitapide Inh Yes Uncertain Inh/sub [167, 168]

Losartan Sub Yes Uncertain Sub [169]

Propafenone Inh Yes Yes Sub AUCdig ? propafenone/AUCdig = 1.37 [170, 171]

Propranolol Inh Yes Uncertain [145]

Quinidine Inh Yes Yes Sub AUCdig ? qnd/AUCdig = 1.76 [69, 155]

Ranolazine Inh Yes Yes Inh AUCdig ? ranolazine/AUCdig = 1.6 [43, 69, 172, 173]

Sub Yes Yes Sub AUCranolazine ? ver/AUCranolazine = 2.3

Riociguat Sub Yes Yes Sub AUCriociguate ? ket/AUCriociguate = 1.50 [174, 175]

Rivaroxaban Sub Yes Yes Sub AUCrivaroxaban ? ket/AUCrivaroxaban = 1.8–2.6 [176–179]

Simvastatinc Inh Yes Uncertain Sub [180]

Simvastatin

Acid

Sub Yes Yes Active metabolite of simvastatin [180–182]

Talinolol Sub Yes Yes AUCtalinolol ? rif/AUCtalinolol = 0.65 [183, 184]

Ticagrelor Inh Yes Yes Inh/sub AUCdig ? ticagrelor/AUCdig = 1.28 [185–188]

Sub Yes Yes AUCticagrelor ? rif/AUCticagrelor = 0.14

Tolvaptanb Sub Uncertain Yes Sub AUCtolvaptan ? ket/AUCtolvaptan = :5-fold [189, 190]

Verapamilb Inh Yes Yes Inh/sub AUCdig ? ver/AUCdig = 1.50 [69, 191–193]

Drugs that are classified as P-gp inhibitors and for which the AUC ratio with and without addition of the P-gp inhibitor in question is[2 (i.e.

strong inhibitors) are highlighted in bold

AUC area under the concentration time curve, CsA ciclosporin A, DE dabigatran etexilate, dig digoxin, fex fexofenadine, inh inhibitor, ket

ketoconazole, P-gp p-glycoprotein, rif rifampicin, rit ritonavir, sub substrate, tip tipranavir, ver verapamil, qnd quinidine, : indicates increase
a Denotes whether the drug is also a substrate, inhibitor or inducer of the drug-metabolizing enzyme cytochrome P450 type 3A4 (CYP3A4)

according to [132] or the Summary of Product Characteristics/label for the particular drug
b Aspects further discussed in the main text
c In vitro P-gp inhibition is dose-dependent, i.e. not likely to be clinically relevant in low doses but may be in higher doses
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Table 3 Drugs for infectious diseases with p-glycoprotein modulatory properties classified according to in vitro and in vivo evidence

Drug Property Classification CYP3A4a Pharmacokinetic details and/or

clinical implications (e.g.

AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Abacavir Sub Yes Uncertain [194, 195]

Azithromycin Inh Yes Uncertain [33, 196–198]

Claritromycin Inh Yes Yes Inh/sub AUCdig ? clar/AUCdig = 1.7 [43, 197, 199]

Cobicistatb Sub Yes Uncertain Inh/sub [46, 47]

Daclatasvir Inh Yes Yes Inh/sub AUCdig ? dctv/AUCdig = 1.27 [200, 201]

Sub Yes Yes AUCdctv ? ket/AUCdctv = 3.00

Dolutegravir Sub Yes Uncertain Sub [202]

Elvitegravir Sub Yes Yes (Ind)/inh/sub AUCevgv ? ket/AUCevgv = 1.48 [46, 47]

Erythromycin Sub Yes Uncertain Sub [203, 204]

(Fos)amprenavir Sub Yes Yes Ind/inh/sub Fosamprenavir: prodrug [205–207]

Indinavir Sub Yes Uncertain Inh/sub [208, 209]

Itraconazole Inh Yes Yes Inh/sub AUCdig ? icz/AUCdig = 1.68 [43, 122, 210–212]

Ivermectin Inh Yes Uncertain Sub [33, 124, 213–215]

Sub Yes Uncertain

Ketoconazoleb Inh Yes Yes Inh/sub AUCDE ? ket/AUCDE = 2.4–2.5c

AUCdig ? ket/AUCdig = 1.09d

AUCfex ? ket/AUCfex = 0.92e

AUCfex ? ket/AUCfex = 2.6f

[49–52, 122, 150, 216–218]

