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Abstract Oritavancin (Orbactiv�) is a new generation

lipoglycopeptide approved for use in adult patients with

acute bacterial skin and skin structure infections (ABSSSI).

It is administered as a single 1200 mg intravenous infusion

over 3 h. In phase 3 trials in adult patients with ABSSSI,

oritavancin was noninferior to vancomycin in terms of a

composite outcome (cessation of spreading or reduction in

the size of the baseline lesion, absence of fever and no

rescue antibacterials required; primary endpoint) assessed

at an US FDA-recommended early timepoint of 48–72 h

after initiation of treatment. Oritavancin was also nonin-

ferior to vancomycin in terms of a C20 % reduction in the

baseline lesion size at the early timepoint and clinical cure

rate 7–14 days after the end of treatment. Oritavancin was

generally well tolerated in the phase 3 trials, with most

treatment-emergent adverse reactions being mild in

severity. The most common adverse events occurring in

oritavancin recipients were nausea, headache, vomiting,

limb and subcutaneous abscesses, and diarrhoea.

Oritavancin offers a number of potential advantages,

including a convenient single dose treatment that may

shorten or eliminate hospital stays, a reduction in health-

care resource utilization and cost, no need for dosage

adjustment in patients with mild to moderate hepatic or

renal impairment, no need for therapeutic drug monitoring,

and elimination of compliance concerns. Therefore, orita-

vancin is a useful treatment option for adults with ABSSSI.

Oritavancin: clinical considerations in acute bacte-

rial skin and skin structure infections

New generation lipoglycopeptide with potent in vitro

activity against Gram-positive bacteria causing

ABSSSI, including methicillin-resistant

Staphylococcus aureus, streptococci and enterococci

At least three mechanisms of action, which

contribute to rapid and concentration-dependent

bactericidal activity

Low potential for the emergence of oritavancin-

resistant strains

Noninferior to vancomycin for a composite clinical

outcome (primary endpoint) and a C20 % reduction

in the baseline lesion size 48–72 h after initiation of

treatment, and for clinical cure rate 7–14 days after

the end of treatment

Generally well tolerated

Convenient single dose treatment, without a need for

dosage adjustment or therapeutic drug monitoring
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1 Introduction

The US FDA defines acute bacterial skin and skin structure

infections (ABSSSI; previously known as complicated skin

and skin structure infections) as bacterial infections of the

skin with a lesion size area of C75 cm2 (measured by the

area of redness, oedema or induration) and includes wound

infection, cellulitis/erysipelas and major cutaneous abscess

[1]. ABSSSI are typically caused by Gram-positive bacte-

ria, most commonly Staphylococcus aureus [including

methicillin-resistant S. aureus (MRSA)] and Streptococcus

pyogenes [1]. Other Gram-positive (other Streptococcus

species and Enterococcus species), Gram-negative and

anaerobic bacteria, and polymicrobial infections may also

be present in ABSSSI [2].

ABSSSI are associated with a substantial economic bur-

den because of high hospitalization rates and antibacterial

therapy with agents that typically require once- to thrice-

daily administration for 5–14 days [3–5]. In order to achieve

good clinical outcomes at minimal cost with these regimens,

patient care needs to be transitioned through multiple

treatment settings (often including outpatient parenteral

antimicrobial therapy), using complex strategies and plan-

ning [3]. However, outpatient treatment may not overcome

the shortcomings of multiple drug administrations, complex

therapeutic drug monitoring, dosage adjustments, patient

inconvenience caused by the use of peripherally inserted

central catheters, and poor compliance [3, 6]. Longer-acting

antibacterials with reduced administration frequency may

mitigate some of these problems [3].

The naturally occurring glycopeptides vancomycin and

teicoplanin (a first generation lipoglycopeptide; not

approved in the USA) have been key parenteral antibac-

terials used against Gram-positive infections, particularly

MRSA [7]. However, the emergence of bacterial strains

resistant to these agents is associated with an increasing

incidence of treatment failures and worsening clinical

outcomes. The most problematic resistant strains are van-

comycin-intermediate S. aureus (VISA), heterogeneous

VISA (hVISA), vancomycin-resistant S. aureus (VRSA)

and vancomycin-resistant enterococci (VRE). Therefore,

second generation semisynthetic lipoglycopeptides (e.g.

oritavancin), which have a low potential for evolution of

resistance, have been developed. Furthermore, these agents

are more potent and longer acting than vancomycin, and

thus, permit less frequent administrations [7].

Intravenous oritavancin (Orbactiv�) is the first single-

dose antibacterial therapy to be approved in the USA [8]

and EU [9] for the treatment of adult patients with ABSSSI.

This narrative review focuses on the clinical efficacy and

tolerability of oritavancin in these patients, and provides an

overview of its pharmacological properties.

2 Pharmacodynamic Properties of Oritavancin

2.1 Mechanism of Action

Oritavancin is a vancomycin analogue derived from

chloroeremomycin, from which it differs by the addition of

a lipophilic N-4-(4-chlorophenyl)benzyl side chain [10]. It

has multiple mechanisms of action which contribute to its

concentration-dependent bactericidal activity. Oritavancin

inhibits cell wall synthesis by inhibiting the transglycosy-

lation (polymerization) and transpeptidation (crosslinking)

steps by binding to the carboxyl terminal acyl-D-alanyl-D-

alanine residues of the stem pentapeptide in nascent pep-

tidoglycan chain and peptidic crosslinking segments,

respectively. Unlike other glycopeptides, oritavancin is

able to bind to depsipeptides, including D-alanyl-D-lactate

residues, which are present in organisms exhibiting VanA-

type resistance [10]. Additionally, oritavancin disrupts cell

membrane integrity, resulting in depolarization, increased

permeability and rapid cell death [10, 11]; an ultrastruc-

tural study revealed that oritavancin caused septal distor-

tions in MRSA and VRE [12]. The lipophilic side chain

anchors the drug to the cell membrane and thus, enhances

its affinity for the target site [10].

