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Abstract This article addresses the emergence of ech-

inocandin resistance among Candida species, mecha-

nisms of resistance, factors that promote resistance and

confounding issues surrounding standard susceptibility

testing. Fungal infections remain a significant cause of

global morbidity and mortality, especially among

patients with underlying immunosupression. Antifungal

therapy is a critical component of patient management for

acute and chronic diseases. Yet, therapeutic choices are

limited due to only a few drug classes available to treat

systemic disease. Moreover, the problem is exacerbated

by the emergence of antifungal resistance, which has

resulted in difficult to manage multidrug resistant strains.

Echinocandin drugs are now the preferred choice to treat

a range of candidiasis. These drugs target and inhibit the

fungal-specific enzyme glucan synthase, which is

responsible for the biosynthesis of a key cell wall poly-

mer. Therapeutic failures involving acquisition of resis-

tance among susceptible organisms like Candida

albicans is largely a rare event. However, in recent years,

there is an alarming trend of increased resistance among

strains of Candida glabrata, which in many cases are also

resistant to azole drugs. Echinocandin resistance is

always acquired during therapy and the mechanism of

resistance is well established to involve amino acid

changes in ‘‘hot-spot’’ regions of the Fks subunits carrying

the catalytic portion of glucan synthase. These changes

significantly decrease the sensitivity of the enzyme to

drug resulting in higher MIC values. A range of drug

responses, from complete to partial refractory response,

is observed depending on the nature of the amino acid

substitution, and clinical responses are recapitulated in

pharmacodynamic models of infection. The cellular

processes promoting the formation of resistant Fks strains

involve complex stress response pathways, which yield a

variety of adaptive compensatory genetic responses.

Stress-adapted cells become drug tolerant and can form

stable drug resistant FKS mutations with continued drug

exposure. A major concern for resistance detection is that

classical broth microdilution techniques show significant

variability among clinical microbiology laboratories for

certain echinocandin drugs and Candida species. The

consequence is that susceptible strains are misclassified

according to established clinical breakpoints, and this has

led to confusion in the field. Clinical factors that appear

to promote echinocandin resistance include the expand-

ing use of antifungal agents for empiric therapy and

prophylaxis. Furthermore, host reservoirs such as bio-

films in the gastrointestinal tract or intra-abdominal

infections can seed development of resistant organisms

during therapy. A fundamental understanding of the pri-

mary molecular resistance mechanism, along with

cellular and clinical factors that promote resistance emer-

gence, is critical to develop better diagnostic tools

and therapeutic strategies to overcome and prevent echi-

nocandin resistance.
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Key Points

Echinocandin drugs are important first line therapy

for Candida species infections but drug resistance,

especially among C. glabrata, is an emerging

problem that impacts clinical outcome.

Mutations in FKS genes resulting in amino acid

substitutions in the drug target glucan synthase

confer higher MIC values, reduced enzyme

sensitivity to drug, and diminished

pharmacodynamic response.

The emergence of FKS-mediated resistance requires

drug adaptation involving a wide range of cellular

responses to cell wall stress.

Problems with susceptibility testing may necessitate

the development of alternative methodologies, such

as molecular profiling of FKS genes.

Echinocandin prophylaxis is effective but may help

fuel an increase in the frequency of isolates that are

resistant to multiple classes of antifungal drugs.

1 Introduction

Fungal infections are increasingly recognized as a major

global health problem. There are more than 300 million

people afflicted by a serious fungal infection resulting in

nearly 1.4 million deaths annually (www.gaffi.org) [1].