Ledipasvirb Inh Yes Uncertain (Inh) [219, 220]

Sub Yes Yes AUCldpv ? rif/AUCldpv = 0.41

Levofloxacin Sub Yes Uncertain [16, 221, 222]

Lopinavir Inh Yes Uncertain Inh/sub [223–225]

Maraviroc Inh Yes Uncertain Sub AUCdig ? mrvr/AUCdig = 1.00g [226, 227]

Sub Yes Yes AUCmrvr ? rif/AUCmrvr = 0.63

Meflokine Inh Yes Uncertain Sub [228, 229]

Nelfinavir Sub Yes Yes Sub AUCnelfinavir ? rif/AUCnelfinavir = 0.18 [230–233]

Panobinostat Sub Yes Yes (Ind)/sub AUCpbns ? ket/AUCpbns = 1.6–1.8 [234, 235]

Paritaprevirb Sub Yes Uncertain Sub Complex interpretation (see text) [236, 237]

Ponatinib Inh Yes Uncertain Inh/sub [238, 239]

Rifampicinb Ind Yes Ind AUCdig 1 wk after rif/AUCdig = 0.68h [183, 240, 241]

Inh Yes Yes AUCdig ? first dose rif/AUCdig = 1.46

Ritonavirb Ind Yes Inh/sub AUCdig ? 13 day rit/AUCdig = 1.22 [7, 122, 230, 242–245]

Inh Yes Yes AUCdig ? 3 day rit/AUCdig = 1.86

Sub Yes Yes AUCrit ? rif/AUCrit = 0.65

Roxithromycin Inh Yes Uncertain Inh [196, 197, 246]

Saquinavir Inh Yes Uncertain Inh/sub AUCdig ? saq ? rit/AUCdig = 1.49i [243–245, 247, 248]

Sub Yes Yes AUCsaq ? clar/AUCsaq = 2.77

Simeprevir Inh Yes Yes Inh/sub AUCdig ? smpv/AUCdig = 1.39 [249, 250]

Sub Yes Yes AUCsmpv ? rif/AUCsmpv = 0.52

Sofosbuvirb Sub Yes Yes AUCsfbv ? ldpv /AUCsfbv = 2.5 [219, 220]

Sparfloxacin Sub Yes Uncertain [251–253]
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bioavailability of 0.3%) on the pharmacokinetics and phar-

macodynamics of a single oral dose of loperamide 16 mg

[274]. Both inhibitors resulted in a clinically relevant

increase in loperamide AUC as compared with loperamide

on its own (HM30181 48% increase and quinidine 120%

increase), and for concomitant administration of quinidine a

marked reduction in pupil size was also seen. Concurrent

administration of loperamide 16 mg as a single dose with

ketoconazole resulted in a 5-fold increase in the plasma

concentration of loperamide but no pharmacodynamic effect

as assessed by pupillometry [320]. This may be explained by

a differential level of P-gp inhibition in the gut and the CNS,

due to differences in the inhibitor concentration at the two

sites, implying that a clinically relevant increase in plasma

AUC due to administration of an oral P-gp inhibitor may not

transfer directly to a clinically manifest CNS affection.

Thus, while the transport of loperamide across the blood–

brain barrier and into the CNS is increased by P-gp inhibi-

tion [274, 321], the clinical relevance of this has been dis-

puted [275]. Evidence to support the presence of a clinically

relevant interaction between loperamide and P-gp inhibitors

is insufficient when loperamide is taken at the recommended

dose, which according to the SmPC is 2 mg at a time for

multiple doses [320]. However, the half-life of loperamide is

11 h, which following multiple 2-mg doses may result in

drug accumulation, and thus toxicity cannot be excluded in

case of repeated administration or abuse [322]. We have

therefore chosen to classify loperamide as ‘yes’ with respect

to both in vitro and in vivo evidence (substrate, cf. Table 3).