2.2 Antibacterial Activity

2.2.1 In Vitro Activity

This section mainly focuses on the antibacterial activity of

oritavancin against Gram-positive bacteria causing ABSSSI

as specified in the US manufacturer’s prescribing informa-

tion (Table 1) [8]. In surveillance studies discussed, clinical

isolates were collected between 2005 and 2014 in the USA

and/or Europe [13–20], USA, Europe and Asia [21–26],

Canada [27] or worldwide [28]. Most studies were con-

ducted as part of the SENTRY Antimicrobial Surveillance

programme [14, 15, 17, 18, 20–25, 28]. In all studies, the

minimum inhibitory concentration (MIC) required to inhibit

the growth of 90 % of isolates (MIC90) was determined

using broth microdilution techniques, with the addition of

polysorbate 80 to testing media. Susceptibility to oritavancin

was based on the US FDA breakpoints (Table 1). As with

glycopeptide antibacterials in general, oritavancin has no

intrinsic activity against Gram-negative bacteria [9].

Oritavancin showed potent in vitro activity against the

target pathogens, with MIC90 values several-fold lower than

those of vancomycin, and where reported, C98 % of clinical

isolates were susceptible to oritavancin and all isolates were

susceptible to vancomycin (Table 1). At least 90 % of

vancomycin-susceptible Enterococcus faecium demon-

strated an in vitro MIC of B0.12 lg/mL (the susceptibility
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breakpoint for vancomycin-susceptible Enterococcus fae-

calis) for oritavancin; however, the efficacy and safety of

oritavancin in treating clinical infections caused by this

species is not established in adequate well-controlled clinical

trials [8]. Oritavancin MIC90 values for MRSA did not differ

between clinical isolates collected in the USA and Europe,

with the differences within twofold for Streptococcus

agalactiae, Streptococcus dysgalactiae, S. pyogenes and

Streptococcus anginosus group [15, 19, 20]. In phase 3 trials

(Sect. 4), oritavancin MIC90 values against MRSA and

methicillin-susceptible S. aureus (MSSA) isolates (0.12 lg/

mL for both; n = 404 and 535) [13] were consistent with

those in the surveillance studies (Table 1).

The in vitro activity of oritavancin has been tested

against clinical isolates with reduced susceptibility to

vancomycin and other drugs. The MIC90 value for orita-

vancin was B0.12 lg/mL against multidrug-resistant

(MDR) S. aureus strains (susceptibility C98 %;

n = 337–1345) [20, 22, 25, 27], MRSA strains with a

vancomycin MIC of 2 lg/mL (n = 124) [17] and S. aureus

strains with a vancomycin MIC of 2 lg/mL (n = 205) or a

daptomycin MIC of 1–4 lg/mL (n = 100) [20]. MIC90

values for oritavancin against VRSA (n = 10), hVISA

(n = 11) and VISA (n = 14) were 0.5, 1 and 2 lg/mL,

respectively [29]. Oritavancin MIC90 values did not change

between erythromycin-susceptible and -nonsusceptible

strains of S. agalactiae and S. pyogenes [26] or between

MDR and non-MDR strains of b-haemolytic and viridans

streptococci [30]. Against vancomycin-resistant E. fae-

calis, oritavancin exhibited good in vitro activity against

VanB-type (MIC90 0.03 or 0.06 lg/mL; n = 19 and 17) as

well as VanA-type (MIC90 0.5–1 lg/mL; n = 20–65)

strains [17, 18, 21, 24, 26]. Of note, oritavancin was more

potent than dalbavancin against E. faecalis (n = 14) and

E. faecium (n = 15) strains exhibiting VanA-type resis-

tance (MIC90 B0.5 vs. [16 lg/mL; abstract presentation)

[31]. Oritavancin had good in vitro activity against S. au-

reus, E. faecalis and E. faecium (MIC90 values 0.06, 0.12

and 0.12 lg/mL, respectively; n = 25, 13, 32) strains with

elevated linezolid MICs [32].

Oritavancin had a MIC90 value of 0.06 lg/mL against

MRSA isolates (n = 14) harbouring a novel gene, mecC,

which was within a doubling dilution of its MIC90 value

against isolates carrying the typical mecA gene, which

confers methicillin resistance [33]. Oritavancin also

showed good in vitro activity (MIC90 0.25 lg/mL) against

community-acquired MRSA isolates (n = 58), regardless

of their genetic markers (presence or absence of Panton-

Valentine leukocidin gene or presence of staphylococcal

chromosome cassette mec type II or IV) [34].