Fungal diseases cause life-threatening illnesses such as

meningitis and pneumonias, chronic asthma, other respi-

ratory distress syndromes, and recurrent diseases like oral

and vaginal thrush. Serious fungal infections are a con-

sequence of underlying health problems such as AIDS,

cancer, organ transplantation and corticosteroid therapies

with a majority of fungal deaths due to Cryptococcus,

Candida and Aspergillus species [1]. The management of

fungal diseases requires antifungal therapy. Yet, treatment

options are limited, as the most prominent antifungal

drugs target either the plasma membrane, nucleic acid

biosynthesis or cell wall, and they comprise only a few

chemical classes represented by polyenes, azoles, flucy-

tosine, and echinocandins [2]. Azoles drugs, which

include fluconazole, itraconazole, voriconazole, posaco-

nazole and isavuconazole inhibit the biosynthesis of the

plasma membrane sterol ergosterol. The pore-forming

polyene drug amphotericin B binds to ergosterol in the

plasma membrane. Flucytosine (5-fluorocytosine) broadly

inhibits pyrimidine metabolism and DNA synthesis, while

the echinocandin drugs caspofungin, anidulafungin, and

micafungin inhibit glucan synthase and are the first cell

wall active agents. Echinocandins are recommended

as first-line therapy for non-neutropenic patients with

Candida albicans, Candida glabrata and suspected severe

invasive candidiasis [3]. Recent CDC surveillance indi-

cates that [60 % of candidemia patients now receive an

echinocandin [4]. It is the expanding application of ech-

inocandins worldwide and emerging resistance among

certain Candida species, which will be discussed in this

review.

2 Echinocandin Class Drugs

Echinocandin drugs are lipopeptides that inhibit glucan

synthase, which is responsible for the biosynthesis of

b-1,3-D-glucan, a major structural component of fungal cell

walls [5]. The U.S. Food and Drug Administration

approved them for the treatment of esophageal and inva-

sive candidiasis, including candidemia, empirical therapy

in febrile neutropenic patients and prophylaxis in patients

undergoing hematopoietic stem cell transplantation

(HSCT) [6, 7]. The first in-class drug, caspofungin, was

also approved for salvage therapy for patients with invasive

aspergillosis [8]. Maintenance of the fungal cell wall is

essential for cell survival and echinocandin drugs often

show in vitro fungicidal activity against susceptible Can-

dida spp. [9, 10]. Echinocandins are fungistatic against

molds where they can lyse the apical tips of expanding

hyphae, alter morphology and modify cell wall composi-

tion and organization [11, 12]. However, they are largely

inactive against invasive Zygomycetes, Cryptococcus spp.,

or Fusarium spp. The echinocandin drugs have a distinct

mechanism of action, which enable them to be highly

effective against yeasts with reduced susceptibility to az-

oles, such as C. glabrata and C. krusei [13–15], as well as

some Candida biofilms [16–19]. The echinocandins have

an excellent therapeutic index with a low potential for renal

or hepatic toxicity or serious drug-drug interactions [20,

21]. All echinocandins have low oral bioavailability, and

distribute well into tissues, but poorly into the CNS and

eye. The echinocandin target, b-1,3-D-glucan synthase, is a

fungal-specific multi-subunit enzyme complex comprised

of Rho, a GTP-binding protein, which helps regulate the

overall activity of glucan synthase [22] and a catalytic

subunit Fks encoded by three related genes, FKS1, FKS2,

and FKS3. The FKS1 gene is essential in C. albicans [23,

24] and other Candida spp., while in C. glabrata, FKS1

and FKS2 are functionally redundant [25]. The FKS3 gene

is expressed at a very low level relative to the other genes

[26].

1574 D. S. Perlin

http://www.gaffi.org


3 Epidemiology of Echinocandin Resistance

Most major Candida species are highly susceptible to

echinocandin drugs [27, 28]. The notable exceptions are C.

parapsilosis complex (Candida parapsilosis sensu stricto,

C. orthopsilosis, and C. metapsilosis) and C. guilliermon-

dii, which display higher echinocandin antifungal MIC

values relative to other highly susceptible Candida species

[29–34] and is reflected in higher breakpoints [35].