Finally, for classification of some of the CNS drugs as

P-gp inhibitors, based on in vitro studies, values of I2/IC50

may be above or below the cut-off of 10 (cf. Fig. 2)

depending on the doses recommended for the various

therapeutic indications. Thus, for higher doses, in vitro

evidence may indicate potential for a clinically relevant

DDI whereas this may not be the case for lower doses. In

these instances, we have classified these drugs as ‘yes’ with

respect to inhibitory status (in vitro evidence) but have

mentioned in the table that this may indeed not be clini-

cally relevant for indications with doses in the lower range

(cf. Tables 2 and 4).

5.1.2 Therapeutic Index of Object Drug

Potential DDIs are more likely to become clinically man-

ifest in the setting of a drug with a narrow therapeutic

index, that is, a short span from occurrence of therapeutic

effect to side effects. Examples of P-gp substrates with a

narrow therapeutic index are digoxin and dabigatran etex-

ilate. On interpretation of results presented in the tables of

Table 3 continued

Drug Property Classification CYP3A4a Pharmacokinetic details and/or

clinical implications (e.g.

AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Tipranavirb Ind Yes Ind/inh/sub AUCdig ? tpnv, steady state/AUCdig = $ [254]

Inh Yes Yes AUCdig ? tpnv, first dose/AUCdig = 1.91

Sub Yes Yes AUCtpnv ? clar/AUCtpnv = 1.66

Drugs that are classified as P-gp inhibitors and for which the AUC ratio with and without addition of the P-gp inhibitor in question is[2 (i.e.

strong inhibitors) are highlighted in bold, $ indicates no change

AUC area under the concentration time curve, clar clarithromycin, dctv daclatasvir, DE dabigatran etexilate, dig digoxin, discont discontinued,

evgv elvitegravir, fex fexofenadine, icz itraconazole, ind inducer, inh inhibitor, ket ketoconazole, ldpv ledipasvir, mrvr maraviroc, pbns

panobinostat, P-gp p-glycoprotein, rif rifampicin, rit ritonavir, saq saquinavir, sfbv sofosbuvir, smpv simeprevir, sub substrate, tpnv tipranavir
a Denotes whether the drug is also a substrate, inhibitor or inducer of the drug-metabolizing enzyme cytochrome P450 type 3A4 (CYP3A4)

according to [132] or the Summary of Product Characteristics/label for the particular drug
b Aspects further discussed in main text
c Concomitant administration of ketoconazole 400 mg single dose and 400 mg once daily for 8 days, respectively [52]
d Cross-over treatment with ketoconazole (200 mg per day for 4 days) compared with no intervention [49]
e Pretreatment with ketoconazole 200 mg daily for 5 days [50]
f Co-administration of fexofenadine with ketoconazole 400 mg once daily [51]
g In vitro P-gp substrate but no clinically relevant change in digoxin pharmacokinetics, but according to the Summary of Product Characteristics

it cannot be excluded that the exposure of dabigatran etexilate may be increased [226]
h Digoxin in the numerator measured one week post discontinuation of rifampicin
i Digoxin in the numerator was single dose
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this paper, it is therefore important to take into account that

while concurrent administration of a given P-gp inhibitor

with digoxin may produce AUC changes determined to be

clinically relevant for digoxin, this may not be the case for

other P-gp substrates with a wider therapeutic index. Thus,

results based on narrow therapeutic index substrates such

as digoxin should not be over-extrapolated to other P-gp

substrates [30, 323].

5.1.3 Potency of the Precipitant Drug in Inhibiting P-gp

Potency of the P-gp inhibitor relative to its unbound plasma

levels or estimated intestinal levels after therapeutic doses is

another factor influencing recommendations for prescription

with P-gp substrates. For example, for edoxaban, a direct oral

anticoagulant, dose reduction is recommended with potent

P-gp inhibitors such as ciclosporin A and ketoconazole but not

Table 4 CNS drugs, drugs for gastrointestinal or endocrine disorders with p-glycoprotein modulatory properties classified according to in vitro

and in vivo evidence

Drug Property Classification CYP3A4a Pharmacokinetic details and/or clinical

implications (e.g. AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

CNS drugs

Carbamazepine Ind Yes Ind AUCfex ? cbz/AUCfex = 0.40–0.57 [255–258]

cbz-10,11-

epoxide

Sub Yes Uncertain Sub Active metabolite of carbamazepine [258]

Flupenthixolb Inh Yes Uncertain [16, 37, 259]

