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Abstract
Introduction  Polypharmacy is common and is associated with higher risk of adverse drug event (ADE) among older adults. 
Knowledge on the ADE risk level of exposure to different drug combinations is critical for safe polypharmacy practice, 
while approaches for this type of knowledge discovery are limited. The objective of this study was to apply an innovative 
data mining approach to discover high-risk and alternative low-risk high-order drug combinations (e.g., three- and four-drug 
combinations).
Methods  A cohort of older adults (≥ 65 years) who visited an emergency department (ED) were identified from Medicare 
fee-for-service and MarketScan Medicare supplemental data. We used International Classification of Diseases (ICD) codes to 
identify ADE cases potentially induced by anticoagulants, antidiabetic drugs, and opioids from ED visit records. We assessed 
drug exposure data during a 30-day window prior to the ED visit dates. We investigated relationships between exposure of 
drug combinations and ADEs under the case–control setting. We applied the mixture drug-count response model to identify 
high-order drug combinations associated with an increased risk of ADE. We conducted therapeutic class-based mining to 
reveal low-risk alternative drug combinations for high-order drug combinations associated with an increased risk of ADE.
Results  We investigated frequent high-order drug combinations from 8.4 million ED visit records (5.1 million from Medicare 
data and 3.3 million from MarketScan data). We identified 5213 high-order drug combinations associated with an increased 
risk of ADE by controlling the false discovery rate at 0.01. We identified 1904 high-order, high-risk drug combinations had 
potential low-risk alternative drug combinations, where each high-order, high-risk drug combination and its corresponding 
low-risk alternative drug combination(s) have similar therapeutic classes.
Conclusions  We demonstrated the application of a data mining technique to discover high-order drug combinations associ-
ated with an increased risk of ADE. We identified high-risk, high-order drug combinations often have low-risk alternative 
drug combinations in similar therapeutic classes.
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1  Introduction

Polypharmacy (i.e., the concurrent use of multiple drugs) 
is on the ascendancy among US older adults [1, 2]. Polyp-
harmacy is a major cause of drug–drug interaction-induced 
(DDI-induced) serious adverse drug event (ADE) requir-
ing an emergency department (ED) visit and/or hospitali-
zation. Nearly 22% of ED visits and 9% of hospitalizations 
are caused by DDIs [3–6]. DDIs are most prevalent among 
older adults because of the disproportionately high preva-
lence of polypharmacy. The risk of DDI-induced ADE 
increases with age and is highest among older adults [7]. 
Several studies have identified two-drug combinations that 
interacted adversely to increase the risks of GI bleeding [8, 
9], hypoglycemia [10–12], and opioid-induced ADEs [13]. 
However, emerging data, including our published data, 
have shown that the risk of ADE increases by the addition 
of each drug that is used concurrently with others [14–17].

The concurrent use of ≥ 3 drugs, hereby referred as 
high-order drug combination, has emerged as a major tar-
get for preventing serious ADE. A recent US nationwide 
survey has shown that 68% of US older adults used ≥ 3 
drugs in the past 30 days [18]. Yet, the extant literature has 
been focused on the risk of ADE with respect to two-drug 
combinations. Currently, the literature on high-order drug 
combination is sparse, and drug knowledgebase and drug 
labeled ADEs are often limited to DDI involving two-drug 
combinations [19].

Recent developments of large-scale, real-world data and 
pharmacoinformatic data mining methods jointly facilitate 
the detection of high-order drug combinations associated 
with an increased risk of ADE. Computational methods for 
mining high-order drug combination-induced ADEs include 
association rule mining [20], closed itemset mining [21], 
graphic model [22], and the recently developed mixture 
drug-count response model (MDRM) [23]. The MDRM 
assumes the drug combinations following two ADE risk 
models: (1) the ADE risk maintains a constant rate as the 
number of drug ingredients increased (e.g., drug ingredi-
ents do not interact and increase risk of ADE), and (2) the 
ADE risk increases in a sigmoid function as the number of 
drug ingredients increased (e.g., high-order DDI-induced 
ADEs). Following the MDRM’s assumption, besides detect-
ing drug combinations associated with a higher risk of ADE 
at a low false discovery rate (FDR), MDRM is able to char-
acterize the risk patterns (e.g., constant risk and increased 
risk) of all drug combinations. Our primary objective is to 
apply the MDRM to discover high-order drug combination 
(e.g., three- and four-drug combinations) associated with an 
increased risk of ADE, as well as low-risk drug combination 
alternatives to the high-order drug combination associated 
with an increased risk of ADE.

