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Abstract To date, no drug is approved for the treatment of

Fragile X Syndrome (FXS) although many drugs are used to

manage challenging behaviors from a symptomatic perspec-

tive in this population. While our understanding of FXS

pathophysiology is expanding, efforts to devise targeted FXS-

specific treatments have had limited success in placebo-

controlled trials. Compounds aimed at rectifying excessive

glutamate and deficient gamma-aminobutyric acid (GABA)

neurotransmission, aswell as other signaling pathways known

to be affected by Fragile X Mental Retardation Protein

(FMRP) are under various phases of development in FXS.

With the failure of several metabotropic glutamate receptor

subtype 5 (mGlur5) selective antagonists under clinical

investigation, no clear single treatment appears to be greatly

effective. These recent challenges call into question various

aspects of clinical study design in FXS. More objective out-

comemeasures are under development and validation. Future

trials will likely be aimed at correcting multiple pathways

known to be disrupted by the loss of FMRP.This reviewoffers

a brief summary of the prevalence, phenotypic characteristics,

genetic causes and molecular functions of FMRP in the brain

(as these have been extensively reviewed elsewhere), dis-

cusses the most recent finding in FXS drug development, and

summarizes FXS trials utilizing symptomatic treatment.

Key Points

Despite advances in our understanding of FXS

pathophysiology, effective targeted therapies remain

elusive.

A wide array of drug mechanisms is currently being

assessed in FXS clinical study, although most are

still in early phases.

Future clinical trials are focusing on optimization of

study design including careful consideration of

outcome measures as well as participant

characteristics including age and molecular,

electrophysiological, behavioral, and genetic

(epigenetic) phenotypes.

1 Introduction

Full mutation Fragile X Syndrome (FXS) is caused by the

epigenetic silencing of the fragile X mental retardation 1

gene (FMR1) and subsequent loss of fragile X mental

retardation protein (FMRP) expression [1]. The silencing

of the FMR1 gene is typically caused by methylation of a

cytosine guanine guanine (CGG) trinucleotide repeat

expansion (greater than 200 repeats is termed full mutation

FXS) in the 50 untranslated region (UTR) of the FMR1

gene on the X chromosome [2, 3]. In rare cases, loss of

FMRP expression and FXS can also occur as a point

mutation or deletion in the FMR1 gene [4]. Full mutation

FXS can result from maternal transmission in which a

mother’s permutation allele, (55–200 CGG repeats; typical
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population has fewer than 45 repeats) undergoes the above-

mentioned CGG repeat expansion and is passed on to the

next generation. Pre-mutation individuals, also referred to

as carriers, were initially thought to be unaffected. How-

ever, it is now known that an expansion reaching 150 CGG

repeats is associated with an eight-fold increase in FMR1

mRNA and can sometimes be associated with a slight

decrease in FMRP levels [5–7]. Along with changes in

mRNA and protein, pre-mutation individuals can exhibit

clinical features not seen in individuals with the full

mutation, such as primary ovarian insufficiency (FXPOI)

[8, 9], fragile X-associated tremor ataxia syndrome

(FXTAS) [10, 11], and neuropathy [12] among other

features.

1.1 Prevalence and Description

FXS is the most prevalent known single gene cause of

autism and heritable developmental disability, with a

prevalence of 1:4000 males and 1:4000–6000 females [13–

17]. Patients with FXS experience an array of physical,

neurological, behavioral, and cognitive problems. Physi-

cally, FXS is characterized by a long and narrow face, high

arched palate, flat feet, hyperextensible joints, low muscle

tone, soft skin and macro-orchidism [18]. Neurobehav-

iorally, individuals with FXS can suffer from sleep issues,

aggression, anxiety, attention deficit hyperactivity disorder

(ADHD), self-injurious behavior, hypersensitivity to audi-

tory and other stimuli, perseverative language and

increased risk of seizures, among other features [16, 19,

20]. In a small study, full scale IQ scores were shown to be

inversely correlated with methylation status and were

positively correlated with FMRP expression in persons

with FXS [21]. Additionally, FXS is often associated with

autism spectrum disorder (ASD). Approximately two in

every three males diagnosed with FXS will have behavioral

characteristics that align with the broader autism phenotype

[15, 17, 22, 23]. Females with a full mutation allele on one

of their X chromosomes tend to be less severely affected

than full mutation males. However, the severity of the

syndrome depends on the location and degree to which the

full mutation allele is expressed following X-inactivation.

The FMR1 genotype of an individual can be further com-

plicated by mosaic characteristics in which some cells

express differential repeat numbers (somatic mosaicism) or

differential degrees of methylation (methyl mosaicism)

compared to other cells that express the full expansion

mutation or are fully methylated [24].

