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Abstract Aspergillus species are ubiquitous fungal

saprophytes found in diverse ecological niches worldwide.

Among them, Aspergillus fumigatus is the most prevalent

and is largely responsible for the increased incidence of

invasive aspergillosis with high mortality rates in some

immunocompromised hosts. Azoles are the first-line drugs

in treating diseases caused by Aspergillus spp. However,

increasing reports in A. fumigatus azole resistance, both in

the clinical setting and in the environment, are threatening

the effectiveness of clinical and agricultural azole drugs.

The azole target is the 14-a sterol demethylase encoded by

cyp51A gene and the main mechanisms of resistance

involve the integration of tandem repeats in its promoter

and/or single point mutations in this gene. In A. fumigatus,

azole resistance can emerge in two different scenarios: a

medical route in which azole resistance is generated during

long periods of azole treatment in the clinical setting and a

route of resistance derived from environmental origin due

to extended use of demethylation inhibitors in agriculture.

The understanding of A. fumigatus azole resistance devel-

opment and its evolution is needed in order to prevent or

minimize its impact. In this article, we review the current

situation of azole resistance epidemiology and the pre-

dominant molecular mechanisms described based on the

resistance acquisition routes. In addition, the clinical

implications of A. fumigatus azole resistance and future

research are discussed.

1 Introduction

The incidence of fatal fungal diseases is escalating due to

an increased population at risk in developed countries:

patients who suffer from immuno-deficiencies or predis-

posing factors, such as hematological malignancies, solid

organ transplant recipients, and those suffering from

chronic obstructive pulmonary disease and receiving high-

dose and continued corticosteroid therapy [1–5]. Patients in

intensive care units and those infected with HIV are also

sometimes classified as high risk [6, 7].

The genus Aspergillus is relatively unique among fungi

in that they cause a wide range of infections such as

chronic pulmonary and allergic pulmonary aspergillosis,

saprophytic colonization, asthma with fungal sensitization

and most severely invasive aspergillosis (IA) [3, 8–10].

Affected individuals will develop a specific form of

aspergillosis depending on numerous host factors, but

mainly based on underlying immune status [11]. In

immunocompromised hosts, A. fumigatus represents a

major cause of morbidity and mortality, in part because of

the difficulty in diagnosis and late initiation of antifungal

therapy.

Treatment options are limited to three antifungal drug

classes: polyenes (amphotericin B), azole drugs and

echinocandins. Among them, only three specific triazole

agents (itraconazole, voriconazole and posaconazole) are

recommended for the treatment and prophylaxis of

aspergillosis [12, 13]. The antifungal action of azole drugs

was first reported in 1944. Since then many azole com-

pounds have been introduced including imidazoles, fol-

lowed by triazoles [14]. Within the triazoles, fluconazole

and itraconazole were introduced for clinical use during

1990s, followed by a second generation, including

voriconazole (2002) and posaconazole (2006) [15]. More
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recently, isavuconazole has been described as a new

extended-spectrum triazole, and its activity against Asper-

gillus has been proven [16]. At present, voriconazole

remains the primary treatment for IA and liposomal

amphotericin B (L-AMB) is recommended as an alterna-

tive therapy [12, 13, 17]. Azoles are the only class of mold-

active agents that can be administrated orally and intra-

venously so that they can be given in outpatient settings

and they are used for both the evidence-based treatment

and prevention of Aspergillus spp. infections [12, 13, 17].

However, azoles are generally fungistatic in vitro against

yeast-like fungi and show species and strain-dependent

fungicidal activity against Aspergillus species [18, 19].

Emerging resistance to existing antifungals is a current

problem and a poor response to them has been described in

infections caused by azole-resistant A. fumigatus

[18, 20, 21]. Drug selection pressure due to the use of

antifungal drugs, in medical centers and as pesticides in

agriculture, is an important factor for resistance emergence

and spread. Currently, the link between extensive use of

azoles in the environment and the emergence of azole

resistance among human fungal pathogens is subject of

intensive research [22, 23]. Understanding the origin and

development of A. fumigatus azole resistance is needed to

minimize its global spread and to prolong the effectiveness

of currently available antifungals [22].