2.2.2 Bactericidal Activity

In time-kill analyses, oritavancin at physiologically rele-

vant concentrations demonstrated rapid, concentration-de-

pendent bactericidal activity against Gram-positive

Table 1 In vitro activity of oritavancin compared with vancomycin against targeted Gram-positive clinical isolates specified in the US

manufacturer’s prescribing information

Species No. of isolatesa ORI VAN References

MIC90

(lg/mL)

Susceptible

isolates (%)b
MIC90 Susceptible

isolates (%)c

Staphylococcus aureus 3004–17,717 0.06–0.12 1 100/100 [13, 14, 20, 23, 24, 26]

MRSA 124–4882 0.06–0.12 98.4–99.5 1 100/100 [13, 15–17, 19, 20, 23–27]

MSSA 523–7127 0.06–0.12 99.2–99.7 1 100/100 [13, 15, 17, 19, 23–27]

Streptococcus pyogenes 55–959 0.12–0.25 98.4–99.2 0.25–0.5 100/100 [15, 16, 19, 23, 24, 26, 27]

Streptococcus agalactiae 55–415 0.06–0.25 97.9–100 0.5 100/100 [15, 16, 19, 23, 24, 26, 27]

Streptococcus dysgalactiae 22–59 0.25–0.5 98.3–100 0.25–0.5 –/100 [13, 24]

Streptococcus anginosus group 78–194 B0.008–0.015 100 1 100/100 [3, 13, 24, 28]

S. anginosus 128 B0.008 [28]

Enterococcus faecalis (VAN-S) 1311–1919 0.03–0.06 99.5 2 100/100 [17, 18, 21, 24, 26]

EUCAST European Committee on Antimicrobial Susceptibility Testing, MIC90 minimum inhibitory concentration (MIC) required to inhibit the

growth of 90 % of isolates, MRSA methicillin-resistant S. aureus, MSSA methicillin-susceptible S. aureus, ORI oritavancin, PK/PD pharma-

cokinetic/pharmacodynamic; VAN vancomycin, VAN-S VAN-susceptible
a Not reported in one study [24]
b Using US FDA breakpoints: B0.12 lg/mL for S. aureus (including MRSA) and E. faecalis (VAN-S only), and B0.25 lg/mL for all other

species [8]. The EUCAST breakpoints indicating susceptibility and resistance to oritavancin are: B0.125 and[0.125 mg/L for S. aureus; B0.25

and[0.25 mg/L for streptococci (groups A, B, C, G) and for S. anginosus group. Based on the PK/PD target for S. aureus, the susceptibility and

resistant breakpoints for oritavancin were B0.125 and[0.125 mg/L; the PK/PD target for S. pyogenes is uncertain [73]
c Using Clinical and Laboratory Standards Institute/EUCAST breakpoints
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pathogens associated with ABSSSI [33, 35–42]. For

example, oritavancin at 16 lg/mL was bactericidal [i.e. C3

log10 reductions in colony-forming unit (CFU)/mL from

baseline] against MSSA, MRSA and VRSA (within 2 h),

VISA (within 24 h), vancomycin-susceptible E. faecalis

(within 6 h), and VRE (within 6 and 24 h against VanB

and VanA strains); in comparison, vancomycin was bac-

tericidal against MSSA and MRSA at 24 h [36]. Orita-

vancin showed bactericidal activity against a daptomycin-

nonsusceptible MRSA strain (within 8 h) [39], exponen-

tially-growing as well as stationary-phase and biofilm-

producing S. aureus [36, 38], intracellular S. aureus [43],

and S. pyogenes, including erythromycin-resistant strains

(within 0.25–3 h) [35]. A simulated single oritavancin dose

of 1200 mg produced significantly (p\ 0.05) lower area

under the bacterial-kill curve at 24 h than vancomycin

1000 mg twice daily against three MRSA strains [40].

Preliminary results (abstract presentations) suggest that

oritavancin may be more potent than dalbavancin against

MRSA (including non-dividing) isolates, with respect to

the rate and/or extent of killing [41, 42, 44].

In time-kill assays, oritavancin showed synergistic

activity with gentamicin or linezolid against MRSA

(comprising VISA and hVISA strains) [37], VISA [45] and

VRSA [45], with rifampin against 7 of 9 MRSA strains

[37] and VRSA [45], and with gentamicin, moxifloxacin or

rifampin against MSSA [45]. In vitro, there was no

antagonism between oritavancin and gentamicin, moxi-

floxacin, linezolid or rifampin [8, 37].

2.3 Resistance Issues

There was no evidence for the emergence of bacterial

resistance to oritavancin in surveillance (Table 1) or clinical

studies [8]. In surveillance studies, including a longitudinal

analysis [46], MIC90 values and susceptibility rates against

specified bacteria have generally remained constant for

oritavancin over the past several years. In vitro, emergence

of S. aureus and E. faecalis strains resistant to oritavancin

has been seen in serial passage studies [8]. The mechanism

of resistance to oritavancin is not fully understood [10].

2.4 Pharmacokinetic/Pharmacodynamic

Considerations

The oritavancin area under the plasma concentration–time

curve (AUC) from time zero to 72 h (AUC72h) to MIC90

ratio correlated well with its efficacy in phase 3 trials

(abstract presentation) [47]. The AUC72h:MIC90 ratio

threshold for achieving post-therapy clinical cure (defined

in Table 2) was determined to be 11,982 in patients with

S. aureus infections, with 82.6 and 96.2 % of patients with

AUC72h:MIC90 ratios below and above this target,

respectively, achieving clinical success (p = 0.03 for

between-group comparison). The mean overall model-

predicted probability of achieving clinical success was

95.4 % across oritavancin MIC values of 0.06–0.5 lg/mL

against S. aureus [47].