1.2 Role of FMRP

FMRP is expressed in a variety of tissues, but is most

enriched in the testes and brain. In the brain, FMRP is

developmentally expressed in microglia and oligodendro-

cytes while expression persists in mature astrocytes and

neurons [25]. Within neurons, FMRP is found in the soma,

spines, and dendrites [26]. FMRP is an mRNA binding

protein, with selectivity targeted to approximately 4 % of

the mRNAs transcribed in the brain [27]. FMRP contains

three RNA binding regions, two hnRNP K-homology KH

domains and an RGG (arginine-glycine-glycine) box

allowing FMRP to bind to a broad range of mRNAs in a

selective manner [28]. FMRP also contains a nuclear

localization signal and a nuclear export signal that allow it

to transport mRNAs bound in the nucleus to the cytoplasm

[29]. Protein interaction domains in FMRP may also be

present allowing FMRP to associate with protein com-

plexes, such as polyribosomes, regulating translation par-

ticularly at the synapse [30, 31]. Though FMRP has been

implicated in stabilization [32] and transportation of

mRNA [33], it is believed to mainly function as a trans-

lational repressor of its mRNA targets [30, 31, 34]. While

the loss of FMRP in FXS causes translation of many FMRP

RNA targets to increase, protein expression of other targets

is unchanged or even decreased indicating that other

compensatory mechanisms must come into play in the

absence of FMRP [28].

1.3 FXS-Associated Deficits in Synaptic Plasticity

Research in both humans and animal models has led to

advances in the understanding of the neurobiology of FXS,

resulting in the development of novel targets and drug

optimization in the field. Children with FXS have been

reported to have a generalized increase in brain size

compared with controls as well as discernable differences

in specific brain regions compared to children with autism

(larger temporal lobe white matter, cerebellar gray matter,

and caudate nucleus; smaller amygdala) [35]. At the

microscopic level, loss of FMRP has been shown to alter

the structure of dendritic spines which are the sites of

synaptic plasticity. These alterations appear to be brain

region and activity dependent (reviewed by [36]), often

manifesting as increased spine density with longer, spindly,

and immature morphology frequently reported in post-

mortem human and Fmr1 KO mouse brain tissue [37–39].

The loss of FMRP observed in the Fmr1 KO mouse model

of FXS also negatively impacts synaptic plasticity with

enhanced long-term depression (LTD) [40–43] and brain

region-specific alterations in long-term potentiation (LTP)

[44–47]. Many signaling cascades involved in synaptic

plasticity and learning and memory are known to be altered

in the Fmr1 KO mouse including phosphoinositide 3-ki-

nase (PI3K) [48–50], extracellular signal-related kinase

(ERK1/2) [51–53], and mammalian target of rapamycin

(mTOR) [54–56]. Human tissues have also shown
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alterations in these signaling molecules [57–60]. The study

of molecular, cellular, and behavioral alterations in the

FXS animal models has greatly increased our understand-

ing of FMRP function and human disease pathophysiology

while providing the potential for targeted treatments in

FXS, ASD, and other related developmental disorders.

Many of the recent targeted clinical trials in FXS have

attempted to rectify the excitatory/inhibitory imbalance

believed to contribute to the pathophysiology of FXS. In the

FXS brain, there is likely an excess of excitatory, gluta-

matergic signaling coupled with deficiencies in inhibitory,

GABAergic signaling. Clinical trials are summarized based

on proposed drug mechanism followed by symptomatic

treatment studies. Table 1 lists drug treatments by trial type,

and details the degree of study completion.

2 Modulating Excitatory Neurotransmission

Altered signaling and/or localization of several gluta-

matergic receptors have been reported in Fmr1 KO mice.

Several targeted clinical trials have focused on reducing

excitatory neurotransmission by antagonism of group I

metabotropic glutamate receptors (mGluRs), particularly

mGluR5 (Fenobam, AFQ056, RO4917523). Additional

drugs with effects at the N-methyl-D-aspartate (NMDA)

receptor (memantine) and a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) (CX516) have

also been studied in humans with FXS.

The mGluR theory of FXS proposes that excessive sig-

naling through mGluRs is significantly contributing to

behavioral, electrophysiological, and molecular dysfunction

associated with FXS [61]. The work by Bear and colleagues

was one of the first discoveries in FXS that describes alter-

ations in components and molecules known to be important

for synaptic plasticity in the normal brain. ThemGluR theory

was based upon the observations that 1) FMRPwas shown to

repress protein translation at the synapse [62], 2) synaptic

protein synthesis can be triggered by activation of mGluRs

[26], 3) FMRP loss leads to increased downstream effects of

mGluR signaling [40, 63], and 4) many of these downstream

effects are dependent on mRNA translation at the synapse

[64–67]. The mGluR theory is corroborated by studies

showing that strong mGluR5 antagonists, namely MPEP,

can improve FXS phenotypes in animal models including

abnormalities noted in AMPAR expression, behavioral

Table 1 Clinical trials to date

in fragile X syndrome by drug

and study type

Compound Retrospective

studies

Open label

trials

Placebo-controlled

Phase II trials

Phase III trials

Fenobam C

Mavoglurant/AFQ056 C; NP NP

Basimglurant NP; NP (discontinued)

Memantine C

CX516 C

Riluzole C

Acamprosate C; C O

Ganaxolone O

Metadoxine ER NP

Arbaclofen C NP; NP

Lithium C

Minocycline C C

Lovastatin C

IGF-1 O

Donepazil C C

Methylphenidate C

Dextroamphetamine C

L-acetylcarnitine C

Valproic acid C

Melatonin C

Oxytocin C

Aripiprazole C

SSRIs C; C

IGF-1 insulin-like growth factor 1, SSRIs selective serotonin reuptake inhibitors

C Completed and published, NP completed but not published, O ongoing clinical trial
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measures, and dendritic spine morphology [43, 68]. Further

corroboration came from a study demonstrating that reduc-

tion of mGluR5 levels in Fmr1 KO mice can normalize

protein synthesis, dendritic spines, and some behavior [69].