2 � Methods

2.1 � Institutional Review Board (IRB)

This retrospective observational study was approved by 
the Institutional Review Board (IRB) at The Ohio State 
University.

2.2 � Data Source

We used the US Medicare fee-for-service data (2018) and 
MarketScan Medicare Supplemental data (2012–2020). 
Medicare data included US Medicare beneficiaries. Mar-
ketScan data were derived from retirees with employer-
paid Medicare supplemental insurance plans. Both datasets 
included enrollment records, medical claims (e.g., date of 
service, place of service, and diagnosis codes), and phar-
macy claims (e.g., date of pharmacy claim and dates of 
supply). Please see Electronic Supplementary Material 
(ESM) #1 Appendix A for additional information of the 
data sources.

2.3 � Data Preparation

2.3.1 � Identification of ED Visits

We identified “new” emergency department (ED) visits from 
Medicare data and MarketScan data. Specifically, we used 
revenue codes (e.g., 0450, 0451, 0452, 0456, 0459, 0981, 
0760, and 0762) to identify ED visits [24]. We included 
ED visits with ≥ 30 days enrolment history prior to the cur-
rent ED visit. We adopted the inclusion criterion for better 
assessment of drug exposure data. We excluded ED visits 
that had ED visit(s) within 30 days prior to the current ED 
visit. We adopted the exclusion criterion to improve the 
specificity of adverse high-order drug combinations.

2.3.2 � Assessment of Drug Exposure

We accessed drug exposure data within 30 days prior to 
the ED visit date (e.g., the drug exposure window). We 
obtained generic drug names from the Medicare data and 
the MarketScan data, and used the RxNorm [25] to process 
the generic drug names. We mapped all compound drugs 
to individual drug ingredient names. We defined each drug 
exposure window as an observation for computing frequen-
cies. First, we computed the frequencies of all drug ingredi-
ent names. We included the top-200 frequent drug ingredi-
ent names based on the frequencies in Medicare data and 
MarketScan data (ESM #2, Table S1). Second, we computed 
the frequencies of drug combinations. We considered that 
an observation (e.g., a drug exposure window) was exposed 
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to a drug combination if all individual drug ingredient 
names were presented in the drug exposure window. We 
computed total frequencies of two-drug combinations, three-
drug combinations, and four-drug combinations that were 
derived from the top-200 frequent drug ingredient names. 
We included drug combinations that had total frequencies 
≥ 200.

2.3.3 � Measurement of ADEs

Because serious ADEs are of significant public health 
importance, the US Department of Health and Human Ser-
vices (HHS) created the National Action Plan for Adverse 
Drug Event Prevention (NAPADEP) in 2014 to address 
ADEs [26]. Our analysis focused on three major ADE 
classes that were identified as priority ADEs by the HHS 
NAPADEP: (1) potential anticoagulant-induced ADE; (2) 
potential antidiabetic drug-induced ADE; and (3) potential 
opioid-induced ADE. We used the ADE phenotyping algo-
rithm defined by Digmann et al. to identify these ADEs [27]. 
We focused on ADE diagnosis codes on the first diagnosis 
position during an ED visit to ensure the specificity of the 
ADE cases.

2.3.4 � Creation of Analytic Datasets

We derived analytical datasets under the case-control setting 
according to the ADE status of ED visit records. We created 
three datasets from Medicare data for each of the aforemen-
tioned ADE class (e.g., anticoagulant-induced ADE, anti-
diabetic drug-induced ADE, opioid-induced ADE). We also 
created three datasets from MarketScan data for each of the 
aforementioned ADE class. We defined: (1) the total fre-
quency as the frequency of a drug or a drug combination 
among all ED visit records; and (2) the outcome frequency 
as the frequency of a drug or a drug combination among 
ADE cases. Each of the six analytic datasets included total 
frequencies and outcome frequencies for the included fre-
quent drug ingredient names and their two-way to four-way 
combinations.