2 Evolving Epidemiology

The incidence and prevalence of azole-resistant strains

isolated from blood cultures, respiratory and deep tissue

samples have been reviewed by several authors

[20, 24–31]. Although the prevalence of mold isolation is

low, the most frequently isolated genus is Aspergillus spp.,

ranging between 51–86% of the total number of isolates

[25, 28, 30]. Among them, A. fumigatus is the most fre-

quently isolated species, accounting for more than half of

the total isolates in most of the studies [24, 26, 28, 30, 32].

Other species, in order of frequency, are A. flavus or A.

terreus, A. niger and A. tubingensis [21, 24, 28, 30]. The

cryptic Aspergillus species are probably underestimated, as

their identification is more difficult; some studies have

shown prevalence of up to 12% [28, 33]. This is an

important issue as antifungal resistance among Aspergillus

cryptic species can reach up to 40% of the isolates

[28, 34–36].

Along with the expanding use of antifungal drugs

globally, an increase in the number of Aspergillus triazole-

resistant isolates has been reported. In the case of A.

fumigatus, the prevalence of azole resistance is quite high

within Europe with variable percentages observed in the

rest of the world (Table 1). The prevalence of azole-

resistant A. fumigatus infections also appears to vary

between individual hospitals [37, 38]. Although surveil-

lance of unselected clinical cultures provides resistance

rates at a national level and offers information about the

epidemiology of resistance mechanisms, recent studies

show the need to determine the frequency of azole resis-

tance at the hospital level and within different patient

groups or departments [37, 38]. The high prevalence of

resistance (20–30%) in clinical isolates of high-risk

patients recently reported in the Netherlands and Germany

highlights the need for rapid detection of azole resistance to

initiate the appropriate therapy earlier [31, 39].

3 Azole Drugs Resistance Mechanisms

Triazole drugs inhibit the 14-a sterol demethylase (Cyp51)

that catalyzes a key step in the ergosterol biosynthesis. This

is a cytochrome P-450 enzyme containing a heme moiety

in its active site and catalyzes the oxidative removal of the

14a-methyl group from cyclized sterol precursors (eburicol

or lanosterol) by a three-step reaction [40]. Azole drugs act

as competitive Cyp51 inhibitors through the interaction of

the N-3 (imidazoles) or N-4 (triazoles) position of the

aromatic ring with the iron atom of the heme moiety, which

prevents oxygen activation, necessary for lanosterol/

eburicol demethylation [41]. The basic heterocyclic nitro-

gen coordinates to the P450 heme iron, sharing its lone pair

of electrons and blocking binding of molecular oxygen,

whereas the non-ligated portion of the inhibitor molecule

forms multiple contacts with the protein moiety, shaping

the protein-ligand surface interface that largely defines the

strength of the inhibition [41]. This interaction leads to the

accumulation of various 14-a methyl sterols and ergosterol

depletion that alters the fungal membrane and affects the

cell wall integrity with consequent fungal growth impair-

ment [42]. Specificity of azole compounds depends on the

interaction between side groups of the azole compound and

the Cyp51 protein [43, 44].

Aspergillus fumigatus has two Cyp51 isoenzymes,

Cyp51A and Cyp51B [45], and both can fulfill the role of

14-a sterol demethylase in vitro with no significant dif-

ferences [46, 47]. Growth is suppressed in the absence of

both isoenzymes, but not in the absence of only one of

them [46, 47]. Some research has indicated that A. fumi-

gatus Cyp51A confers intrinsic fluconazole resistance [46].

Also, most studies conclude that mutations in cyp51A gene

(promoter, coding region or both) are responsible for the

great majority of the described azole resistance mecha-

nisms [48]. In contrast, the role of Cyp51B in the suscep-

tibility to azoles is still unclear [49].

Aspergillus fumigatus has different azole resistance

mechanisms that can be classified in different categories;
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the most commonly described are (1) target (cyp51A)

modifications, although recently (2) cyp51A-independent

mechanisms have been described.