Intrinsic reduced susceptibility has an unclear clinical

significance as patients are often successfully treated with

echinocandin drugs [36–39], although clinical efficacy may

vary with patient population [40–42]. Since first reported in

2005, susceptible Candida spp. isolates resistant to echi-

nocandin drugs are increasingly encountered [26, 43–54],

although the frequency remains relatively low (\2–3 %)

with C. albicans and most other Candida spp. [55–58]. The

notable exception is C. glabrata, where resistance is

growing more rapidly [59, 60]. In many healthcare centers,

the growing use of echinocandins and azoles for prophy-

laxis has resulted in an epidemiologic shift with C. glab-

rata represented as the most dominant fungal bloodstream

pathogen [30, 61]. Echinocandin resistance may occur after

prolonged therapy [52] or it may be rapid, even shortly

after initiation of therapy [53, 62]. Recently, the SENTRY

Antimicrobial Surveillance Program from 2006–2010

reported echinocandin resistance of 8.0–9.3 % among 1669

blood stream isolates (BSI) of C. glabrata [63]. Further-

more, in a ten year study involving 293 unique episodes of

C. glabrata BSI, echinocandin resistance of C. glabrata

rose from 2 to 3 % during 2001–2006 to [13 % in the

years 2009–2010 [59]. Disturbingly, this rise in echino-

candin resistance among C. glabrata paralleled a rise in

azole resistance resulting in multidrug resistant strains

(Fig. 1). The generally excellent wild-type susceptibility of

C. glabrata to the echinocandin drugs, even among azole

resistant strains, has driven the widespread use of

echinocandins for treatment of infections due to C. glab-

rata. Yet, at the same time, it has generated selection

pressure for multidrug resistant organisms [59]. The

underlying genetic basis for rapid emergence of resistance

in C. glabrata is largely unknown, but it may stem from its

haploid state and/or from its inherent genetic plasticity. In

molds, echinocandin resistance has also been described in

rare circumstances for A. fumigatus [64] and more readily

for A. lentulus [65].

4 Mechanism of Acquired Resistance

Clinical resistance resulting in therapeutic breakthrough

infections involves modification of the catalytic Fsk sub-

unit (Fks1 and Fks2) of glucan synthase. Unlike azole

antifungal agents, echinocandins are not substrates for

multidrug transporters [15, 16]. Echinocandin resistance is

conferred by characteristic amino acid substitutions in Fks

subunits [7], which induce elevated MIC values (10–100

fold) and reduce the sensitivity of glucan synthase (IC50) to

drug by 50- to 3,000-fold [26, 45, 66]. Characteristic

mutations in FKS genes are prominently associated with

reduced clinical response [67, 68]. In a recent study of

patients with invasive candidiasis, the presence of an FKS

mutation was the only independent risk factor associated

with echinocandin failure and among C. glabrata isolates,

the presence of an FKS mutation was superior to MIC in

predicting echinocandin therapeutic responses among

patients [68]. In C. albicans and most other Candida spp.,

mutations occur in two highly conserved ‘‘hot-spot’’

regions of FKS1 [45, 69, 70] encompassing residues

Phe641-Pro649 and Arg1361 (Fig. 2). Amino acid substi-

tutions at Ser645 and Phe641 are the most abundant, nearly

80 % in C. albicans (Fig. 2), and cause the most pro-

nounced resistance phenotypes [7, 26, 45, 71]. These fks

mutants are effectively insensitive to drug and fail to

respond in pharmacodynamic studies of murine models of

infection [72–75]. In C. glabrata, resistance-associated

mutations occur in homologous regions of FKS1 and FKS2

[26, 66], although amino acid substitutions in Fks2 occur in

clinical isolates at twice the frequency of Fks1 [7, 26, 71].