Fluvoxamineb Inh Yes Yes Inh AUCfex ? fluvoxamine/AUCfex = 1.78 [259–261]

Haloperidolb Inh Yes Uncertain Sub [259, 262]

Oxcarbamazepine Sub Yes Uncertain [258]

Paroxetineb Inh Yes Yes AUCfex ? paroxetine/AUCfex = 1.38 [260, 261, 263]

Sub Uncertain Yes AUCparoxetine ? icz/AUCparoxetine = 1.5

Phenytoin Ind Yes Ind AUCfex ? phenytoin/AUCfex = 0.77 [16, 264]

Drugs for gastrointestinal disorders

Cimetidine Sub Yes Uncertain Sub [16, 265]

Domperidone Sub Yes Yes Inh/sub AUCdomperidone ? icz/AUCdomperidone = 3.2 [214, 266–268]

Lansoprazole Sub Yes Uncertain Sub [269, 270]

Loperamideb Inh Yes Uncertain Sub [271–276]

Sub Yes Yes Clinical relevance dose dependantc

Naloxegole Sub Yes Uncertain Sub AUCnaloxegole ? rif/AUCnaloxegole = 0.11 [277, 278]

Ondansetron Sub Yes Uncertain Sub [214]

Hormones and drugs for endocrine disorders

Canagliflozine Sub Yes Uncertain (Inh) AUCcagfz ? CsA/AUCcagfz = 1.23 (no dose

adj)

AUCcagfz ? rif/AUCcagfz = 0.49 (may ;
efficacy)

[279, 280]

Eliglustat Inh Yes Yes Sub AUCdig ? eliglustat/AUCdig = 1.49 [281, 282]

Sub Yes Yes AUCeliglustat ? ket/AUCeliglustat = 4.3

Glibenclamide Sub Uncertain Yes Sub AUCglibenclamide ? rif/AUCglibenclamide = 0.61 [283–285]

Saxagliptin Sub Yes Yes Sub AUCsaxagliptin ? ket/AUCsaxagliptin = 2.5

AUCsaxagliptin ? rif/AUCsaxagliptin = 0.34

[286, 287]

adj adjustment, AUC area under the concentration time curve, cagfz canagliflozine, CsA ciclosporin A, cbz carbamazepine, dig digoxin, fex

fexofenadine, icz itraconazole, ind inducer, inh inhibitor, ket ketoconazole, P-gp p-glycoprotein, rif rifampicin, sub substrate,; indicates decrease
a Denotes whether the drug is also a substrate, inhibitor or inducer of the drug-metabolizing enzyme cytochrome P450 type 3A4 (CYP3A4)

according to [132] or the Summary of Product Characteristics/label for the particular drug
b In vitro P-gp inhibition is dose-dependent, that is, not likely to be clinically relevant in low doses but may be in higher doses
c Aspects further discussed in main text
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with the less potent inhibitor verapamil [162]. Also, for

another direct oral anticoagulant, dabigatran etexilate, the

impact on the AUC differed quite substantially according to

the studied inhibitor in vivo. For clarithromycin, the AUC

increased by 19% andCmax (peak drug concentration) by 15%,

substantially less than with ketoconazole, for example, for

which the AUC increased by 138% [150].

5.1.4 Contributions of Other Enzymes or Transporters

to the Pharmacokinetics of the Substrate Drug

For many drugs, more than one enzyme or transporter

influences the pharmacokinetics of the drug and to a

varying extent. In this context, the proportion of a P-gp

substrate depending on P-gp transport and metabolization

or transport by other enzymes or transporters, respectively,

needs to be evaluated together with the modulatory prop-

erties of the precipitant drug on the same enzymes and

transporters. Examples of this relating to P-gp and

CYP3A4 are mentioned in Sect. 3.

5.1.5 Dual Effects Over Time

Some drugs may be both inhibitors and inducers of

P-gp depending on the timing. Rifampicin is an exam-

ple of such a drug. If, for example, rifampicin and

digoxin are administered in temporal proximity, the

inhibitory effect of rifampicin is clinically manifest

whereas the induction effect takes over with time [240].

Likewise, for both fexofenadine and digoxin, the inhi-

bitory properties of ritonavir are predominant in the

acute phase and lessen with time as the induction takes

over [242, 324].