2.5 In Vivo Activity

Consistent with its in vitro activity, oritavancin exhibited

potent bactericidal effects in animal models of infection

with S. aureus (including MRSA and MSSA), E. faecalis

[vancomycin-susceptible and -resistant (both VanA- and

VanB-type) strains] or E. faecium (VanA-type) [48, 49].

For example, a single human-equivalent dose of 1200 mg

reduced MSSA or MRSA counts from baseline by

C2.7 log10 CFU/thigh in a neutropenic murine thigh

infection model [49]. The single-dose regimen was sig-

nificantly (p\ 0.05) more effective than daily regimens in

this model [48, 49]. Subsequently, single-dose regimens

were evaluated in a phase 2 study (Sect. 4).

3 Pharmacokinetic Properties of Oritavancin

The pharmacokinetics of oritavancin are linear at doses of

up to 1200 mg [8] and are best described using a three-

compartment model (a and b distributional phases followed

by a terminal elimination phase), with zero-order intra-

venous infusion and first-order linear elimination [50, 51].

In a population pharmacokinetic analysis [51] of the

phase 3 trials (which used the approved oritavancin dose of

a single intravenous infusion of 1200 mg in patients with

ABSSSI; Sect. 4), the model-derived mean maximum

plasma concentration was 138 lg/mL and AUC72h was

1530 lg � h/mL. AUC72h is the main AUC parameter of

interest for oritavancin (Sect. 2.4) and was consistent with

the timing of the assessment of early clinical outcomes (i.e.

48–72 h after the start of therapy) in the phase 3 trials.

Oritavancin is highly (&85 %) bound to human plasma

proteins [8] and is extensively distributed into tissues (es-

timated total and mean steady-state volume of distribution

87.6 and 97.8 L) [8, 51]. Oritavancin showed modest

penetration into cantharide-induced skin blister fluid in

healthy volunteers; after a single intravenous infusion of

800 mg, the ratio of mean area under the blister fluid

concentration–time curve at 24 h to that of plasma was

0.185; however, mean oritavancin concentrations in blister

fluid exceeded its MIC90 value against S. aureus [52].

Nonclinical studies show that oritavancin is not metab-

olized [8]. In humans, unchanged oritavancin is slowly

excreted in urine and faeces (\5 and \1 %, respectively,

over 14 days) [8]. In patients with ABSSSI, oritavancin

had a prolonged terminal elimination half-life (245 h), with
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a clearance of 0.445 L/h; despite the long terminal half-

life, AUC72h was 55 % of the overall exposure (i.e. AUC?)

[51].

In healthy volunteers receiving a single dose of

1200 mg, oritavancin nonspecifically and weakly inhibited

cytochrome P450 (CYP) enzymes CYP2C9 and CYP2C19,

Table 2 Comparative efficacy of intravenous oritavancin in adult patients with acute bacterial skin and skin structure infections in double-blind,

multinational, phase 3 noninferiority trials

Study or

subgroup

No. of pts

ORI/VANa
Early clinical evaluationb (% pts) Post-therapy clinical cure ratec

(% pts)
Composite outcomed C20 % lesion size reduction

ORI VAN Difference

(95 % CI)

ORI VAN Difference

(95 % CI)

ORI VAN Difference

(95 % CI)

SOLO I [6] 475/479e 82.3f 78.9f 3.4 (-1.6 to 8.4)g 86.9 82.9 4.1 (-0.5 to 8.6)g 79.6 80.0 -0.4 (-5.5 to 4.7)g

SOLO II [54] 503/502e 80.1f 82.9f -2.7 (-7.5 to 2.0)g 85.9 85.3 0.6 (-3.7 to 5.0)g 82.7 80.5 2.2 (-2.6 to 7.0)g

Combined analyses

All SOLO pts

[57]h
978/981e 81.2 80.9 86.4 84.1 81.2 80.2

Outpatients

only [56]h
391/396 80.6 78.3 87.0 84.3 83.9 81.8

By infection type [61]h

Wound

infection

283/281 88.0 85.1 85.9 82.6 83.4 78.3

Cellulitis 387/400 76.0 75.5 82.7 80.0 76.0 78.8

Major

cutaneous

abscess

308/300 81.5 84.3 91.6 91.0 85.7 84.0

By baseline pathogen [8, 59]h

MRSA 204/201 81.4 80.6 93.1* 87.1 6.1 (0.5–11.6) 83.3 84.1

MSSA 268/272 82.8 85.7 86.2 85.3 82.1 84.2

Streptococcus

pyogenes

31/32 67.7 71.9 77.4 75.0 80.6 71.9

Streptococcus

agalactiae

8/12 87.5 100.0 100.0 100.0 87.5 91.7

Streptococcus

dysgalactiae

9/6 77.8 100.0 66.7 83.3 77.8 50.0

Streptococcus

anginosus

group

33/45 84.8 88.9 87.9 93.3 75.8 84.4

Enterococcus

faecalis

13/12 84.6 83.3 76.9 66.7 61.5 75.0

Missing data were considered as treatment failures; endpoints were assessed using a statistical testing hierarchy in the order of composite

outcome, post-therapy clinical cure rate and C20 % lesion size reduction

IV intravenous, MRSA methicillin-resistant Staphylococcus aureus, MSSA methicillin-susceptible S. aureus, ORI oritavancin, pts patients, VAN

vancomycin

*p = 0.032 vs.VAN
a A single IV infusion of ORI 1200 mg over 3 h, followed by IV placebo every 12 h, or IV infusion of VAN 1 g or 15 mg/kg every 12 h for