Alterations at Fks1 positions S629 and S663 and Fks2

position F659S confer the highest MIC values. Nonsense

mutations in either FKS1 or FKS2 are also observed in C.

glabrata [26, 66, 76]. The echinocandin resistance level

conferred by hot spot mutations in FKS1 or FKS2 can also

depend on the relative expression of their genes, which can

vary more than 20-fold [25, 26]. FKS2 expression is cal-

cineurin dependent and down regulated by FK506 [77], and

resistance conferred by FKS2 can be reversed with FK506

[25]. Finally, mutations in FKS1 for Candida species such

as C. tropicalis, C. krusei and C. kefyr have been linked

Fluconazole

Micafungin

Caspofungin

Fig. 1 Temporal trends in antifungal resistance of Candida glabrata

isolates to fluconazole, anidulafungin, caspofungin, and micafungin.

Adapted from Alexander et al. with permission [59]
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with increases in echinocandin MIC and clinical failures

[62, 78, 79].

4.1 FKS3, Virulence and Biofilms

A third highly conserved hot-spot region defined by W695

of S. cerevisiae Fks1 was recently identified [80], but it is

not associated with clinical failures. Amino acid substitu-

tions in Fks1 of C. albicans confer reduced fitness [25, 26,

81], since they can decrease the catalytic reaction rate

maximum for glucan biosynthesis [26, 45] and alter cell

wall morphology [81]. Echinocandin resistant strains

compete poorly with their wild-type counterpart [81], which

may explain why resistance is associated with acquired de

novo resistance and horizontal transmission is not a factor.

Biofilms are an important complex communal structure

of fungi contributing to antifungal drug resistance [82]. For

echinocandin drugs, the extracellular matrix of the biofilm

comprised mainly of b-glucan sequesters the drugs by

decreasing their effective concentration at the surface of

the fungal cell membrane [83]. The application of genetic

or chemical means to decrease glucan production renders

the biofilms more susceptible to antifungal agents [84].

Transcription factor Rlm, Smi1 and glucan synthase Fks1

are important factors that regulate glucan formation

yielding drug-sequestering biofilms [84].

4.2 Serum, Cellular Stress and Resistance Emergence

The development of characteristic FKS mutations is an end

stage event in the resistance process and there are a number

of factors that condition cells and influence mutant selec-

tion. Firstly, the echinocandin drugs are highly serum

protein bound, which reduces their relative efficacy and

shifts MICs upward [85–87]. The nature of the shift

depends on interactions with specific drugs; anidulafungin

and micafungin show a larger relative shift than caspo-

fungin. A consequence of this shift in efficacy is that serum

alters the relative fungicidal properties of the drugs, often

resulting in fungistatic behavior against certain Candida

species [88, 89]. This drug shift permits cellular responses,

which promote survival. In particular, fungi possess a range

of adaptive response mechanisms that help protect cells

against environmental stresses [90, 91]. Secondly, yeast

acutely sense cell wall stress. Inhibition of glucan bio-

synthesis by the echinocandins induces a variety of stress

tolerance pathways including cell wall integrity, PKC,

Ca2?/calcineurin/Crz1, and HOG [92, 93]. Hsp90 induces

tolerance to echinocandin drugs through its principal client

protein calcineurin and the downstream effector crz1 [94,

95]. Finally, echinocandin action results in compensatory

increases in chitin synthesis, which serves to maintain the

structural integrity of the cell wall, as chitin replaces b-1,3

A

B

Fig. 2 a Amino acid sequences

of Fks ‘‘hot-spot’’ sequences for

major Candida species and

positions associated with

prominent resistance (red),

weaker resistance (yellow) and

naturally-occurring

polymorphisms that cause

reduced susceptibility (green).

b Relative frequency of Fks

amino acid substitutions in C.

albicans causing echinocandin

resistance from Perlin Lab

echinocandin reference center
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glucan [92], and cell wall mutants with enhanced chitin

contents are less susceptible to echinocandins both in vitro

[92, 93, 96, 97] and in vivo [98]. Elevated chitin and

adaptive responses have been linked to paradoxical growth

whereby susceptible cells show growth at very high levels

of drug [99–101]. It has been proposed that sphingolipids

can interact with echinocandins near their target and dif-

ferentially decrease sensitivity to caspofungin while

increasing sensitivity to micafungin [102, 103]. The col-

lective adaptive cellular responses help stabilize cells in the

presence of drug. Ultimately, they likely predispose cells

and promote selection for FKS mediated resistance, even

though by themselves they are insufficient to induce ther-

apeutic failure.