2.4 � Statistical Analysis

2.4.1 � Identification of High‑Risk Drug Combinations

We used the mixture drug-count response model (MDRM) 
to mine drug combinations associated with an increased risk 
of ADE [23]. Under the MDRM, we defined the baseline 
risk as the ADE risk of using a single drug. We assumed 
the ADE risk of a high-order drug combination was either 
similar to the baseline risk (i.e., the null), or higher than 
the baseline risk (e.g., adverse drug combinations). Further, 
for the high-order adverse drug combinations, we assumed 

a sigmoid relationship between drug count (e.g., number 
of drug ingredients involved in the drug combination) and 
risk of ADE. We modeled the count of drug ingredients, as 
we assume drug ingredients were the bases of DDI-induced 
ADE. By clearly specifying the null distribution, we were 
able to identify adverse high-order drug combinations at a 
low false positive rate (FDR) under the empirical Bayesian 
framework.

We fitted the MDRM to each of the six analytical data-
sets. In the MDRM, we included five parameters charac-
terizing constant risk (i.e., the null), drug-count response 
risk, and probabilities to follow drug-count risk for two-drug 
combinations, three-drug combinations, and four-drug com-
binations (ESM #1, Appendix B). We obtained the maxi-
mum likelihood estimators of the model parameters via the 
EM-algorithm. We defined FDR as the posterior probability 
of a drug combination to have a constant risk. We com-
puted FDRs for all drug combinations. We used 0.01 as the 
threshold of FDR to identify high-order drug combinations 
(i.e., three-drug combinations and four-drug combinations) 
associated with an increased risk of ADE. All analyses were 
conducted in R (version 4.2).

2.4.2 � Identification of Alternative Low‑Risk Drug 
Combinations

We accessed the drug classes defined by the Anatomical 
Therapeutic Chemical (ATC) class system for high-order 
drug combinations associated with an increased risk of 
ADE. For each high-risk drug combination, we automati-
cally searched all other drug combinations within the cor-
responding ATC level three class combination. We auto-
matically performed multiple searches if a drug combination 
belonged to multiple drug class combinations. In each 
search, we used two proportion z-test to compare ADE risks 
between the high-risk drug combination and all other drug 
combinations within the drug class combination. We used 
P < 0.05 as a threshold of effect size to reveal low-risk drug 
combinations. All analyses were conducted in R (version 
4.2).

3 � Results

We identified 5.1 million ED visit records from Medicare 
data including 148,098 potential anticoagulant-induced 
ADE cases, 124,194 potential antidiabetic drug-induced 
ADE cases, and 146,245 potential opioid-induced ADE 
cases. We identified 3.3 million ED visits from MarketS-
can data including 113,531 potential anticoagulant-induced 
ADE cases, 108,523 potential diabetic drug-induced ADE 
cases, and 116,781 potential opioid-induced ADE cases. The 
demographic characteristics of the ED visits are presented 
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in ESM #1 Table S1. Medicare data included 100,152 three-
drug combinations and 103,490 four-drug combinations 
with frequencies ≥ 200. MarketScan data included 108,453 
three-drug combinations and 109,448 four-drug combina-
tions with frequencies ≥ 200. Distributions of ADE risk, 
constant risk curves, drug-count response risk curves, and 
portions of drug combinations to follow drug-count response 
risk curve are shown in Fig. 1. The fitted parameters are 
shown in ESM #1 Table S2. We identified a small portion of 
drug combinations to follow drug-count response risk curve 
(Fig. 1). Specifically, the percentages of drug combinations 
to follow a drug-count response risk curve for potential 
anticoagulant-induced ADE, potential antidiabetic drug-
induced ADE, and potential opioid-induced ADE were: (1) 
17%, 7% and 6% for three-drug combinations in Medicare 
data, respectively; (2) 11%, 2% and 1% for four-drug com-
binations in Medicare data, respectively; (3) 22%, 11% and 
6% for three-drug combinations in MarketScan data, respec-
tively; and (4) 18%, 3% and 1% for four-drug combinations 
in MarketScan data, respectively (Fig. 1). In other words, 
≥ 78% three drug-combinations and ≥ 82% four-drug combi-
nations had ADE risks followed a constant risk curve. Three-
drug combinations and four-drug combinations to follow a 

drug-count response risk curve had on average 2.2-fold to 
3.3-fold increased risks comparing to drug combinations to 
follow a constant risk curve.