3.1 Aspergillus fumigatus Azole Target (cyp51)

Modifications

Azole-resistant A. fumigatus isolates of clinical origin

exhibit different mutations that are responsible for the

increase in minimum inhibitory concentrations (MIC)

to one, or more triazoles [48]. The main mechanisms

accounting for triazole resistance in A. fumigatus are

point mutations in the cyp51A gene. About 30 differ-

ent mutations have been described in cyp51A gene,

although not all mutations are responsible for an

azole-resistant phenotype [5, 44, 50]. Based on cyp51A

modifications, azole resistance mechanisms can be

classified.

Table 1 Triazole resistance

rates of clinical Aspergillus

fumigatus isolates with

integration in the cyp51A

promoter

Country No. isolates Overall resistance rate (%) Resistance mechanismsa References

TR34 TR46

Europe

Belgium 192 5.7 54.5 9.1 [167]

Denmark 413 4.5 33.3 0 [25]

1162 2.6 57.0 [32]

France 118 0.85 0 0 [64]

125 4.6 16.6 0 [26]

85 8 55.6 0 [168]

Germany 527 3.2 35.3 0 [67]

119 5 66.7 16.7 [30]

27 30 71.4 28.5 [31]

Portugal 159 0 0 0 [169]

Spain 156 0.6 0 0 [28]

362 1.8 0 0 [29]

The Netherlands 170 1.7 – – [170]

1912 1.7–6 94 0 [22]

209 1.9 100 0 [171]

2062 4.6 90.2 0 [21]

1315 6.8 74.6 20.6 [78]

105 20 62.0 14.3 [39]

2941 3.2 48.9 6.4 [172]

Turkey 746 10.2 86.8 0 [148]

UK 519 6.6 5.9 0 [20]

Asia

China 72 5.5 75 0 [173]

India 103 1.94 100 0 [174]

685 1.75 83.3 0 [72]

Iran 124 3.2 75 0 [175]

172 3.5 100 0 [176]

Japan 196 11.2 0 0 [27]

171 1.75 – – [177]

Kuwait 16 12.5 100 0 [178]

Taiwan 40 5 – – [179]

America

USA 181 0.55 – – [24]

220 9.1 10 10 [89]

Oceania

Australia 418 2.1 22.2 0 [73]

a Percentage of resistance mechanisms among resistant isolates: TR34/L98H and TR46/Y121F/T289A
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3.1.1 Hot-Spot Single Point Mutations

The three most commonly described single-point mutations

that appear in A. fumigatus are Cyp51A amino acid sub-

stitutions at G54, M220 and G448, and all are thought to

have arisen in the clinical setting where azoles are used as

therapy (Fig. 1).

One mutation is located at position glycine 54, including

amino acid changes G54E, G54V, G54R, and G54W.

Clinical strains with these mutations show resistance to

itraconazole (ITC) and yield high posaconazole (POS)

MICs but not voriconazole (VCZ) MICs [51, 52]. The

second important single-point mutation is at methionine

220, including amino acid changes M220V, M220K,

M220T and M220I [53, 54], which yield resistance to ITC

and reduced susceptibility to POS and VCZ [53]. A third

resistant mechanism is G448S with resistance to VCZ and

reduced susceptibility to ITC and POS [55, 56]. This

mutation has also been correlated with in vivo azole

resistance [57].

Other less common mutations have also been described.

The G138R substitution was described in an azole-resistant

mutant generated in the laboratory [58] and afterwards, a

multi-azole-resistant strain with a G138C substitution was

reported from a patient under azole treatment showing high

MICs to all azoles [59]. However, the mechanism involved

in this multi-azole resistance phenotype remains to be fully

clarified [60].

Protein structure modeling is an important tool in the

study of drug action and resistance and has been used to

create 3D homology models derived from Cyp51A protein

sequences of azole-resistant A. fumigatus isolates. These

models have been built to assess direct or indirect mutation

effects on azole access or binding to the protein and con-

clude that M220 and G54 mutations have clear potential to

block access to the azole entry channel, while G448S,

located on the opposite side of the protein and near the

heme group, is thought to disrupt its position within the

protein [61]. This mutation reduces the ability of the azole

to bind to the heme effectively and allows replacement by

the substrate [61, 62].