5 Susceptibility Testing and Its Foibles

The goal of susceptibility testing is to establish an in vitro

marker to characterize infecting strains as either ‘‘suscep-

tible’’ to a drug and likely to respond to therapy or

‘‘resistant’’ with a heightened probability to fail therapy.

This probability is best described as the ‘‘90–60 rule’’ in

which infections due to susceptible isolates respond to

therapy approximately 90 % of the time, whereas infec-

tions due to resistant isolates respond 60 % of the time

[104]. To address this need, the antifungal susceptibility

testing subcommittees (AFST) of the Clinical and Labo-

ratory Standards Institute (CLSI) and the European Com-

mittee on Antimicrobial Susceptibility Testing (EUCAST)

established independent, yet closely related standards for

broth microdilution (BMD) antifungal susceptibility testing

of echinocandins against Candida species, which generally

yield comparable MIC results [34, 105, 106]. In 2007, the

CLSI used clinical and microbiological data to establish a

preliminary clinical breakpoint (CBP) for echinocandins

against Candida spp. with an MIC B2 lg/ml considered

susceptible for all three echinocandins and all species of

Candida [107]. However, it soon became apparent that

resistant strains with acquired FKS mutations were often

misclassified by this CBP [45, 108]. To address this issue,

CLSI revised the CBP based on pharmacokinetic, micro-

biological and enzyme kinetic data, along with the clinical

experience. New species and drug-specific breakpoints

were established for CLSI BMD testing that accounted for

strains containing FKS mutations (Pfaller et al. [35])

(Table 1).

Yet the new lower CBPs posed a testing challenge, as

BMD testing was not sufficiently robust to enable con-

sistent interlaboratory testing without major errors

encountered between groups [109–111]. Wide modal

ranges were especially present with C. glabrata and ca-

spofungin where numerous groups were unable to provide

consistent testing with either CLSI or EUCAST methods

[109–112]. The underlying factor(s) contributing to this

variability has not been ascertained. Since the use of a

CLSI species-specific caspofungin CBP can lead to

reporting an excessive number of wild-type isolates as

either non-WT or resistant isolates [110], it has been

recommended that micafungin or anidulafungin be used as

a surrogate class marker, since either drug behaves more

predictably [111]. The problem with this approach is that

many physicians who depend on caspofungin for therapy

are uncomfortable with a drug surrogate, even among the

same drug class. Epidemiological cutoff values (ECVs)

have been established to define the upper limit of the

‘‘wild type’’ MIC distribution for each species with no

acquired resistance mechanisms [113]. Species-specific

ECVs aid in detecting non-WT isolates with reduced

susceptibility to anidulafungin and micafungin due to fks

mutations, and have been shown to classify 92.2 and

100 % of the fks mutant strains, respectively [27]

(Table 2). EUCAST has established breakpoints for ani-

dulafungin (Table 1) and recommends anidulafungin MIC

testing as a marker for the echinocandin class of drugs

[114, 115]. However, due to the irregularities observed

with testing between laboratories, EUCAST has not set

caspofungin breakpoints and does not currently recom-

mend caspofungin MIC testing for clinical decision-mak-

ing involving echinocandin drugs [115].

5.1 Is it Time for Molecular Testing?

The problem of conventional susceptibility testing to dis-

tinguish wild type susceptible isolates from echinocandin

resistant isolates bearing FKS mutations raises the notion

that molecular testing may be long overdue for this field.