However, a more recent and thorough behavioral assessment

of genetically reducing mGluR5 in Fmr1 KO mice showed

limited behavioral improvement suggesting that mGlur5

manipulation may not result in as robust of an improvement

as originally indicated [70]. It should also be noted that the

mGluR5 antagonists used in preclinical Fmr1 KO studies

were shown to maintain analgesic effects in mGluR5 KO

mice. This finding indicates that these molecules likely have

additional molecular targets that weren’t considered in the

preclinicalFmr1KOmouse work as potentially contributing

to the favorable treatment effects observed [71].

2.1 Fenobam

Fenobam [N-(3-chlorophenyl)-N0-(4,5-dihydro-1-methyl-4-

oxo-1H-imidazole-2-yl)urea] is a non-benzodiazepine

anxiolytic drug and negative allosteric modulator of

mGluR5. It acts similarly to MPEP, binding in a non-

competitive manner and has mGluR5 inverse agonist

properties [72]. An open-label, single-dose study was

completed to evaluate its safety, pharmacokinetic proper-

ties, and explore effects on sensory gating, attention, and

inhibition in adult males and females with FXS [73].

Subjects included six males and six females with FXS,

aged 18.7–30.7 years. The primary outcome of pre-pulse

inhibition (PPI) was tested at baseline and after treatment

with a single dose of fenobam. There were no significant

adverse events and the medication was well tolerated. Six

out of twelve (50 %) subjects met response criterion of at

least 20 % improvement over baseline on PPI at 120 ms.

Importantly, reports of fenobam treatment in non-FXS

individuals taking high doses (four times the daily highest

dose in the FXS trial) for a period of 4 weeks reported odd

CNS effects including hallucinations, vertigo, paresthesia,

and insomnia [74]. This suggests that fenobam is not likely

going to be considered for future study as a long-term

treatment option in FXS.

2.2 Mavoglurant/AFQ056

AFQ056 (Mavoglurant) is a noncompetitive mGluR5

antagonist developed by Novartis Pharmaceuticals. Three

clinical trials of AFQ056 were completed in subjects with

FXS. The first, a 30-subject double-blind crossover study

involving 20 days of treatment, failed to find any effect of

the drug within the full study population on any primary or

secondary outcome measures. However, when the investi-

gators limited their analysis to a small sub-set of seven

individuals with complete FMR1 promoter methylation,

they found significant improvement across a variety of

outcome measures [75]. It is worth noting that these seven

individuals showed little if any improvement while in the

placebo arm of the study, as measured by the Aberrant

Behavior Checklist (ABC), a finding which may have

contributed to this post-hoc subgroup effect. Based upon

these initial results, two multinational studies were con-

ducted: (1) a Phase IIb FXS double-blind, placebo-con-

trolled, parallel group, 3-month trial in adult males and

females aged 18–45 years, (2) a similarly controlled Phase

III trial, in adolescents aged 12–17 years. Subjects were

assigned to 25 mg twice daily, 50 mg twice daily, 100 mg

twice daily, or placebo to evaluate the safety and efficacy

of the three doses for treating the behavioral symptoms of

FXS. The primary outcome measure was the ABC total

score, with the Clinical Global Impression-Improvement

(CGI-I) scale and Repetitive Behavior Scale-Revised

(RBS-R) as secondary outcome measures. Neither study

met significance on the primary endpoint. The sponsor,

Novartis Pharmaceuticals, subsequently terminated the

open-label extension portion of the study in adolescents

and discontinued their development program of AFQ056

for the treatment of FXS (ClinicalTrials.gov Identifiers:

NCT01253629, NCT01357239; [76]).

2.3 Basimglurant/RO4917523

Another mGluR5 antagonist, RO4917523 (basimglurant),

was studied in a Phase II clinical trial for subjects aged

14–50 years with FXS (ClinicalTrials.gov Identifier:

NCT01517698) and in an additional trial in children and

adolescents aged 5–13 years evaluating the drug for safety

and tolerability (ClinicalTrials.gov Identifiers:

NCT01015430, NCT01750957). Due to lack of efficacy,

although trial data remain unpublished at this time, the

sponsor of the trials, Hoffman–La Roche, subsequently

terminated its program for the development of basimglu-

rant as a treatment for FXS [77].