In some cases, other single-point mutations (N22D,

F165L, P216L, F219C, F219I, D262Y, A284T, Y431C,

G432S and G434C, T440A, N479D, Y491H) have occa-

sionally been described as related to azole resistance or

associated with a reduced azole susceptibility profile, but

Fig. 1 Azole target (cyp51A)

modifications and susceptibility

profiles. Cyp51A hot spot single

point mutations (a–c) and
Cyp51A multiple point

mutations (d). MICs minimum

inhibitory concentrations, ITC

itraconazole, POS

posaconazole, VCZ

voriconazole
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further research needs to be done in order to confirm, or to

exclude, their role in azole drug resistance

[20, 25, 50, 60, 63–67].

3.1.2 Cyp51A Multiple Point Mutations

A combination of Cyp51A amino acid substitutions is

frequently described among clinical strains isolated from

patients who have been undergoing azole treatment. Basi-

cally, there are two combinations of amino acid substitu-

tions: (1) a group of three (F46Y, M172V, and D255E) (2)

or of five that included the three former ones (F46Y,

M172V, N248T, D255E and E427K) (Fig. 1d). Both

groups have been described with different profiles of azole

susceptibility as azole susceptible or resistant, but in all

cases, they have remarkably higher azole MICs than A.

fumigatus wild-type strains [20, 21, 50, 65, 68–74]. Some

authors described these substitutions as playing no role in

azole resistance [65, 75]. However, a cyp51A deletion

mutant showed an azole hyper-susceptible profile, sug-

gesting that some of these changes could be responsible for

the increased azole MICs of these strains [76], although

their role in azole susceptibility in vivo remains to be

clarified.

Finally, some substitutions have been described together

because they are usually detected along other point muta-

tions, such as H147Y with G448S [20], P394L with G54R

[63], S393S with G54R [63], and S297T with F495I [22].

3.1.3 Multiple cyp51A Modifications Involving cyp51A

Overexpression

Triazole resistance in Aspergillus spp. can evolve during

therapy, but resistant isolates are also being detected in

azole-naive patients, with evidence to suggest acquisition

of resistant isolates from the environment. These isolates

are characterized by having a particular genetic alteration

consisting of a 34 bp tandem repeat (TR34) in the promoter,

together with a point mutation L98H in the cyp51A target

gene conferring multi-azole resistance [77] (Fig. 2a). First

reported in Europe, this mechanism is now being described

across the world (Table 1). This issue is further compli-

cated by the emergence of a new resistance mechanism,

TR46/Y121F/T289A in the cyp51A gene, responsible for

VCZ resistance (Fig. 2b). First detected in 2009 in a Dutch

patient [78] it has recently been reported in clinical and

environmental isolates from Belgium, France, Denmark,

Germany, Spain, China, India, Japan, USA, Colombia,

Tanzania and Thailand [67, 79–89]. Interestingly, an

environmental A. fumigatus strain harboring only the

Y121F substitution has been reported recently. However,

this mutation is responsible for high VCZ MICs and does

not confer resistance to all azoles [90]. Another less

common duplication in the cyp51A promoter (TR53)

without other substitutions in the cyp51A gene has also

been described [86, 91] (Fig. 2c).

3.2 Aspergillus fumigatus Azole Resistance

Mechanisms cyp51A-Independent

Other cyp51A-independent mechanisms have been repor-

ted as contributing to azole resistance. One important

resistance mechanism is the reduction of the intracellular

concentration of azole by active efflux systems, such as

ATP-binding cassette (ABC) transporters and transporters

of the major facilitator superfamily (MFS) [92]. The

association between azole resistance and transporter

upregulation is less clear in A. fumigatus than in yeast, such

as Candida albicans [93, 94], C. krusei [95], and C.

glabrata [96]. In A. fumigatus, there are 45 ABC proteins

and 275 MFS proteins (http://www.membranetransport.