7–10 days; concomitant aztreonam or metronidazole could be used for suspected Gram-negative and anaerobic pathogens, respectively
b Assessed at 48–72 h after initiating therapy
c Complete or nearly complete resolution of baseline signs and symptoms such that no further antibacterial treatment was required, assessed by

the study investigator 7–14 days after the end of therapy
d Cessation of spread or reduction in the size of baseline lesion, absence of fever and no rescue antibacterials required
e Modified intent-to-treat population
f Primary endpoint
g ORI was noninferior to VAN as the lower limit of the 95 % CI was greater than -10 %
h Abstract presentation
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and weakly induced CYP3A4 and CYP2D6 [8]. Therefore,

oritavancin may alter exposure to drugs with a narrow

therapeutic window that are mainly metabolized by these

enzymes; for example, the mean AUC for warfarin (a

CYP2C9 substrate) increased by 31 % with concomitant

oritavancin. In vitro, oritavancin is not a substrate or an

inhibitor of P-glycoprotein [8].

The pharmacokinetics of oritavancin were not affected

to a clinically relevant extent by mild to moderate renal

impairment (creatinine clearance [29 mL/min), moderate

hepatic impairment (Child-Pugh class B), presence of

diabetes, age, height, weight, gender or race; hence, dosage

adjustment is not required [8, 51]. The effects of severe

renal or hepatic impairment on the pharmacokinetics of

oritavancin have not been evaluated [8]. In vitro, orita-

vancin was not removed from blood by haemodialysis [8],

suggesting that dosage adjustment may not be required in

patients undergoing haemodialysis.

4 Therapeutic Efficacy of Oritavancin

As stated by Corey et al. [6], two initial phase 3 trials

evaluating a daily regimen of intravenous oritavancin (200

or 300 mg daily for 3–7 days) did not provide sufficient

evidence for the efficacy and safety of oritavancin in

patients with ABSSSI. However in a subsequent random-

ized, double-blind, multicentre phase 2 study (n = 302) in

patients with ABSSSI, oritavancin administered as a single

1200 mg dose or 800 mg on day 1 with an optional 400 mg

on day 5 was noninferior to a daily regimen (200 mg daily

for 3–7 days) in terms of clinical response rates at the test-

of-cure visit in the clinically evaluable population (81.5

and 77.5 vs. 72.4 %, respectively) [53]. Based on these

results, the efficacy of a single dose of oritavancin 1200 mg

was compared with that of twice-daily intravenous van-

comycin in two identically designed double-blind, nonin-

feriority, multinational, phase 3 trials (SOLO I [6] and

SOLO II [54]) in adults with ABSSSI. Combined analyses

of these trials are available as abstracts [55–62] and in the

US prescribing information [33]. Discussion in this section

focuses on the SOLO trials.

Eligible patients in the SOLO trials were aged

C18 years and had a diagnosis of ABSSSI (proven or

suspected to be caused by a Gram-positive pathogen) that

was expected to require C7 days of intravenous therapy [6,

54]. The diagnosis of ABSSSI required the presence of a

wound infection, cellulitis/erysipelas or major cutaneous

abscess, each lesion surrounded by erythema, oedema and/

or induration of C75 cm2. At least two signs of ABSSSI

(purulent drainage or discharge, erythema, fluctuance, heat

or localized warmth, oedema/induration, pain or tenderness

to palpation) and one or more signs of systemic

inflammation (proximal lymph node swelling and tender-

ness, body temperature C38.0 or \36.0 �C, white blood

cell count [10,000 cells/mm3, bandemia [10 %, or C-re-

active protein level above the upper limit of normal) had to

be present. Patients without signs of systemic inflammation

could be enrolled if they were aged[70 years, had diabetes

requiring treatment, or had received immunosuppressive or

chemotherapeutic agents in the previous 3 months. Patients

who received antibacterials that had activity against Gram-

positive pathogens within 14 days prior to randomization

were among those excluded [6, 54].

Randomized treatment regimens are shown in Table 2.

The primary endpoint was a composite outcome assessed at

the US FDA recommended timepoint of 48–72 h in the

modified intent-to-treat (mITT) population (Table 2) [6,

54]. Secondary endpoints included early reduction in lesion

size and post-therapy clinical cure rate (Table 2), which are

recommended by the FDA and the European Medicines

Agency, respectively, in ABSSSI trials.

Patient demographic and baseline clinical characteristics

did not differ markedly between the treatment groups within

each trial [6, 54]. In SOLO I, 49.9 % of patients had cellulitis/

erysipelas, 29.5 % had major cutaneous abscess and 20.6 %

had wound infection [6]. The corresponding proportions in

SOLO II were 30.9, 32.5 and 36.5 %, respectively [54]. At

baseline, 19.7 and 9.1 % of patients had diabetes in SOLO I

[6] and II [54], respectively. The median lesion size in the

oritavancin and vancomycin groups was 248.0 and 225.6 cm2

in SOLO I [6], and 287.8 and 308.8 cm2 in SOLO II [6]. A

baseline pathogen was isolated in 61.1 and 60.5 % of patients

in the oritavancin and vancomycin groups, respectively, in

SOLO I, and 69.8 and 70.1 % in SOLO II, with S. aureus

being the most common [6, 54].