With the disappointing results from both the mavoglu-

rant and basimglurant trials, pharmaceutical companies

have largely moved away from pursuing selective mGluR5

antagonists as targeted treatments for FXS. The mGluR5

theory has not been proven or disproven with such short-

term trials; however, these results do suggest that phar-

macological manipulation of mGlur5 signaling, alone, in

humans with FXS is not a short-term approach to attenu-

ating interfering symptoms in the ages studied. Future trials

of mGluR5 antagonists could target young subjects whose

brains are still developing. By targeting signaling imbal-

ance in the developing brain it might be possible to aug-

ment neural circuitry as it develops, potentially improving

clinical outcomes as a result. Additionally, the field is

likely moving toward combined pharmacotherapies,
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possibly including mGlur5 modulators, with additional

targeted drugs addressing other potential causes of the FXS

behavioral phenotype.

2.4 Memantine

Memantine (3,5-dimethyladamantan-1-amine) is a com-

pound that non-competitively antagonizes the N-methyl-D-

aspartic acid (NMDA) receptor. There is evidence of

NMDA receptor dysfunction in FXS, but the overall

direction of the effect is unclear, appearing to depend on

brain region and age [40, 78–80]. Memantine is US Food

and Drug Administration (FDA) approved for the man-

agement of Alzheimer’s disease with a large body of work

to support its effect in this disorder. Treatment with

memantine is also being explored in humans with other

neurological disorders including ASD and FXS. In FXS, an

open-label trial was conducted in six subjects who had a

diagnosis of both FXS and pervasive developmental dis-

order (as diagnosed using criteria of the Diagnostic and

Statistical Manual of Mental Disorders, fourth edition)

[81]. The subjects received an average of 34.7 weeks of

memantine treatment. While four subjects showed global

symptom improvement as measured by the CGI-I, there

were no significant effects in any specific symptom

domains and two of the subjects had to discontinue therapy

with memantine due to increased irritability with treatment.

2.5 Cx516

AMPAR is a non-NMDA-type ionotropic receptor for

glutamate and mediates fast synaptic transmission. Modu-

lation of AMPA signaling, downstream of mGluR signal-

ing, was proposed as an indirect method of restoring

GABA/glutamate signaling balance [61]. In FXS, inter-

nalization of AMPARs is increased and suspected to con-

tribute to alterations in LTP and LTD since AMPA

signaling is required for proper maintenance of synaptic

plasticity. CX516 is a positive allosteric modulator of

AMPAR and was studied in a four-week, double-blind,

placebo-controlled trial. The trial failed to find significant

change in memory, the study’s primary measure, or any

secondary measures including measures for language

skills, behavior, and the ABC and CGI [82].

3 Modulating Inhibitory Neurotransmission

Along with the increase in glutamatergic signaling, the sig-

naling imbalance in FXS is, in part, due to deficits in inhi-

bitory GABAergic function. In the FXS mouse, deficits in

GABAergic signaling have been demonstrated in a variety of

brain regions including the hippocampus, striatum,

amygdala, and somatosensory cortex [83–86]. These deficits

are commonly found as decreases in GABA(A) receptor

subunit expression. It has been demonstrated in theFmr1KO

mouse that positive modulation of GABA(A) receptors can

improve some behavioral and neurophysiological alterations

in mouse and fly models [87, 88].

3.1 Riluzole

Riluzole is an FDA-approved treatment for amyotrophic

lateral sclerosis (ALS) andmay be helpful for depression and

anxiety [89, 90]. It is hypothesized to work by inhibiting

glutamate release [91] and potentiating post-synaptic

GABA(A) receptor activity [92]. Riluzole was the first

GABA(A) agonist studied in FXS clinical trials, in a six-

week open-label prospective pilot study (100 mg/day) with a

primary outcome of repetitive, compulsive behavior. It was

conducted in six adults with FXS. Treatment with riluzole

was associated with clinical response in one of six subjects

(17 %). Peripheral extracellular signal-related kinase (ERK)

activation, which is known to be altered in fragile X

knockout mouse models [93], was significantly corrected in

all subjects despite the lack of clinical improvement [94].

3.2 Acamprosate

Acamprosate is a compound FDA approved for the man-

agement of alcohol dependence and is currently being tested

for efficacy in FXS. While acamprosate was not shown to

interact with several tested GABA or glutamate receptor

subtypes in anOocytemodel [95] it has the potential to effect

the excitatory/inhibitory balance by effecting both

GABA(A) receptor function [96] and mGluR signaling [97],

likely in a pleiotropic manner [98]. The first study of

acamprosate in FXS was a small three-subject open-label

trial in which all subjects showed improvement measured by

the CGI-I [99]. Acamprosate was then studied in 12 youths

with FXS for 10 weeks in an open-label trial. Acamprosate

significantly improved performance on a number of outcome

measures including various subscales of the ABC, CGI-

Severity, Social Responsiveness Scale (SRS), Attention

Deficit Hyperactivity Disorder Rating Scale (ADHD-RS),

and subdomains of the Vineland Adaptive Behavior Scale

(VABS). On the CGI-I, the primary outcome measure, 9 of

the 12 participants were either ‘‘very much improved’’ or

‘‘much improved’’ [100]. In the same study, acamprosate

was also shown to decrease plasma amyloid precursor pro-

tein (APP) and increase brain-derived neurotrophic factor

(BDNF) with treatment suggesting positive pleotropic

effects of this drug in FXS individuals. On the basis of these

results, acamprosate is currently the subject of a Phase II

placebo-controlled study in FXS (clinicaltrials.gov,

NCT01911455).
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3.3 Ganaxolone