org). Some studies have demonstrated correlation between

ABC transporter expression and azole resistance

[54, 97, 98]. However, a functional connection between a

specific ABC transporter, RNA level and the development

of azole resistance is still elusive. For example, the

upregulation of the ABC transporter atrF has been

described in a clinical strain of azole-resistant A. fumigatus

after ITC treatment but its implication in the ITC resistance

has not been confirmed [97]. The same applies to

AfuMDR4, which was strongly upregulated in several ITC-

resistant laboratory derived mutants, but further experi-

ments need to be done to confirm its participation in azole

resistance [54]. Also, transcriptome analysis of A. fumi-

gatus exposed to VCZ revealed a number of transporter

genes that were induced: five ABC transporter genes

(abcA-E) and three MFS (mfsA-C) were upregulated [98].

Among these genes, only abcB, renamed cdr1B, has been

demonstrated to have a direct role in A. fumigatus resis-

tance [99].

In addition, some transcription factors such as SrbA are

known to play a role in A. fumigatus azole resistance. SrbA

is a transcriptional regulator belonging to the sterol regu-

latory element binding protein (SREBP) family and is

important in A. fumigatus azole resistance. Disruption of

srbA produces increased susceptibility to fluconazole,

possibly due to the decreased expression of cyp51A [100].

The possibility that SrbA mutants are able to increase their

activity and might elevate azole MICs has not been

described at present [101]. Also, a P88L substitution in

another transcription factor, HapE, leads to an increased

azole resistance phenotype due to the induction of cyp51A

expression in the mutant strains [102]. Just recently, the

link between SrbA and HapE has been demonstrated.

Gsaller et al. [103] have shown that the azole resistance

exhibited by isolates with the HapEP88L modification is
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linked to an inability of the modified CCAAT binding

complex to bind effectively to its recognition site in the

cyp51A promoter, leading to increased expression. Inter-

estingly, the growth phenotype exhibited by a strain with

the HapEP88L mutation is less severe than that of the

HapE null, suggesting only a partial loss of function, all

together will strongly suggest that targeting SrbA would

provide an effective avenue for therapeutic intervention for

resistant strains.

Recently, a probable role of mitochondrial complex I in

fungal drug resistance via alteration in membrane dynam-

ics or composition has been suggested. A mutation leading

to an E180D amino acid change in the 29.9 KD subunit has

been strongly associated with clinical A. fumigatus azole-

resistant isolates [104]. Finally, the modification of AfYap1

(homolog of Saccharomyces cerevisiae Yap1), a basic

region-leucine zipper transcription factor with nuclear

location and regulated by oxidative stress [105], has been

shown to increase resistance to VCZ but not to ITC [106].

3.3 Azole Resistance in Other Aspergillus Species

Although the main etiologic agent of invasive aspergillosis

is A. fumigatus, there are increasing reports of fungal

infections caused by other species of this genus [107].

Aspergillus section Fumigati has been studied using

phylogenetic analysis of different targets (mainly b-tubulin

gene) and is found to be composed of 63 species

[108, 109]. Some of these species, usually called sibling or

cryptic, have been reported to have higher MICs to a range

of antifungal agents compared to A. fumigatus

[28, 110–113]. Among them, A. lentulus shows high VCZ

and ITC MICs, compared to those of POS [110, 112], and

good response to isavuconazole [114]; these higher azole

MICs have been linked to the amino acid sequence of the

Cyp51A target [115, 116]. Other species within the section,

such as A. fumigatiaffinis and Neosartorya pseudofischeri,

have high triazoles MICs while N. udagawae exhibit higher

VCZ MICs than ITC or POS [35, 110, 112, 117]. However,

isavuconazole displays good activity against some of these

species [114]. Aspergillus viridinutans has high VCZ and

ITC MICs but lower POS MICs [35, 113] whereas, A.

hiratsukae and A. fumisynnematus are susceptible to all

drugs tested [110].