3.1 � Potential Anticoagulant‑Induced ADE

We identified 4332 high-order drug combinations associated 
with an increased risk of ADE (e.g., FDRs < 0.01 in both 
Medicare data and MarketScan data). Of these, 2644 were 
three-drug combinations and 1688 were four-drug combina-
tions. For these high-order drug combinations associated 
with an increased risk of ADE, 48.4% three-drug combi-
nations and 73.9% four-drug combinations included war-
farin [ATC code: B01AA (vitamin K antagonists)]; 18.9% 
three-drug combinations and 13.3 % four-drug combinations 
included direct factor Xa inhibitors (ATC code: B01AF; 
e.g., rivaroxaban and apixaban); and other frequent drug 
classes included HMG CoA reductase inhibitors (ATC 
code: C10AA; e.g., statins), plain sulfonamides (ATC code: 
C03CA; e.g., furosemide), selective beta blocking agents 
(ATC code: C07AB; e.g., metoprolol), proton pump inhibi-
tors (ATC code: A02BC; e.g., omeprazole and pantopra-
zole), and platelet aggregation inhibitors excluding heparin 

Fig. 1   ADE risk distributions, constant risk curves, drug-count response risk curves, and portions of drug combinations to follow drug-count 
response risk curve
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(ATC code: B01AC; e.g., clopidogrel). The full list of high-
risk drug combinations can be found in ESM #2 Table S2.

Out of the 2644 three-drug combinations associated with 
an increased risk of ADE, we identified 1104 drug combina-
tions that had low-risk alternative drug combinations in both 
Medicare data and MarketScan data. Out of the 1688 high 
risk four-drug combinations associated with an increased 
risk of ADE, we identified 765 drug combinations that had 
low-risk alternative drug combinations in both Medicare 
data and MarketScan data. For high-risk drug combinations 
involving warfarin, 66.8% low-risk alternative drug combi-
nations had warfarin been replaced by clopidogrel, 19.7% 
low-risk alternative drug combinations had warfarin been 
replaced by rivaroxaban or apixaban; 0.5% low-risk alterna-
tive drug combinations had warfarin not been replaced, and 
12.2% had warfarin been replaced by dabigatran or cilosta-
zol. For high-risk drug combinations involving direct fac-
tor Xa inhibitors (e.g., rivaroxaban and apixaban), 38.7% 
low-risk alternative drug combinations had direct factor 
Xa inhibitors been replaced by clopidogrel, 44.4% low-risk 
alternative drug combinations had direct factor Xa inhibitors 
not been replaced; 0.1% low-risk alternative drug combina-
tions had direct factor Xa inhibitors been replaced by warfa-
rin, and 17.2% had direct factor Xa inhibitors been replaced 
by dabigatran or cilostazol.

Table 1 presents exemplified high-order drug combina-
tions associated with potential anticoagulant-induced ADE, 
as well as their low-risk alternative drug combinations. As 
presented in Table 1, low-risk alternative drug combinations 
were able to reduce the risks by 31.4–76.9%. For high-risk 
drug combinations involving antithrombotic agents, the risks 
were reduced by switching either antithrombotic agents or 
other concomitant drugs. For instance, risk of the drug com-
bination involving digoxin, lisinopril and warfarin can be 
reduced by ≥ 44% by replacing warfarin [ATC class: B01A 
(antithrombotic agents)] with apixaban [ATC class: B01A 
(antithrombotic agents)] (Table 1). Full list of high-order 
drug combinations associated with an increased risk of ADE 
and their low-risk alternative combinations can be found in 
ESM #2 Table S3.