Ganaxolone (3a-hydroxy-3B-methyl analog of allopreg-

nanolone) is a neuroactive steroid and positive allosteric

modulator atGABA(A) receptors. In rodentmodels of seizure

disorders, ganaxolone has been shown to have anticonvulsant

effects at tolerable doses and sedative effects at higher doses

[101]. Ganaxolone has been found to improve symptoms

including audiogenic seizures in the Fmr1 knockout mouse

[102, 103] and is well tolerated in human adults, children, and

infants [104, 105]. A Phase II trial of ganaxolone in subjects

aged6–17 yearswith fullmutationFXS is currently underway

(ClinicalTrials.gov Identifier: NCT01725152). The study

aims to determine the safety, tolerability, and efficacy of

ganaxolone for the treatment of anxiety and attention deficits

in subjects with FXS by using a randomized, double-blind,

placebo-controlled, 6-week crossover design with a 2-week

washout period between treatment arms.

3.4 Metadoxine ER

Metadoxine (pyridoxol l-2-pyrrolidone-5-carboxylate) is a

non-stimulant, ion-pair salt of pyridoxine (vitamin B6) and

2-pyrrolidone-5-carboxylate (PCA), and has been used

around the world for the treatment of acute alcohol intoxi-

cation for over 30 years. In animal studies, metadoxine ER

(MDX; MG01Cl), an extended-release formulation under

development by Alcobra Pharmaceuticals, has been shown

to increase striatal dopamine levels [106]. MDX is currently

in Phase III development for adults with ADHD (Clini-

calTrials.gov Identifier: NCT02477748) and Phase II

development for pediatric ADHD (ClinicalTrials.gov Iden-

tifier: NCT02189772). In the Fmr1 KO mouse, MDX was

described as significantly improving working memory,

learning, and social interaction on Alcobra’s website,

although the study methods and results have not been pub-

lished in peer-reviewed form. A randomized, double-blind,

placebo-controlled Phase II clinical trial ofMDX in FXSwas

recently completed (ClinicalTrials.gov Identifier:

NCT02126995; [107]). The study involved a six-week

treatment period and enrolled 62males and females with full

mutation FXS aged between 14 and 55 years (mean age of

24 years), with 57 subjects completing the study. Treatment

withMDXdid not show a significant difference over placebo

on the primary endpoint, the inattentive subscale of the

Attention Deficit Hyperactivity Disorder Rating Scale

(ADHD RS-IV). It did, however, show significant

improvement in the Intent-to-Treat (ITT) population on both

theVinelandAdaptive Behavior Scale (VABS)Daily Living

Skills Domain (p = 0.044) and the computerized cognitive

Test of Attentional Performance for Children (KiTAP)

Distractibility subscale (p = 0.017). Many initial clinical

trials in FXS have had positive results following post-hoc

analysis or in secondary measures. However, subsequent

trials following these types of analyses have not demon-

strated significant improvement. Only additional, well-

planned and controlled trials of MDX in FXS will determine

if this new drug may be beneficial in FXS.

3.5 Arbaclofen

The active enantiomer of racemic baclofen, STX209 (ar-

baclofen), is a GABA(B) agonist that was developed by

Seaside Therapeutics and studied in FXS and ASD patient

populations. STX209 actions at presynaptic GABA(B) re-

ceptors were hypothesized to inhibit glutamatergic release

from presynaptic terminals thereby reducing the neuronal

hyperexcitability associated with FXS. In the Fmr1 KO

mouse model, STX209 was shown to reduce susceptibility

to audiogenic seizures and normalize excessive dendritic

spine density and protein synthesis [108]. A four-week,

Phase II trial of STX209 in 63 subjects aged 6–40 years

with full mutation FXS was completed in 2010 with the

drug being described as well tolerated [109]. The study was

a double-blind, placebo-controlled trial with a two-period

crossover conducted at 12 sites across the USA. The drug

was flexibly titrated between 1 mg twice daily and up to

10 mg three times daily until the optimal tolerated dose

was determined for each subject. STX209 did not show a

significant difference over placebo on the primary end-

point, the Irritability Subscale of the Aberrant Behavior

Checklist (ABC-I). Post hoc analyses did show a signifi-

cant improvement in parent-reported problem behaviors on

the Visual Analog Scale (VAS) and on the Social Avoid-

ance subscale of the ABC (ABC-SA). In a more socially

impaired subset of participants (based on the ABC-LSW at

baseline), significant improvement was observed in multi-

ple parent and clinician rated scales leading to two phase

III clinical trials in FXS individuals [110]. No significant

improvements were detected in the adolescent/adult Phase

III trial. The Phase III trial in children found no significant

effect on any primary outcome measures, but did find an

effect on the ABC-Fragile X Irritability subscale, a sec-

ondary outcome measure. TheSTX209 FXS development

program was terminated by Seaside Therapeutics poten-

tially due to lack of financial resources.