In Aspergillus section Nigri, A. niger and A. tubingensis

are the most frequent species found in clinical settings, and

have a variable susceptibility profiles depending on the

isolate [112]. Within Aspergillus section Flavi, A. flavus

and A. alliaceus, are the most remarkable species with

variable azole susceptibility profiles [112]. In Aspergillus

section Terrei, A. terreus has reduced susceptibility to

azoles while A. citrinoterreus is more susceptible to them

[118]. Finally, within Aspergillus section Usti, A. ustus and

A. calidoustus are known for their high MICs for all

Fig. 2 Multiple cyp51A modifications involving cyp51A overexpression. Tandem repeats: 34 bp (a); 46 bp (b); 53 bp (c), and associated point

mutations
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antifungals and are considered multi-resistant species

[119, 120].

4 Development of Azole Resistance

Azoles are the only class of compounds that are used both

in agriculture and in clinical medicine [121].

Generally, two different routes of azole resistance

development in A. fumigatus have been described: (1) a

medical route in which azole resistance is generated during

long periods of azole treatment in clinical settings and (2)

another route of resistance derived from environmental

origin due to extended use of demethylation inhibitors

(DMIs) in agriculture (http://www.frac.info/publications;

FRAC Code List 2016) (Fig. 3). Although azole resistance

is acquired by selective pressure in both cases, the result of

this selection generates different resistance mechanisms

and different azole susceptibility patterns.

1. In the first case, acquired azole resistance may develop

in patients who have been treated long-term with

prolonged azole exposure due to a chronic form of

aspergillosis, for example patients with aspergilloma,

cystic fibrosis or allergic bronchopulmonary

aspergillosis. In these patients, isolation of resistant

strains is almost always linked to previous azole

exposure and the responsible mechanism can change

over the course of infection [122]. Despite the fact that

patient-to-patient transmission of resistant Aspergillus

is uncommon, it would mean an important risk at

patient level [32, 123]. These patients are initially

infected by a susceptible A. fumigatus strain that

evolves to a resistant phenotype under azole treatment

pressure. Genotypic analysis of serial A. fumigatus

isolates from patients with aspergillosis has revealed

that the initial susceptible isolates and the later

resistant ones had the same genotype [25, 124–126].

The underlying resistance mechanism normally

involves single-point mutations in the cyp51A gene

(G54, M220 and G448), which implies that the fungus

is capable of rapidly adapting to azole drugs in patients

exposed to long-term azole therapy [127].

2. In the agricultural setting, azoles are the most impor-

tant group of fungicides due to their great efficiency in

the field and the remarkable resistance of fungi to other

classes of compounds [128]. Agricultural fungicides

are used variably throughout the year, depending on

the location, crop type and the risk of fungal infesta-

tion [128]. They are classified according to their

biochemical mode of action as sterol biosynthesis

inhibitors (SBIs) of class I, particularly DMIs. Some

azoles used in crop protection (imidazoles and tria-

zoles) have a similar molecule structure to medical

triazoles and induction of cross-resistance between

them has been demonstrated [129].

The resistance mechanisms associated with this route

consist of tandem repeat integrations of different size in the

cyp51A promoter followed by point mutations in the cod-

ing gene (TR34/L98H and TR46/Y121F/T289A). In plant-

pathogenic molds treated with DMIs both mechanisms

have been found but independently, either as integrations

of different sequences in the cyp51A promoter and related

to increased expression of the azole target or as point

mutations in cyp51 and therefore related to a lack of

Fig. 3 Routes of Aspergillus

fumigatus azole resistance

acquisition. a Patient route: the

patient is infected by A.

fumigatus azole susceptible and

after azole treatment there is a

selection of A. fumigatus strains

with point mutations at

Cyp51A. b Environmental

route: patients are infected by A.

fumigatus azole resistant

previously to treatment, and

these strains have combined

azole resistance mechanisms.