4.1 Individual Trials

Oritavancin was noninferior to vancomycin in terms of the

composite outcome at the early clinical evaluation in the

mITT population in both SOLO I and II trials (Table 2;

primary endpoint) [6, 54]. Similar results were seen in the

clinically evaluable population (n = 791 [6] and 835 [54]

in SOLO I and II). In subgroup analyses of the mITT

population, the proportion of patients with major cutaneous

abscess achieving the primary endpoint was lower in the

oritavancin than in the vancomycin group in SOLO II (81.0

vs. 89.9 %; difference -9.0; 95 % CI -16.5 to -1.4) [54].

Apart from this, in individual trials, there were no signifi-

cant between-group differences by lesion type, geographic

region (North America, Eastern or Western Europe, Asia),

risk factors [diabetes or systemic inflammatory response

syndrome (SIRS)], age (\65 or C65 years), sex, body mass

index, race or baseline pathogen (C1 pathogen, MRSA,

MSSA, S. anginosus group) [6, 54]. The overall incidence
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of treatment failure for the primary endpoint in the orita-

vancin and vancomycin groups was 14.3 and 16.3 %,

respectively, in SOLO I [6] and 17.3 and 14.1 % in SOLO

II [54]. The pattern of reasons for the failure was generally

similar between the groups, with fever between 48 and

72 h being the most common reason in both groups [6, 54].

Oritavancin was also noninferior to vancomycin with

respect to the percentage of patients achieving a C20 %

reduction in lesion size at 48–72 h and clinical cure rate

7–14 days after the end of therapy in individual trials

(Table 2) [6, 54]. In SOLO I, there were no significant

between-group differences in lesion size reduction by

lesion type and risk factors such as diabetes, SIRS, age

C65 years or renal insufficiency (abstract presentation

[63]), or by baseline MRSA or MSSA [6]. In SOLO II,

there were no significant between-group differences in

clinical cure rate by lesion type, geographic region, pres-

ence of SIRS, age, sex, race, and baseline MRSA or

MSSA; however, in patients with diabetes, the clinical cure

rate was significantly lower with oritavancin than with

vancomycin (69.6 vs. 88.9 %; treatment difference -19.3;

95 % CI -35.5 to -3.2; n = 46 and 45) [54].

4.2 Combined Analyses

Combined analyses of SOLO trials also confirmed the

efficacy of oritavancin in the overall population and in

prespecified subgroups by treatment setting, infection type

and baseline pathogen (Table 2). Of note, among patients

with baseline MRSA, significantly more oritavancin than

vancomycin recipients achieved a C20 % reduction in their

lesion size at 48–72 h [59].

Oritavancin was effective in the inpatient as well as the

outpatient setting, irrespective of ABSSSI severity [56, 62].

In SOLO trials, &40 % of patients (all from the USA [62])

were treated entirely in the outpatient setting, and the early

and post-therapy clinical outcomes in this population were

generally similar to those of the overall population

(Table 2) [56]. Clinical outcomes did not differ markedly

between treatment groups based on disease severity (Eron

class I, II or III) or treatment setting (inpatient or outpa-

tient); the majority (&71 %) of outpatients were deemed to

belong to Eron class II or III, reflecting a moderate level of

disease severity [62].

Among inpatients, post-therapy clinical cure rates did

not differ markedly between oritavancin and vancomycin

recipients in the USA (81 and 78 %; n = 1165) and

Eastern European countries (86 and 84 %; n = 202) [55].

The average length of hospital stay was shorter in the USA

(6.0 and 6.4 days, respectively) than in the Eastern Euro-

pean countries (14.9 and 14.7 days) [55].

There was high concordance between early and post-

therapy clinical outcomes in SOLO trials, with 87 % of

patients who achieved the composite outcome and 85 % of

those who achieved a C20 % reduction in the baseline

lesion size achieving clinical cure at the post-therapy

evaluation [60].

Oritavancin produced high microbiological response at

the post-therapy evaluation [58]. In the microbiological

intent-to-treat population, eradication or presumed eradi-

cation rates in the oritavancin and vancomycin groups by

baseline pathogen were: MRSA 91.4 and 93.9 %, respec-

tively (n = 186 and 181); MSSA 93.2 and 93.9 %

(n = 235 and 244); S. pyogenes 92.6 and 85.2 % (n = 27

and 27); S. anginosus group 88.5 and 90.5 % (n = 26 and

42); and, E. faecalis 66.7 and 88.9 % (n = 12 and 9) [58].

5 Tolerability of Oritavancin

Oritavancin was generally well tolerated in patients with

ABSSSI in SOLO I and II trials, with most treatment-

emergent adverse events being mild in severity [6, 8, 54].

Of note, an extended (60 days) safety follow-up for orita-

vancin did not identify any prolonged or delayed adverse

events, suggesting that the extended half-life of oritavancin

does not markedly affect its safety profile [6, 54]. In SOLO

trials, relatively few patients in the oritavancin and van-

comycin groups discontinued treatment because of an

adverse event (3.8 vs. 5.8 % [6]; 3.6 vs. 2.6 % [54]). In a

pooled analysis of these trials, cellulitis (0.4 %) and

osteomyelitis (0.3 %) were the most common adverse

reactions leading to discontinuation of oritavancin [8].

In the pooled analysis, 55.3 and 56.9 % of patients in the

oritavancin (n = 976) and vancomycin (n = 983) groups

experienced one or more adverse reactions [8]. The most

common adverse reactions (incidence C1.5 % in the ori-

tavancin group) that occurred in the oritavancin and van-

comycin groups were nausea (9.9 vs. 10.5 %), headache

(7.1 vs. 6.7 %), vomiting (4.6 vs. 4.7 %), limb or subcu-

taneous abscess (3.8 vs. 2.3 %), diarrhoea (3.7 vs. 3.4 %),

elevated alanine transaminase (2.8 vs. 1.5 %) or aspartate

aminotransferase (1.8 vs. 1.5 %), dizziness (2.7 vs. 2.6 %),

infusion-site phlebitis (2.5 vs. 1.5 %), tachycardia (2.5 vs.