There is overwhelming data linking the presence of specific

hot-spot mutations in FKS genes to reduced clinical effi-

cacy, which is supported by extensive studies of pharma-

codynamics, inhibition of glucan synthase, and MIC [35].

Several clinical studies have shown that the presence of an

FKS mutation is the most important independent risk factor

in predicting echinocandin therapeutic responses among

patients with IC [67, 68, 76]. The downside of molecular

testing is that not all FKS mutations harbor the same

potential for high-level resistance [7, 67], which would

require stratification of mutations. Nevertheless, only a few

mutations account for the vast majority of therapeutic

failures (Fig. 2), which would support a role for molecular

testing [116]. Molecular testing requires knowledge of

known resistance mechanisms, and any unknown mecha-

nism would not be detected. Yet, this probability is suffi-

ciently remote given the current body of data. Thus, it may

be time to implement molecular testing to directly identify

mutant strains containing fks mutations and end the
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susceptibility testing controversies, which prevent timely

and proper assessment of resistance.

6 Prophylaxis: Benefits with a Potential Resistance

Cost

Antifungal prophylaxis is now a standard prevention in

many settings involving patients at high risk for develop-

ment of invasive fungal infections, especially patients

undergoing transplantation or other conditions resulting in

severe immune deficiency. For many years, fluconazole

was the antifungal drug of choice for primary prophylaxis

in HSCT recipients [117, 118]. However, fluconazole has a

limited spectrum, even among prominent Candida spp.,

some of which are inherently less sensitive to azoles (e.g.

C. glabrata and C. krusei). Furthermore, it is inactive

against Aspergillus species and other molds, which led to a

call for more potent antifungal drugs in prophylactic regi-

mens [119].

Echinocandin drugs are an attractive alternative for

prophylaxis since they display favorable pharmacokinetics,

Table 1 EUCAST and CLSI antifungal breakpoint comparison for major Candida speciesa

Antifungal agent MIC breakpoint (mg/l)

Candida albicans Candida glabrata Candida krusei Candida parapsilosis Candida tropicalis

SB R[ SB R[ SB R[ SB R[ SB R[

Anidulafungin

EUCAST 0.03 0.03 0.06 0.06 0.06 0.06 0.002 4 0.06 0.06

CLSI 0.25 0.5 0.12 0.25 0.25 0.5 2 4 0.25 0.5

Caspofungin

EUCAST ND ND ND ND ND ND ND ND ND ND

CLSI 0.25 0.5 0.12 0.25 0.25 0.5 2 4 0.25 0.5

Micafungin

EUCAST 0.016 0.016 0.03 0.03 IE IE 0.002 2 IE IE

CLSI 0.25 0.5 0.06 0.125 0.25 0.5 2 4 0.25 0.5

ND not determined due to significant inter-laboratory variation in MIC ranges, IE insufficient evidence (IE) due to small number of cases
a Adapted from Arendrup et al. [115]