DMI demethylation inhibitors
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appropriate competitive inhibition (Table 2). An example

of the former is Penicillium digitatum with a 126 bp

sequence tandemly repeated in the cyp51 promoter that has

been directly related to a pattern of resistance to different

DMIs [130, 131]. Similarly, cyp51 promoter insertions of

different sizes have been described in other species, such as

Venturia inaequalis, Blumeriella japii and Monilinia

fructicola [132–134]. In other plant pathogens, many cyp51

single-point mutations have been implicated in DMI

resistance (Table 2) [135–142]. However, the combination

of both mechanisms has only recently been reported in the

plant pathogen Pyrenopeziza brassicae in relation to

resistance to DMIs used in crop protection [143].

Fungicides are applied recurrently over a long period of

time and could thereby generate a persistent pressure of

azole drugs on saprophytic fungi [144]. The existence of an

environmental source of resistant A. fumigatus would be

supported by the finding of primary IA caused by azole-

resistant A. fumigatus in azole-naive patients [145]. These

two resistance mechanisms (TR34/L98H and TR46/Y121F/

T289A) have been reported in environmental isolates and

also in azole-naive patients from the five continents

[22, 72, 73, 78, 80, 82, 84–89, 146–150], strongly sug-

gesting a primary acquisition of resistant isolates from the

environment. Furthermore, genetic typing of the clinical A.

fumigatus isolates revealed shorter genetic distances

between TR34/L98H azole-resistant isolates compared to

wild-type isolates, suggesting a common source of resis-

tance and a subsequent spreading phenomenon

[22, 129, 146].

It seems quite clear that the extended use of azoles as

fungicides is selecting resistant mutants in the environ-

ment, but it is unknown whether a specific type of DMI

used for crop protection is responsible for the type of

resistant mechanism selected. Alternatively, each patho-

gen, with their specific target-drug interaction, could select

one specific type of mechanism; promoter insertions (TR),

target point mutations, or a combination of both, as has

been described with A. fumigatus and P. brassicae. In fact,

each Cyp51A modification is responsible for a different

pattern of triazole resistance, as described before.

5 Implications for Treatment and Treatment
Options

The occurrence of azole-resistant A. fumigatus, in both

patients and the environment, is a matter of global concern

as azole resistance can seriously compromise treatment in

patients with IA. Mortality rates in patients infected with

azole-resistant strains are higher than those afflicted by

azole susceptible microorganisms (88 vs. 30–50%) [21].

Table 2 Principal resistance mechanisms to azole fungicides found in plant pathogens

Plant pathogen DMIs resistance Cyp51 aa

substitutions

cyp51-promoter

alterations

Cyp51-increased

expression

References

Pyrenopeziza brassicae Four triazoles and

prochloraz

S508T 151 bp insertion Yes [143]

Erysiphe necator Myclobutanil Y136F – Increased copy

number

[166]

Venturia inaequalis Myclobutanil Non-

detected

553 bp insertion Yes [132]

Penicillium digitatum Triflumizole Non-

detected

126 bp (TR) (5 times) Yes [130]

Imazalil – 126 bp (TR) (5 times) Yes [131]

Blumeriella jaapii Fenbuconazole Non-

detected

Truncated non-long terminal direct

repeats

Yes [133]

Monilinia fructicola Propiconazole – 65 bp insertion Yes [134]

Pyrenophora teres Prochloraz F489L – – [142]

Erysiphe necator Triadimenol Y136F – – [135]

Erysiphe graminis f. sp.

hordei

Benzimidazol Y136F – – [136]

Ustilago maydis Propiconazole G464S – – [137]

Blumeria graminis f. sp.

hordei

Triadimenol Y136F – – [138]

Propiconazole K147Q – – [138]

Mycosphaerella

graminicola

Tebuconazole I381V – No [139]

Triadimenol F137Y – No [140]

Puccinia triticina Epoxiconazole Y134F No – [141]
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Reference antifungal susceptibility testing methods

(Clinical and Laboratory Standards Institute and The

European Committee on Antimicrobial Susceptibility

Testing) together with molecular characterization of anti-

fungal resistance mechanisms can provide useful infor-

mation to optimize antifungal therapy and to detect

emerging resistance [48]. However, the high mortality rates

observed in patients with IA caused by azole-resistant A.

fumigatus isolates poses a serious challenge with respect to

timely resistance identification and appropriate therapeutic

interventions [151].