4 Other Targeted Treatment Mechanisms

4.1 Lithium

Lithium was used off-label to treat aggression and mood

instability in FXS based on anecdotal evidence before it

was the subject of a clinical trial. The 15-subject, open-

label trial, with two months of treatment, showed
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improvement on a variety of secondary measures such as

ABC total scores, the CGI and the VAS. No effect was

seen on the primary outcome measure, the Irritability

Subscale of the ABC. While there were behavioral

improvements, the study also had a large number of

adverse events including aggression, bedwetting, and

polydipsia [111]. The open-label nature of this study makes

it difficult to draw major conclusions from the results.

Lithium has been shown to ameliorate a variety of phe-

notypes in the FXS mouse including hyperactivity, social

preference, learning, and aberrant dendritic spines [112].

Lithium is proposed to act in FXS through inhibition of

glycogen synthase kinase-3 (GSK-3), which has shown to

be altered in the FXS mouse [113, 114]. Lithium has also

been shown to rescue synaptic plasticity, protein synthesis,

and GSK-3 activity phenotypes in the FXS mouse [115–

118]. While these findings are promising, the side-effect

profile of lithium likely limits its widespread use in FXS.

4.2 Minocycline

Minocycline is an FDA-approved treatment for acne and is

known to have inhibitory effects on matrix metallopro-

teinase 9 (MMP-9) activity. MMP-9 has been shown to be

elevated in the hippocampus of Fmr1 KO mice [119].

Minocycline treatment of Fmr1 KO mice was also shown

to reduce hyperactivity and improve the immature dendritic

spine phenotype [120]. In humans with FXS, an initial

open-label 20-subject trial enrolling 13- to 35-year-olds

noted significant improvement with minocycline treatment

in CGI, ABC-C and the ABC irritability, hyperactivity, and

inappropriate speech subscales after eight weeks of

minocycline therapy [121]. These results led to further

investigation of minocycline in a randomized, double-

blind, placebo-controlled trial in 55 children and adoles-

cents aged 3.5–16 years with FXS. The 3-month trial found

a significant difference in CGI-I but no significant

improvement was found on any behavior domain specific

measures [122]. There were no significant effects of

minocycline on VAS scores upon initial analysis, but ad

hoc analysis did find a significant effect in anxiety and

mood-related symptoms [122]. Minocylcine was also able

to attenuate altered event-related potentials (ERPs) in a

passive, auditory oddball paradigm in 12 subjects taken

from the same trial [123]. This could be indicative of

reducing the hypersensitivity to auditory simulation

observed in FXS. A larger sample is needed to confirm

both the behavioral and electrophysiological findings.

4.3 Lovastatin

The extracellular signal-related kinase (ERK1/2) intracel-

lular signaling pathway is often implicated in FXS

pathophysiology. Acting downstream of mGluRs, changes

in ERK1/2 activity is required for maintenance of normal

synaptic plasticity and regulation activity-dependent pro-

tein synthesis [124]. ERK activity has been shown to be

increased under baseline conditions in the FXS mouse

model and in human brain tissue [42, 55, 58]. Reducing

ERK1/2 activation by inhibition of its activating kinase

MEK with SL327 effectively rescued the audiogenic sei-

zure phenotype in the FXS mouse [58]. Inhibition of MEK

by U0126 was also able to reduce the increased protein

synthesis seen in the FXS mouse hippocampus [125].

Lovastatin is a compound that has been FDA approved

for the long-term management of familial hypercholes-

terolemia [126] (with demonstrated effects on intracellular

signaling). In cultured rat brain neuroblasts, lovastatin was

shown to inhibit Ras signaling, an upstream effect that

resulted in reduction in ERK1/2 activation [127]. This

supported previous work that was completed in fibroblasts

[128]. In the FXS mouse, lovastatin was confirmed to

inhibit Ras, reduce increased basal ERK1/2 activation,

lower protein synthesis to wild type levels, and ameliorate

FXS audiogenic seizure susceptibility [129].

Based upon the known safety profile of lovastatin and

the promising preclinical results, lovastatin’s efficacy in

FXS was assessed in a 16-patient, open-label trial in chil-

dren and adolescents. Treatment response was assessed

using the ABC-C, CGI-I, and VABSII. Significant

improvement was observed after 4 and 12 weeks of treat-

ment, with the VABS scores improving from week 4 to

week 12. There was modest improvement on the CGI-I, but

the open-label nature of the trial precludes any strong

inferences of efficacy at this stage of development [130].

Furthermore, particular importance should be placed on

lipid monitoring in future lovastatin trials since individuals

with FXS are reported to have lower levels of low- and

high-density lipoprotein and total cholesterol [131].