5.1.6 Route of Administration

Route of administration of the drug might also play a role.

If the site of potential interaction is predominantly at the

intestinal level affecting absorption, this would not be

expected to affect the pharmacokinetics of a drug admin-

istered parenterally.

Table 5 Miscellaneous drugs with p-glycoprotein modulatory properties classified according to in vitro and in vivo evidence

Drug Property Classification CYP3A4a Pharmacokinetic details and/or clinical

implications (e.g. AUCsub ? inh/AUCsub)

References

P-gp

modulation

(in vitro)

Clinical

relevance

(in vivo)

Bilastine Sub Yes Uncertain AUCbilastine ? ket/AUCbilastine = :2-fold [288, 289]

Cetirizineb Sub Yes Yes [290–292]

Colchicine Sub Yes Yes Sub AUCcolchicine ? CsA/AUCcolchicine = :3-fold [293–296]

Fexofenadine Sub Yes Uncertain [241, 290, 297]

Mirabegronc Inh Yes Yes Inh AUCdig ? mirabegron/AUCdig = 1.27 [298, 299]

Sub Yes Yes Sub AUCmirabegron ? ket/AUCmirabegron = 1.81

Morphine Sub Yes Uncertain Sub [300–305]

Nintedanib Sub Yes Yes (Sub) AUCnintedanib ? ket/AUCnintedanib = 1.61 [306, 307]

Ranitidine Sub Yes Uncertain Sub [308–310]

St John’s

Wort

Ind Yes Ind [311–313]

Quinined Inh Yes Yes Inh [314–317]

AUC area under the concentration time curve, CsA ciclosporin A, dig digoxin, induc inducer, inh inhibitor, ket ketoconazole, P-gp p-glyco-

protein, sub substrate, : indicates increase
a Denotes whether the drug is also a substrate, inhibitor or inducer of the drug-metabolizing enzyme cytochrome P450 type 3A4 (CYP3A4)

according to [132] or the Summary of Product Characteristics/label for the particular drug
b Cetirizine is a non-sedating antihistamine for which P-gp has been suggested to play a role in the lack of central nervous system side effects (as

compared with antihistamines with sedating properties) [318]. P-gp (as well as another adenosine triphosphate [ATP]-dependent transporter

protein, namely Breast Cancer Resistance Protein [BCRP]) is expressed on the apical membrane of the brain capillary endothelium and substrates

of these transporters are pumped back into the brain capillaries, thus limiting CNS entry [319]. Also, in a human study using functional magnetic

resonance imaging, participants who received combined treatment with cetirizine and verapamil (P-gp inhibitor) were less alert than those who

received cetirizine alone [292]
c Aspects further discussed in main text
d Quinine (chemically closely related to quinidine) is approved for the treatment of nocturnal leg cramps. The clearance of digoxin is decreased

in the presence of quinine causing a 25–40% increase in the serum concentration of digoxin and an increased half-life from 30–40/50 h [314].

This is likely to result in a more than 25% increase in digoxin AUC and why the drug has been classified as ‘yes’ as a P-gp inhibitor with respect

to both in vitro and in vivo evidence
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5.1.7 Highly Permeable Drugs

By being an efflux pump present at the apical level of the

intestinal membrane, P-gp plays a role in limiting drug

absorption. However, the extent to which P-gp limits

absorption of a given drug depends also on how much of

the drug is absorbed by passive permeability (as well as

transport by other transporters). Generally, a P-gp substrate

that is highly soluble, highly permeable and/or highly

metabolized is less likely to be affected to a clinically

relevant extent by a P-gp inhibiting drug [30]. For example,

midazolam, which is highly lipophilic, has generally not

been thought of as a P-gp substrate, perhaps due to its high

intestinal permeability. But there is some evidence that

midazolam actually exhibits characteristics of a highly

permeable P-gp substrate [325]. Still, in relation to the

clinical setting, this would not be of importance with co-

administration of a P-gp inducer or P-gp inhibitor since

midazolam passes the intestinal membrane anyway due to

the high permeability. Midazolam is, however, a CYP3A4

substrate, and in that context interactions would need

consideration.