3.2 � Potential Antidiabetic Drug‑Induced ADE 
and Opioid‑Induced ADE

We identified 519 and 362 high-order drug combinations 
for potential antidiabetic drug-induced ADE and potential 
opioid-induced ADE, respectively (e.g., FDRs < 0.01 in 
both Medicare data and MarketScan data). For potential 
antidiabetic drug-induced ADE, 443 were three-drug com-
binations and 76 were four-drug combinations. For potential 
opioid-induced ADE, 310 were three-drug combinations and 
52 were four-drug combinations. The most frequent drug 
class in high-risk drug combinations for both potential 

antidiabetic drug-induced ADE and potential opioid-induced 
ADE included N06DA (anticholinesterases: donepezil, riv-
astigmine), N06DX (other anti-dementia drugs: memantine), 
C10AA (digitalis glycosides: simvastatin, pravastatin, atorv-
astatin, rosuvastatin), N06AB (selective serotonin reuptake 
inhibitors: citalopram, sertraline), and H03AA (thyroid hor-
mones: levothyroxine). Full list of high-order drug combina-
tions associated with an increased risk of ADE can be found 
in ESM #2 Table S4. For potential antidiabetic drug-induced 
ADE, we identified: (1) 19 drug combinations out of the 
443 three-drug combinations associated with an increased 
risk of ADE had low-risk alternative drug combinations in 
both Medicare data and MarketScan data; and (2) none of 
the 76 four-drug combinations associated with an increased 
risk of ADE had low-risk alternative drug combinations in 
both Medicare data and MarketScan data. For potential opi-
oid-induced ADE, we identified: (1) 15 drug combinations 
out of the 310 three-drug combinations associated with an 
increased risk of ADE had low-risk alternative drug com-
binations in both Medicare data and MarketScan data; and 
(2) only 1 drug combinations of the 52 four-drug combina-
tions associated with an increased risk of ADE had low-risk 
alternative drug combinations in both Medicare data and 
MarketScan data. Table 2 presents exemplified drug combi-
nations associated with potential antidiabetic drug-induced 
ADE and potential drug-induced ADE, as well as their low-
risk alternative drug combinations. As Table 2 presents, the 
ADE risks can be reduced by 34.1–76.9% by the low-risk 
alternative drug combinations. Full list of high-order drug 
combinations associated with an increased risk of ADE and 
their low-risk alternative combinations can be found in ESM 
#2 Table S5.

4 � Discussion

In this study, we demonstrate that the mixture drug-count 
response model (MDMR) is able to provide real-world evi-
dence on drug safety among older adults with respect to 
use of multiple drugs. We identified certain high-order drug 
combinations (i.e., three-drug combinations and four-drug 
combinations) associated with an increased risk of adverse 
drug event (ADE) among older adults. Additionally, for 
some drug combinations associated with an increased risk of 
ADE, we identified alternative drug combinations that had 
a lower risk of ADE and similar therapeutic class combina-
tions with the corresponding high-risk drug combinations.

First, the MDRM is able to characterize heterogene-
ous risk patterns of high-order drug combinations. For all 
ADE classes (e.g., potential anticoagulant-induced ADE, 
potential antidiabetic drug-induced ADE, and potential 
opioid-induced ADE), the majority of high-order drug 
combinations have risk of ADE remain similar as only 
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Table 1   Exemplified high-
risk three-drug combinations 
and low-risk alternative drug 
combinations for potential 
anticoagulant-induced ADE 
[italic drug names indicate 
replacement(s)]

*Relative risk in Medicare data
**Relative risk in MarketScan data

Risk group Drug 1 Drug 2 Drug 3 RR1* (p-value) RR2** (p-value)