The emergence of azole resistance raises concerns about

first-line VCZ treatment in high-risk patients with sus-

pected IA [152, 153]. Determination of azole resistance

percentages at the hospital level, and within different

patient groups or departments, will enable clinicians to

decide whether reassessment of azole monotherapy as a

primary treatment option is necessary [37, 38]. Recently,

an international expert panel recommended that VCZ

should be used as a first-line drug as long as the local

resistance rate does not exceed 10% and a combination of

VCZ with an echinocandin or L-AMB would be the ther-

apeutic alternatives if the resistance rate is superior [17].

In the setting of azole resistance, alternative therapeutic

options are limited: L-AMB is an important therapeutic

option as no cross-resistance is described. Also, the com-

bination of VCZ or POS with an echinocandin has been

suggested as an alternative, although it is assumed that

azoles will play a limited role in the treatment of azole-

resistant invasive Aspergillus infections [154]. Anidula-

fungin is currently not approved for the treatment of IA,

although combination therapy with VCZ is being explored

as an alternative when drug resistance is suspected

[155, 156].

6 Future Research Areas

The existence of several azole resistance mechanisms in A.

fumigatus and the increasing number of affected patients

emphasize the need for surveillance studies to determine

each country’s epidemiology, to discover the emergence of

new mechanisms of azole resistance, and to assess the risk

associated with treatment failure.

The need for systematic antifungal susceptibility testing,

particularly in high-risk populations cannot be overstated,

for assisting clinicians in selecting appropriate antifungal

therapy as early as possible [157]. Additionally, techniques

to identify resistance directly in clinical samples have the

potential to overcome culture-based diagnostic limitations

and should be further investigated [158, 159]. Meanwhile,

investment in development of new (or repurposed) anti-

fungal drug classes given the risk of losing azoles as first-

line treatment is mandatory [160]. Future research should

focus on evaluating the effectiveness of newer pharma-

ceutical agents that can be used as monotherapy or com-

binational treatments in order to avoid azole resistance. In

addition, optimization of current drugs for the purpose of

maximizing therapeutic effect while minimizing toxicities

would be another important approach [161].

In agriculture, fungicides are applied recurrently over

long periods of time and could thereby generate a persistent

pressure of azole drugs on saprophytic fungi [144]. Envi-

ronmental surveys are warranted to determine the preva-

lence of these resistance mechanisms in saprophytic fungi

and to identify areas with a high burden of resistant A.

fumigatus [162]. However, an indiscriminate reduction of

fungicides used in agriculture would have a detrimental

effect on food production and the economy [163]. There-

fore, efforts should focus on unraveling the origin and

spread of azole resistance in order to better inform guide-

lines and policy on the use of clinical and agricultural

antifungals [164].

Next-generation sequencing (NGS) studies of Aspergil-

lus-resistant strains would give insight into the dynamics of

resistance. Moreover, with greater access to NGS tech-

nology, studying isolates without a known resistance

mechanism would expand our knowledge of A. fumigatus

azole resistance. In this respect, there are already some

studies applying NGS to clinical A. fumigatus isolates that

have reported both accumulation of mutations and genomic

deletions that appeared to have occurred randomly in iso-

lates recovered from aspergilloma [165]. This approach has

already been used (including a genome and RNA-seq

sequencing) in Erysiphe necator, finding a strong associa-

tion between cyp51 gene copy number variation, Y136F

mutation and fungicide treatment. This work suggests that

the development of DMI resistance may be happening in

two steps: the first, selection of isolates carrying the Y136F

mutation and the second, structural rearrangements that

increase the number of cyp51 copies carrying the Y136F

[166].

In summary, conclusive evidence linking the use of

DMIs to the emergence of A. fumigatus azole resistance is

still lacking. A multidisciplinary approach to integrate

epidemiological studies in the environment and among

clinical isolates is required to track the development and

spread of resistance mechanisms in A. fumigatus in order to

prevent or minimize its impact [152, 153].
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