5.1.8 Examples of Drug–Drug Interactions with Complex

Interpretation

The new oral hepatitis C drugs are examples where inter-

pretation of an interaction potential may be particularly

complex due to multiple drugs administered at the same

time. For example, ledipasvir and sofosbuvir are antivirals

administered together for the treatment of chronic hepatitis

C [220]. Both drugs are in vitro substrates of P-gp, and

ledipasvir is an in vitro inhibitor of P-gp. While the inhi-

bitory properties of ledipasvir have not been studied with

model substrates such as digoxin or dabigatran etexilate

in vivo, it has been shown to cause a more than two-fold

increase in sofosbuvir AUC, which is likely driven by the

combined effects of P-gp and BCRP modulation [219].

Accordingly, we have classified the inhibitory status of

ledipasvir as ‘yes’ with respect to both in vitro and in vivo

evidence (cf. Table 3).

Another complex example is the interpretation of the

potential for DDIs with ombitasvir, paritaprevir and ritonavir

given together (with or without dasabuvir) as part of treat-

ment for chronic hepatitis C. Paritaprevir, ritonavir and

dasabuvir all inhibit P-gp in vitro. In vivo, only ritonavir has

been administered with digoxin alone, which resulted in an

86% increase in digoxin AUC [243]. When the combination

of paritaprevir, ritonavir, ombitasvir (not a P-gp inhibitor

in vitro) and dasabuvir are administered together with

digoxin in vivo, digoxin AUC increases by 16% compared

with digoxin alone [326]. However, when paritaprevir,

ritonavir and ombitasvir are administered with digoxin (but

without dasabuvir), digoxin AUC increases by 36% com-

pared with digoxin alone [237]. Since the digoxin AUC

decreases compared with ritonavir administered alone, a

clinically relevant inhibitory potential of dasabuvir and

paritaprevir seems unlikely, which is why we have chosen to

classify the P-gp inhibitory status of both as ‘yes’ with

respect to in vitro evidence and ‘no’ with respect to in vivo

evidence (cf. Table 3 and Supplementary Table 3, ESM).

5.2 Clinical Considerations Relating to Patient

Characteristics

5.2.1 Organ Impairment and Special Populations

Renal and hepatic impairment are important considerations

when evaluating potential DDIs. That is, in patients with

impaired hepatic or renal function, the threshold for a DDI

becoming clinically manifest is lower if the drug depends

highly on that particular organ for elimination. Mirabegron,

indicated for treatment of patients with overactive bladder,

is an example of a P-gp substrate where the manufacturer

recommends caution only in patients with impaired renal or

hepatic function. In patients with normal renal or hepatic

function, mirabegron can be taken with inhibitors of

CYP3A4 and/or P-gp without dose adjustment [298]. Also,

for the direct oral anticoagulants (dabigatran etexilate,

rivaroxaban, apixaban and edoxaban), dose reduction is

recommended in patients with impaired renal function due

to a decreased elimination of the drug and thus increased

risk of toxicity [138, 150, 162, 177].

Particular consideration should also be taken among

special populations such as the elderly and paediatric

patients, where individual pharmacokinetics are different

compared with healthy adults [32]. When new drugs are

approved they will usually not have been tested in an

elderly or paediatric population, meaning that knowledge

regarding safety and efficacy in these populations depends

on post-marketing evidence. The elderly are at increased

risk of manifest DDIs for a number of reasons such as age-

related pharmacokinetic and pharmacodynamic changes

but also because polypharmacy, comorbidities and mal-

nutrition are more prevalent with age [327]. For apixaban,

the SmPC states that the AUC was increased by 32% in

individuals [65 years old compared with younger indi-

viduals (no difference in Cmax). If the patient also receives

acetylsalicylic acid, this additionally increases the risk of

bleeding [138]. For a more extensive review of managing

DDIs among the elderly we refer to other reviews such as

the one by Mallet et al. [327].

For the drug-metabolizing enzyme CYP3A4 there is

emerging evidence of a distinct ontogeny of the enzyme,

with low activity at birth reaching adult levels during the

first years of life [328–331]. For P-gp, evidence is sparser.
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Nevertheless, there is some human evidence of a pattern

with high placental expression levels of P-gp in early

pregnancy that decrease with increasing gestational age

[332, 333]. Interestingly, paralleling this developmental

decrease in placental expression, the P-gp expression of the

human blood–brain barrier seems to increase with gesta-

tional age [334, 335]. Together this may serve to protect the

foetal brain from noxious substances. However, further

research is warranted to fully understand whether any dif-

ference in developmental P-gp expression in humans plays a

role in drug disposition in the foetus and in neonates [336].