1.1 %) and infusion-site reaction (1.9 vs. 3.5 %) [8].

Where reported [6], Red-Man syndrome did not occur in

oritavancin recipients. In SOLO I and II, osteomyelitis was

reported as an adverse event in six oritavancin recipients

and one vancomycin recipient in total [6, 54]. Treatment-

related adverse events occurred in less than one-third of

patients in the oritavancin and vancomycin groups (22.8 vs.

31.4 % [6]; 21.7 vs. 25.5 % [54]).

Serious adverse reactions occurred in &6 % of patients

in both treatment groups, with cellulitis being the most

common (&1 % in both groups) [8]. There were no reports

of serious elevations in liver enzymes or discontinuation of
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study drugs because of these adverse events [6, 54]. Two

patients in the oritavancin group and three patients in the

vancomycin group died during SOLO trials; no deaths were

considered to be related to study drug by the investigator

[6, 54].

In a pooled analysis of SOLO trials, the distribution of

time to onset and duration of adverse events were generally

similar between oritavancin and vancomycin groups [64].

The median time to onset and the duration was 2.0 and

2.0 days for oritavancin-related adverse events, and 1.0 and

6.0 days for oritavancin-related serious adverse events

[64].

The incidence of laboratory abnormalities, vital signs

and electrocardiographic findings did not differ markedly

between oritavancin and vancomycin recipients [6, 54]. In

a thorough QT study in healthy volunteers (n = 135), a

single 1600 mg dose of oritavancin did not prolong the

corrected QT interval to a clinically relevant extent [8].

In the two initial phase 3 trials (Sect. 4), once-daily

oritavancin was not associated with potential glycopeptide-

related adverse events, such as nephrotoxicity, ototoxicity,

vestibular toxicity or haematologic toxicity [65].

6 Dosage and Administration of Oritavancin

Intravenous oritavancin is approved in the USA [8] and

EU [9] for the treatment of ABSSSI in adults. In the

USA, it is indicated for patients with ABSSSI caused or

suspected to be caused by susceptible isolates of specific

Gram-positive bacteria (Table 1). In order to reduce the

risk of antibacterial resistance and maintain the effec-

tiveness of oritavancin and other antibacterial drugs, ori-

tavancin should only be used to treat infections that are

proven or strongly suspected to be caused by susceptible

bacteria [8, 9].

The recommended dosage of oritavancin is a single

1200 mg administered as a 3-h infusion [8, 9]. Infusion

related reactions, such as pruritus, urticaria or flushing, can

occur with oritavancin; if they occur, slowing or inter-

rupting the infusion should be considered. Oritavancin

should be used in patients taking chronic warfarin only

when the benefits outweigh the risks of bleeding. The drug

may artificially prolong activated partial thromboplastin

time for up to 48 h, and prothrombin time and International

Normalized Ratio for up to 24 h. Clostridium difficile-as-

sociated diarrhoea (CDAD) can occur with systemic

antibacterial drugs, including oritavancin, and therefore,

patients should be evaluated for CDAD if diarrhoea occurs

during treatment. Patients should be monitored for signs

and symptoms of osteomyelitis, and if osteomyelitis is

diagnosed or suspected, an appropriate alternate antibac-

terial therapy should be initiated. Use of intravenous

unfractionated heparin sodium is contraindicated for 48 h

after oritavancin administration and oritavancin is con-

traindicated in patients with a hypersensitivity to orita-

vancin [8, 9]. Local prescribing information should be

consulted for detailed information, including contraindi-

cations, precautions, drug interactions and use in special

patient populations.

7 Place of Oritavancin in Acute Bacterial Skin
and Skin Structure Infections

Current Infectious Diseases Society of America practice

guidelines for the management of severe skin and soft

tissue infections recommend a number of parenteral

empirical treatment options, including vancomycin, dap-

tomycin, linezolid, telavancin, ceftaroline and clindamycin

[4]. As oritavancin was approved only recently, it was not

included in these guidelines, nor were dalbavancin and

tedizolid. There are no specific treatment guidelines for

ABSSSI in Europe. However, a retrospective assessment of

clinical practice patterns in Europe during 2010–2011

found that the majority of hospitalized adult patients with

ABSSSI who required intravenous therapy were initially

treated empirically (&82 %; n = 1995), most commonly

with penicillins with or without a b-lactamase inhibitor

(&60 %) [2]. Vancomycin, daptomycin and linezolid were

the most commonly used anti-MRSA agents. Of note,

&40 % of patients required their initial therapy to be

subsequently modified and the most common reason for

this was insufficient clinical response or treatment failure

(17 %) [2].

Oritavancin has multiple mechanisms of action resulting

in rapid, concentration-dependent bactericidal activity

in vitro (Sect. 2.1). It shows potent in vitro activity against

susceptible Gram-positive pathogens associated with

ABSSSI (Table 1) and has a low potential for the emer-

gence of bacterial resistance (Sect. 2.3). Oritavancin is also

active against VISA, VRSA and VRE; unlike other gly-

copeptides, it retains its activity against VanA-type VRE

(Sect. 2.2.1).