Table 2 Anidulafungin and micafungin ECVs for eight species of Candidaa

Antifungal agent Species No. of isolates MIC (lg/ml) ECV (lg/ml)b

Range Mode C95 % C97.5 % C99 %

Anidulafungin C. albicans 8,210 0.008–2 0.03 0.06 0.12 0.12

C. glabrata 2,680 0.008–4 0.06 0.12 0.12 0.25

C. parapsilosis 3,976 0.008–8 2 4 8 8

C. tropicalis 2,042 0.008–2 0.03 0.12 0.12 0.12

C. krusei 322 0.008–2 0.06 0.12 0.25 0.25

C. lusitaniae 234 0.008–1 0.25 1 1 1

C. guilliermondii 222 0.03–4 1 4 8 8

C. dubliniensis 131 0.015–4 0.03 0.12 0.12 0.12

Micafungin C. albicans 7,874 0.008–4 0.015 0.03 0.03 0.03

C. glabrata 3,102 0.008–4 0.015 0.03 0.03 0.03

C. parapsilosis 3,484 0.015–4 1 2 4 4

C. tropicalis 1,605 0.008–8 0.015 0.06 0.06 0.12

C. krusei 617 0.015–1 0.06 0.25 0.25 0.25

C. lusitaniae 258 0.008- C 16 0.25 0.5 0.5 1

C. guilliermondii 234 0.015–8 0.5 2 2 4

C. dubliniensis 117 0.008–8 0.06 0.12 0.12 0.12

a Adapted from Pfaller et al. with permission [27]
b Calculated ECVs comprising C95 %, C97.5 %, or C99 % of the statistically modeled MIC population
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have an excellent safety profile and are active against azole

resistant yeasts and molds. This is particularly true for

micafungin, which minimizes the potential for drug inter-

actions since it does not interact with compounds whose

metabolism is mediated via cytochrome P450 [120]. In an

early prospective trial of micafungin and fluconazole

involving 899 patients, micafungin was shown to have a

higher overall treatment success rate demonstrating its

effectiveness as a prophylactic agent [121]. Similarly, ca-

spofungin was evaluated as primary prophylaxis against

invasive fungal infections in 123 stem cell transplant

recipients who were poor candidates for triazole or polyene

prophylaxis, and it was deemed an effective and well-tol-

erated option for primary antifungal prophylaxis for the

highly immunosuppressed transplant patient population

[122]. Caspofungin was equally effective as itraconazole in

preventing invasive fungal infections in patients with

hematologic malignancies and it was effective in both adult

[123] and pediatric populations [124]. Micafungin was

somewhat more effective than fluconazole for the preven-

tion of all mold infections and invasive aspergillosis and

reducing the need for empiric antifungal treatment [125].

In large meta analyses involving 17 studies covering 5,122

patients [126] and 20 studies covering 4,823 patients [125],

respectively, echinocandin prophylaxis reduced the inci-

dence of invasive fungal infections greater than fluconazole

or itraconazole. Micafungin is now approved by the FDA

for prophylaxis of Candida infections in patients under-

going hematopoietic SCT or expected to be neutropenic for

at least 10 days [127]. The latest European Society of

Clinical Microbiology and Infectious Diseases guidelines

also recommend micafungin for prophylaxis against Can-

dida infections in allogeneic HSCT adult and pediatric

patients, as well as in pediatric patients with acute myeloid

and recurrent leukemia. There is a recommendation for

caspofungin prophylaxis to prevent invasive candidiasis/

candidemia, as well as intra-abdominal Candida infection

[128]. There is a marginal recommendation for prophylaxis

of adult HSCT patients with caspofungin and no recom-

mendation for the use of anidulafungin [129].

6.1 Prophylaxis as a Resistance Driver

The expanding use of echinocandins for prophylaxis and

therapy, while beneficial in reducing the overall incidence

of invasive disease in high-risk settings, raises a critical

question about its role in inducing significantly higher

rates of echinocandin drug resistance, especially among C.

glabrata. In a recent report, involving a 25-year-old

patient receiving micafungin prophylaxis, five C. glabrata

isolates were obtained from blood cultures and were

classified as multidrug-resistant isolates, since all

exhibited high MICs for echinocandin and azole drugs

[130]. The co-evolution of azole and echinocandin mul-

tidrug resistance among C. glabrata is an alarming trend

[59]. Similarly, breakthrough infections involving C.

albicans are also being reported in patients with graft-

versus-host disease following stem cell transplantation

with micafungin prophylaxis [131]. Most recently, a dis-

turbing report from a retrospective observational study

involving echinocandin-based anti-Aspergillus prophylaxis

for 152 patients with acute myeloid leukemia during

remission-induction chemotherapy showed a higher risk of

breakthrough IFI [132]. It is not surprising that broadening

patient exposure to echinocandin drugs would promote

development of resistance. Beyond anecdotal reports,

there is firm data emerging that the FKS resistance

mechanism is an important risk factor for therapeutic

failure [68] and resistance emergence is directly linked to

prior exposure [133]. There is a danger that broadening

echinocandin prophylaxis may continue to fuel an increase

in the frequency of isolates that are resistant to multiple

classes of antifungal drugs, which may reflect genomic

plasticity among otherwise clonal organisms [134]. The

trend toward echinocandin prophylaxis should be coupled

with a renewed evaluation of drug dosing to ensure suit-

ably high levels of drug are achieved. It may be time to

reassess dosing strategy in the context of prophylactic

regimens.