5.3 Ways to Handle Drug–Drug Interactions

in Clinical Practice

When a DDI with potential clinical relevance has been

identified, there are various ways to handle this. At the

extremes, there is either no need for additional measures (the

potential lack of treatment effect or increased drug effect is

rendered harmless) or the medications should not be used

concomitantly and the clinician should search for alternative

treatments. However, in between those poles various other

options for appropriate management exist. These are

reviewed and exemplified in the following subsections.

5.3.1 Treatment with Additional Monitoring

Additional monitoring of either the main treatment effect

or side effects is a possibility when a potential DDI has

been identified. This can be by means of monitoring rele-

vant paraclinical measures or performing additional phys-

ical examinations. For a few drugs (e.g. digoxin), an option

may be therapeutic drug monitoring where the concentra-

tion of the drug is measured in plasma.

Carvedilol is an example of a drug where the evidence

regarding the magnitude of the effect on digoxin AUC is

heterogeneous. The changes in digoxin AUC with co-ad-

ministration of carvedilol have been reported to range

between a 19% and a 56% increase in various studies

[146, 148]. According to the SmPC, the concentration of

digoxin is increased by approximately 15% following co-

administration with carvedilol, and increased monitoring of

digoxin levels at onset, dose adjustment or cessation of

carvedilol is recommended [144]. Thus, this is an example

of a drug where the interpretation of the potential for a

clinical manifest DDI is not straightforward and where

increased monitoring may be a solution with respect to

clinical management.

5.3.2 Dose Adjustment

Another option is dose adjustment. If an inhibitor or

inducer of P-gp is administered with a substrate, then the

dose of the substrate may be decreased or increased,

respectively. Unfortunately, there are currently no expert

dosing guidelines that provide clinicians with information

on the dose to use in patients receiving P-gp substrates and

concomitant P-gp inhibitors or P-gp inducers.

5.3.3 Staggered Administration

Staggered administration of the object and precipitant drug

is another option. As an example, ibrutinib (irreversible

Bruton’s tyrosine kinase inhibitor) is an in vitro inhibitor of

P-gp with an IC50 of 2.15 lg/mL. At the proposed oral

dose of 560 mg and assuming that the drug is taken with

250 mL of water, the concentration in the gut would be

560,000 lg divided by 250 mL and [I2]/IC50 would be

1042 (i.e. much greater than 10). Thus, the potential for a

P-gp-mediated DDI cannot be excluded (cf. Fig. 2).

However, ibrutinib is predicted to be quickly absorbed (in

\2.5 h). Thus, the potential for a clinically relevant P-gp-

mediated DDI would be minimized by staggering the dose

of ibrutinib and a P-gp substrate by at least 2.5 h [96].

Co-administration of dabigatran etexilate, a direct oral

anticoagulant, with the calcium antagonist verapamil is

another example of a potential DDI involving P-gp that

may be avoided with staggered administration. Härtter

et al. have conducted a study to examine the potential for

pharmacokinetic and pharmacodynamic interactions

between dabigatran etexilate and verapamil [149]. The

authors reported a 2.5-fold increase in dabigatran etexilate

exposure (as determined by the AUC) when administered

1 h after a single dose of verapamil immediate-release

formulation. This was reduced to an approximate 1.8-fold

increase in AUC with the extended-release formulation of

verapamil. However, administration of dabigatran etexilate

2 h before verapamil did not significantly increase expo-

sure to dabigatran etexilate (\20% increase in AUC). This

is explained by absorption of dabigatran etexilate being

completed within 2 h [150].