4.4 Insulin Growth Factor 1

NNZ-2566 is a synthetic analog of a naturally occurring

peptide derived from insulin-like growth factor 1 (IGF-1).

NNZ-2566 has been shown to have neuroprotective qual-

ities; improving recovery, reducing apoptotic cell death,

and reducing neuroinflamation in a rat model of traumatic

brain injury [132–134]. NNZ-2566 was the subject of a

recent Phase II clinical trial in Rett syndrome. Though the

study has not yet been published, according to a press

report the drug was well tolerated and met prespecified

criteria for improvement [135]. Treatment with IGF-1,

which NNZ-2566 mimics, has also shown efficacy in

Phelan-McDermid syndrome (PMDS) in a mouse model,

cultured human neurons, and a Phase I clinical trial in

children [136–138]. PMDS is a developmental disorder
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caused by heterozygous deletion of chromosome 22q13.3,

including SHANK3, a gene who’s mutation is associated

with ASDs [139, 140]. In the mouse model of FXS, NNZ-

2566 has been reported to rescue learning and memory

deficits, normalize dendritic morphology, and restore nor-

mal extracellular signal-related kinase (ERK) signaling

[141]. Recently, a double-blind, placebo-controlled early

phase trial of NNZ-2566 has completed recruitment of 12-

to 45-year-olds with FXS. This study was designed to

investigate the safety and tolerability of a liquid oral for-

mulation of NNZ-2566 in adolescent and adult males with

FXS (ClinicalTrials.gov Identifier: NCT01894958).

4.5 Donepazil

FMR1 has been shown to be highly expressed in cholin-

ergic neurons during the course of normal development

[142]. Choline levels were shown to be lower in FXS

individuals in a small 1H magnetic resonance spectroscopy

study [143]. Aberrant cholinergic function has also been

demonstrated in the subiculum of Fmr1 KO mice [144].

Donepezil is a drug that has been FDA approved to treat

dementia in individuals with Alzheimer’s disease by acting

as an acetylcholinesterase inhibitor and increasing choline

levels. In a nine-subject open-label trial in FXS involving

6 weeks of treatment, donepezil was well tolerated and

significantly improved performance on the ABC hyperac-

tivity, irritability, and total scores [143]. In a double-blind,

placebo-controlled trial with 12 weeks of treatment, no

effect of treatment was found [145]. It is worth noting that

none of the measures that reached significance in the open-

label trial were measured in the placebo-controlled study.

5 Symptom-Based Treatments

With targeted, mechanism-based therapies demonstrating

limited efficacy in placebo-controlled settings to date, most

drug treatment in FXS is based upon targeting the symptoms

presented by an individualwith the use of drugs that have been

FDA approved for indications outside of FXS. While these

therapies do not likely target a FXS-specific neural alteration,

multi-drug therapies based upon individual phenotype are

currently the most common method of treating FXS.

5.1 ADHD Treatments

FXS patients often have a concomitant ADHD diagnosis

with 73 % of an all-male cohort scoring 15 or higher on the

Conner’s abbreviated scale indicative of ADHD [146]. Even

subjects without an ADHDdiagnosis often express difficulty

focusing in a classroom setting. There have been three

clinical trials studying drugs aimed at treating the ADHD

symptoms in FXS. The first in FXS, was a double-blind

placebo-controlled study of the stimulant medications

methylphenidate and dextroamphetamine. Patients received

one week each of methylphenidate, dextroampetamine, and

placebo. Methylphenidate treatment improved patient per-

formance on the ADD-H: Comprehensive Teacher Rating

Scale while no improvement was observed with dextroam-

phetamine [147]. The second trial looked at the ability of L-

acetylcarnitine (LAC) to reduce the ADHD symptoms

observed in boys with FXS. The double-blind, placebo-

controlled study found significant improvement in both the

CGI parent and teacher response scores as well as the VABS

Socialization and ABC domains [148]. The most recent trial

focusing onADHDbehavior in FXS studied the antiepileptic

drug valproic acid (VPA). In an open-label trial of VPA, the

only significant change was in hyperactivity measured by the

Conner’s Parent Rating Scale [149]. While compounds like

LAC and VPA may afford some benefit in treating the

ADHD symptoms observed in FXS, stimulants are more

commonly prescribed.

5.2 Melatonin

Insomnia is another concern associated with FXS with 32 %

of youthswith FXS experiencing some form of sleep trouble,

in a parent/caregiver report. Awakening throughout the night

and delayed falling asleep were the most reported issues

[150]. In a four-week double blind, placebo-controlled trial

of melatonin in FXS and ASD (12 subjects, 6 with FXS)

treatment was found to significantly increase sleep duration,

decrease latency to sleep (time elapsed from bedtime to

falling asleep), and prompt earlier sleep onset (the clock time

when the child fell asleep). Sleep awakenings were

decreased but the change did not reach significance [151].

5.3 Oxytocin

Subjects with FXS experience strong, near debilitating

social anxiety, which often presents with severe eye gaze

avoidance and hyperarousal [152]. The effect of intranasal

oxytocin on social anxiety was the subject of a double-

blind, placebo-controlled trial in eight subjects with FXS.