6.2 Reservoirs for Resistance Emergence?

The gastrointestinal (GI) tract is a normal commensal site

for Candida species with the burden often exceeding

107 cfu/g of feces [135–142] and molecular genotyping has

demonstrated that colonizing isolates often are the infect-

ing strain for most patients with invasive candidiasis [143].

Candida colonization of the GI tract is often in the form of

a mixed microbial biofilm [144]. A consequence of the

biofilm microbial community is that there are varying

levels of drug exposure to different parts of the biofilm,

since there are induced mechanisms against azole drugs

[145] and drug penetration into the glucan matrix is

irregular [83]. Thus, there is a potential to select for

resistant variants, which can desorb from the biofilm and

cause systemic infections. The biofilm is difficult to erad-

icate and it can act as a reservoir that seeds resistant

infections. Intra-abdominal candidiasis, including perito-

nitis and intra-abdominal abscesses, may occur in [40 %

of patients following repeat gastrointestinal surgery, GI

perforation or necrotizing pancreatitis [146]. The high

burden of Candida coupled with poor drug penetration into

the biofilm creates a strong environment for selection of

resistant variants.
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7 New Therapy Trends: Large-daily Infrequent Doses

The echinocandins exhibit concentration-dependent effects

on Candida species. Preclinical studies and pharmacoki-

netic and pharmacodynamic studies support the adminis-

tration of large, infrequent doses and better outcomes were

observed with higher maximum concentrations of drug in

serum and large, infrequent doses [147]. Once-weekly

micafungin therapy is as efficacious as daily therapy in a

murine model of disseminated candidiasis [148]. This

emerging therapeutic strategy may be appealing for certain

forms of Candidiasis. Resistance emergence may be a

concern as drug levels diminish. However, the develop-

ment of resistance may actually be less likely to occur as

the larger doses may place the drug exposure level within

the mutant prevention concentration window that precludes

development of single step resistance [149, 150].

8 Conclusions and Perspective

Echinocandin resistance is on the rise, especially among

clinical isolates of Candida glabrata. This resistance trend

is particularly alarming since such strains may also carry

azole resistance leading to multidrug resistant strains

resulting in difficult to manage infections. The Fks mech-

anism of resistance involving modification of the target

enzyme glucan synthase is well established. But there is

now emerging evidence that cellular stress pathways play a

critical role in establishing drug adaptive states, which

facilitate development of stable resistance with FKS

genotypes. A current challenge and concern for clinical

laboratories is the recent refinement of breakpoints by the

CLSI to distinguish resistant strains containing FKS

mutations from wild type susceptible strains using broth

microdilution methodology. This has led to inter-laboratory

variability resulting in the misclassification of susceptible

isolates as resistant. It has been suggested that either mi-

cafungin or anidulafungin, which show greater in vitro

sensitivity under conventional MIC testing can serve as a

surrogate for the class. However, as the objective of such

testing is to identify strains with fks genotypes, it may be

time for the field to move to direct sequence-based detec-

tion, as is done routinely for bacteria and viruses. Finally,

the expanding use of echinocandin prophylaxis increases

drug exposure in the host leading to resistance, as reser-

voirs of colonization and/or infections may have less than

adequate drug exposure. It may be time to reassess pro-

phylactic dosing regimens in patients at high risk for

invasive fungal disease.
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