The prolonged plasma terminal half-life (245 h) of ori-

tavancin allows for convenient single-dose therapy for

ABSSSI (Sect. 3). Dalbavancin also has a prolonged ter-

minal half-life (mean 348–372 h), although it was evalu-

ated only as a two-dose regimen in key clinical trials [66].

In comparison, telavancin is administered once daily [67]

and vancomycin every 6 or 12 h [68] for up to 14 days.

Oritavancin dosage adjustment is not required for

moderate renal or hepatic impairment, age, weight, gender

or race, while the other glycopeptides require dosage

adjustment for renal impairment [66–68]. Although, pen-

etration of oritavancin into skin blister fluid is modest
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relative to dalbavancin [66] or telavancin [67], oritavancin

concentration in blister fluid exceeds its MIC90 value of

S. aureus. There is a potential risk of bleeding with con-

comitant use of oritavancin and warfarin. The safety of

oritavancin in ABSSSI patients receiving chronic warfarin

treatment is currently being evaluated in a phase 4 clinical

trial (NCT02452918). Oritavancin is also known to inter-

fere with some coagulation tests. While potential drug–

drug or drug-laboratory test interactions are also reported

for vancomycin [68] and telavancin [67], dalbavancin has a

low potential for such interactions [69].

In two large phase 3 registration (SOLO I and II) trials in

adult patients with ABSSSI, oritavancin was noninferior to

vancomycin in terms of the primary composite outcome at

an FDA-recommended early timepoint of 48–72 h after

initiating therapy, with C79 % of patients in both treatment

groups achieving this endpoint (Sect. 4). Similar results

were reported for various subgroup analyses in either one or

both trials. Oritavancin was also noninferior to vancomycin

in terms of a C20 % reduction from baseline in lesion size at

the early timepoint and clinical cure rate 7–14 days after the

end of therapy. There was good concordance between early

and post-therapy clinical outcomes. Oritavancin was also

effective in the outpatient setting, including in patients with

severe ABSSSI. In the absence of head-to-head comparative

studies, a Bayesian network meta-analysis of 52 randomized

controlled trials suggests that most antibacterials used for the

treatment of ABSSSI, including oritavancin, may have

similar efficacy [70].

Oritavancin was generally well tolerated in adults with

ABSSSI in SOLO trials, with most treatment-emergent

adverse events being of mild severity (Sect. 5). The most

common adverse reactions occurring in oritavancin recip-

ients included nausea, headache, vomiting, limb and sub-

cutaneous abscesses, and diarrhoea. Treatment-related

adverse events occurred in less than one-quarter of orita-

vancin recipients, with \4 % of patients discontinuing

treatment because of an adverse reaction. Overall, the

safety profile of oritavancin was similar to that of van-

comycin. The extended plasma half-life of oritavancin was

not associated with any prolonged or delayed adverse

events in SOLO trials. However, the safety of oritavancin

in real-world clinical use remains to be seen.

CDAD, hypersensitivity and infusion related reactions

have been known to occur with most glycopeptide

antibacterials, including oritavancin (Sect. 5). In SOLO

trials, more cases of osteomyelitis were reported with ori-

tavancin than with vancomycin (6 vs. 1); however, in

SOLO II, all five cases in the oritavancin group occurred

within 1–9 days after treatment, suggesting that

osteomyelitis may have been present at time of screening

[54]. Specific adverse events with other glycopeptide

antibacterials include nephrotoxicity with vancomycin and

telavancin [67], and elevated alanine transaminase levels

with dalbavancin [69]. Telavancin also has a boxed

warning for foetal risk, based on animal studies [67].

Budget impact model analyses (abstract presentations)

conducted from a USA [71] and UK [72] hospital per-

spective suggest that using oritavancin in some patients

(&26 and &4 %, respectively) with moderate to severe

ABSSSI or skin and soft tissue infections would reduce the

total annual cost of medical care relative to the current

clinical practice, driven by reduced healthcare resource

utilization. However, the cost effectiveness of oritavancin

relative to the standard-of-care agents in ABSSSI is yet to

be established.

In conclusion, intravenous oritavancin was effective and

generally well tolerated in adult patients with ABSSSI in

two, large well-controlled clinical trials. The convenient

single-dose therapy with oritavancin may provide some

advantages: shorter, or elimination of, hospital stays, which

may also reduce the risk of nosocomial infections; a

reduction in healthcare resource utilization and cost;

potential for use in outpatient parenteral antimicrobial

therapy; no need for peripherally inserted central catheters;

and, elimination of patient compliance concerns, complex

therapeutic drug monitoring and dosage adjustments. How-

ever, head-to-head clinical studies and robust pharma-

coeconomic analyses are required to definitively position

this drug relative to other antibacterials used for ABSSSI.

Data selection sources: Relevant medical literature (including

published and unpublished data) on oritavancin was identified by

searching databases including MEDLINE (from 1946), PubMed

(from 1946) and EMBASE (from 1996) [searches last updated 7

September 2015], bibliographies from published literature, clini-

cal trial registries/databases and websites. Additional information

was also requested from the company developing the drug.

Search terms: Oritavancin, Nuvocid, ORBACTIV, LY 333328,

skin.

Study selection: Studies in patients with acute bacterial skin and

skin structure infections who received oritavancin. When avail-

able, large, well designed, comparative trials with appropriate

statistical methodology were preferred. Relevant pharmacody-

namic and pharmacokinetic data are also included.
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