Outcome measures included heart rate, heart rate vari-

ability, eye gaze frequency, and concentration of salivary

cortisol in response to a social stressor. Significant

improvement was found on eye gaze and salivary cortisol

measures [153]. A larger study is needed to adequately

assess the benefits of oxytocin in FXS.

5.4 Aripiprazole

Atypical antipsychotics, such as aripiprazole, are com-

monly prescribed by clinicians to reduce irritability in FXS
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individuals. Despite their widespread use, there have been

few studies looking at their efficacy in FXS. Among the

newer generation antipsychotics, only aripiprazole has

undergone clinical testing in FXS. In a 12-week, 10-subject

open-label trial, aripiprazole monotherapy significantly

improved performance on CGI-S, SRS, and the Children’s

Yale-Brown Obsessive Compulsive Scale Modified for

Pervasive Developmental Disorders (PDDs) [154].

5.5 Selective Serotonin Reuptake Inhibitors

While there have yet to be any clinical trials assessing the

efficacy of selective serotonin reuptake inhibitors (SSRIs)

in FXS syndrome, there is evidence suggesting they may

have beneficial effects. In a case series of low-dose ser-

traline in ASD, eight of nine subjects demonstrated

improvements in irritability, anxiety, and transition-in-

duced behavioral deterioration [155]. A retrospective

chart review in 45 children with FXS found that the 11

subjects taking sertraline showed improved language

development [156]. In a survey of subjects with FXS, it

was found that fluoxetine led to the greatest behavioral

activation of any drug in its class [157]. Despite the lack of

clinical trials in FXS, SSRIs are commonly prescribed for

the management of anxiety.

6 Conclusions

Drug development in FXS has received a large amount of

attention from both academic researchers (basic and clin-

ician scientists) as well as large and small pharmaceutical

companies. As a rare disorder, the Food and Drug

Administration (FDA) as well as the European Medicines

Agency (EMA) set the bar for demonstrating drug efficacy

at a positive single Phase III clinical trial as opposed to two

Phase III trials in disorders affecting larger populations.

The primary endpoint, which is approved by the FDA or

EMA and determined before the clinical trial begins, must

be significantly improved in the active drug group com-

pared to placebo. Despite this lowered barrier to entry,

there has yet to be a single treatment medication approved

to treat FXS.

In FXS clinical research, the primary endpoints have

typically included the Aberrant Behavior Checklist (or sub-

section scores), Clinical Global Impressions Improvement

of Severity subscales (CGI-I or CGI-S), the Social

Responsiveness Scale (SRS), or other parent-, teacher-, or

clinician-rated scales. In developmental disability research,

it is common to observe a 20–30 % placebo response on

the above-mentioned subjective measures, which is often

difficult to overcome even with a placebo lead-in phase

during the trial. It is becoming apparent that the common

outcome measures listed above are inadequate to track

improvements in the FXS phenotype, resulting in a push to

develop reliable, FXS-specific outcome measures [158].

The FXS-specific Fragile X Symptom Rating Scale is

currently being validated in several clinical trials, including

the Phase II trial of NNZ-2566 (clinicaltrials.gov

NCT01894958). Another scale being validated for use in

FXS is the Pediatric Anxiety Rating Scale revised for FXS

[159]. The possibility of differential treatment response in

various subpopulations defined by factors such as gender

and IQ complicates the problem further.

Less subjective measures such as eye-tracking, pre-pulse

inhibition, neuroimaging, evoked related potentials (ERP),

EEG, and blood biomarkers are beginning to be assessed in

early Phase II drug development as less subjective mea-

sures of a drug’s efficacy and potential engagement with

the pathophysiology of the disorder. These types of mea-

sures have not been specified as ‘primary’ endpoints in

large placebo-controlled trials in FXS. However, the

inclusion of these types of assessments is important for

discerning changes associated with drug treatment con-

sidering the high placebo response on standard par-

ent/caregiver report rating scales. Ideally, as more data are

gathered with respect to correlations between behavioral

endpoints/severity and these less-subjective measures, the

biomarker work will gain utility in aiding patient stratifi-

cation in the future.

One question yet to be resolved in FXS treatment

development is whether modulation of synaptic imbalance

in the adult brain is sufficient to restore cognitive function

in FXS. Signaling imbalances, which present develop-

mentally, can cause the circuitry of the brain to form

incorrectly. Though adult pharmacological intervention

may be able to restore synaptic function, it is unlikely to

rewire malformed circuits, possibly limiting the efficacy of

treatment over the relatively short duration of a clinical

trial. In the hopes of normalizing circuit formation and

improving the long-term course of FXS, researchers are

beginning to pharmacologically target signaling imbal-

ances in younger children with FXS. The next wave of

treatment trials in FXS will likely see a deviation from

previous studies as researchers begin to use the information

from past unsuccessful trials in an effort to ultimately

optimize study design specifically for FXS participants.
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