5.3.4 Paused Treatment

Paused treatment may be a solution in those instances

where lack of treatment with one of the drugs contributing

to the DDI is rendered less harmful. An example of this

could be the case of primary prevention with atorvastatin in

a patient where a shorter course of a given drug with P-gp

inhibitory properties is needed. In this case, paused treat-

ment with atorvastatin during treatment with the perpe-

trator drug could be a solution. Anticancer drug

interactions represent another case in which paused treat-

ment may work. That is, during cancer treatment, perpe-

trator drugs can be stopped and then resumed following

cessation of treatment.
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5.4 Discussion of Limitations

We aimed to evaluate, as much as possible, a complete list

of all drugs with P-gp modulatory properties. Nevertheless,

with the approach described in the Sect. 3, there will

inevitably be drugs that are P-gp modulators that have not

been included for evaluation as part of this review. Many

of these ‘false negatives’ probably represent newer drugs

(except for very newly marketed drugs, as mentioned in

Subsect. 3.1).

Also, the evidence base is of varying methodological

quality; in general, the P-gp modulatory status of many of

the drugs may not always have been investigated under

‘model conditions’. Regarding Caco2 cells, two aspects

merit further discussion. First, variation in transporter

expression and function of the cells may be seen depending

on the exact laboratory conditions that the cells have been

maintained under [337]. Second, Caco2 cells exhibit

endogenous activity of transporters other than P-gp, for

example multidrug resistance-associated proteins (MRPs)

or BCRP that may thus have confounded the observed drug

transport [338]. To address this issue, Caco2 cells trans-

fected with short interfering RNA (siRNA) to knock down

the contribution of other specific transporters may be used

[337]. Of note, in the present review we did not make a

distinction between transfected versus untransfected Caco2

cells for studies forming the basis of the classification of the

individual drugs. However, at least for the underlying ref-

erences from the scientific literature, all studies that

included Caco2 cells were based on untransfected cells.

For the newer drugs, it may also be that specific

combinations of drugs have been investigated together

because that reflects the intended clinical use (e.g. see

the new oral hepatitis C drugs as discussed in Sect. 5).

Overall, our chosen classification strategy implies that

classifications may change with the emergence of new

evidence (e.g. from ‘uncertain’ to ‘yes’ with respect to

both in vitro and in vivo evidence). Our chosen classi-

fication criteria were decided on with the aim of maxi-

mizing objectivity. However, since a consensus

agreement was also included in the classification and

since model evidence was not always found, this implies

a certain degree of subjectivity which should be kept in

mind on interpretation of the tables. We therefore pro-

vide the references that the classification is based upon

for each drug along with the classification (see main

tables and supplementary tables) and discuss examples

of some of the interpretations of classifications in Sect. 3

(methods) and in Sect. 5 (clinical implications) of the

paper.

6 Conclusions and Perspectives

Drug transporters such as P-gp have been increasingly

recognized as active players in DDIs. Consequently, the

potential for P-gp-mediated DDIs (together with the

potential for interactions with other transporters or drug-

metabolizing enzymes) is now more systematically inves-

tigated as part of the approval of new drugs. This has

resulted in an increased amount of information on DDI

potential available in the drug labels/SmPCs, including an

increase in the complexity of the information. Prescription

recommendations for individual drugs on the approved

product label may not always reflect data from well char-

acterized DDI studies; for example, a contraindication may

be included in the label for various medico-legal reasons

rather than due to clear-cut evidence of harm. The real

challenge for the prescriber is therefore to navigate the

various systems providing electronic decision support

(causing potential alert fatigue) and strike the happy mean

between an overcautious prescription practice and a prac-

tice where DDIs are not considered at all. Many interacting

drugs can be safely taken together when appropriate mea-

sures are taken. The challenge still lies in narrowing the

focus on those DDIs that are likely to be clinically mani-

fest. In this context, more research in those drugs that

interfere with more than one transporter or enzyme is

needed to aid clinical decision making in this area. Further

expert guidelines for dosing adjustments in the setting of

concurrent administration of P-gp substrates and inhibitors

and inducers, respectively, are needed.
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146. Baris N, Kalkan S, Güneri S, Bozdemir V, Guven H. Influ-

ence of carvedilol on serum digoxin levels in heart failure: is

there any gender difference? Eur J Clin Pharmacol.

2006;62:535–8.

147. Oldham HG, Clarke SE. In vitro identification of the human

cytochrome P450 enzymes involved in the metabolism of R(?)-

and S(-)-carvedilol. Drug Metab Dispos. 1997;25:970–7.

148. De Mey C, Brendel E, Enterling D. Carvedilol increases the

systemic bioavailability of oral digoxin. Br J Clin Pharmacol.

1990;29:486–90.
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