High Acetaminophen Alprazolam Warfarin 0.455 (0.0001) 0.629 (0.0002)
Low Clopidogrel
High Duloxetine Furosemide Warfarin 0.526 (0.0001) 0.574 (< 0.0001)
Low Clopidogrel
High Gabapentin Prednisone Warfarin 0.231 (0.0054) 0.32 (0.0035)
Low Betamethasone Clopidogrel
High Digoxin Lisinopril Warfarin 0.559 (0.0006) 0.416 (< 0.0001)
Low Apixaban
High Memantine Carvedilol Warfarin 0.313 (< 0.0001) 0.311 (< 0.0001)
Low Metoprolol Apixaban
High Amoxicillin Prednisone Warfarin 0.494 (0.0192) 0.461 (0.0075)
Low Rivaroxaban
High Diltiazem Warfarin Tiotropium 0.529 (0.0277) 0.661 (0.0479)
Low Triamcinolone
High Amlodipine Losartan Warfarin 0.448 (0.0012) 0.518 (0.0066)
Low Cilostazol
High Levothyroxine Torsemide Warfarin 0.28 (0.0001) 0.592 (0.0054)
Low Furosemide Cilostazol
High Metformin Liraglutide Warfarin 0.234 (0.0027) 0.345 (0.0004)
Low Glipizide Dabigatran
High Furosemide Montelukast Warfarin 0.244 (0.0073) 0.382 (0.0008)
Low Dabigatran
High Carvedilol Sitagliptin Apixaban 0.481 (0.0013) 0.561 (0.0066)
Low Clopidogrel
High Acetaminophen Amlodipine Rivaroxaban 0.527 (< 0.0001) 0.686 (0.003)
Low Clopidogrel
High Donepezil Losartan Rivaroxaban 0.498 (0.0031) 0.505 (0.0041)
Low Clopidogrel
High Metformin Sitagliptin Rivaroxaban 0.576 (0.0005) 0.533 (0.0003)
Low Clopidogrel
High Albuterol Omeprazole Rivaroxaban 0.462 (0.0011) 0.395 (0.0002)
Low Apixaban
High Furosemide Diltiazem Rivaroxaban 0.553 (0.0068) 0.411 (0.001)
Low Nitroglycerin Apixaban
High Gabapentin Prednisone Rivaroxaban 0.342 (0.0293) 0.401 (0.0278)
Low Warfarin
High Fluticasone Metoprolol Rivaroxaban 0.289 (0.0076) 0.414 (0.0028)
Low Cilostazol
High Levothyroxine Rosuvastatin Rivaroxaban 0.348 (0.0039) 0.409 (0.0004)
Low Pravastatin Dabigatran
High Metformin Metoprolol Rivaroxaban 0.601 (0.0077) 0.474 (< 0.0001)
Low Dabigatran
High Furosemide Clopidogrel Mupirocin 0.198 (0.0018) 0.526 (0.005)
Low Mometasone
High Hydrochlorothiazide Amiodarone Pantoprazole 0.196 (< 0.0001) 0.236 (0.0023)
Low Flecainide Omeprazole
High Furosemide Mupirocin Pantoprazole 0.282 (0.0085) 0.313 (0.0079)
Low Fluticasone Dexlansoprazole
High Lisinopril Finasteride Simvastatin 0.475 (0.0073) 0.461 (0.009)
Low Diclofenac Rosuvastatin
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using a single drug (e.g., the risk doesn’t increase as the 
number of drugs in the drug combination increases), and 
a portion of drug combinations have significantly higher 
risk of ADE than only using a single drug (e.g., the risk 
increases as the number of drugs in the drug combination 
increases). In other words, the majority of drug combina-
tions have their risks similar to the risk of using a single 

drug, while a small portion of drug combinations have 
higher risk of ADE as number of drugs involved in the 
combination increases. It is important to distinguish these 
two types of drug combinations. Such a pattern reassures 
the safety for the majority of drug combinations and rises 
safety concerns for the remaining drug combinations.

Table 2   Exemplified high-
risk three-drug combinations 
and low-risk alternatives for 
potential diabetic drug-induced 
ADE and opioid-induced ADE 
[italic drug names indicate 
replacement(s)]

*Relative risk in Medicare data
** Relative risk in MarketScan data

Risk group Drug 1 Drug 2 Drug 3 RR1* (p-value) RR2** (p-value)

Diabetic drug-related ADE
 High Omeprazole Levothyroxine Timolol 0.549 (0.0061) 0.425 (0.0003)
 Low Propranolol
 High Levothyroxine Amlodipine Levetiracetam 0.387 (0.0012) 0.56 (0.0074)
 Low Nifedipine Gabapentin
 High Clopidogrel Levetiracetam Atorvastatin 0.478 (0.044) 0.488 (0.0126)
 Low Pregabalin Rosuvastatin
 High Amlodipine Levetiracetam Atorvastatin 0.314 (0.0034) 0.425 (0.002)
 Low Nifedipine Gabapentin Simvastatin
 High Brimonidine Timolol Memantine 0.503 (0.0495) 0.48 (0.0029)
 Low Clonidine Metoprolol Donepezil
 High Atorvastatin Memantine Bupropion 0.556 (0.0249) 0.581 (0.0214)
 Low Duloxetine
 High Atorvastatin Donepezil Brimonidine 0.502 (0.0211) 0.517 (0.0241)
 Low Clonidine
 High Donepezil Levothyroxine Trazodone 0.66 (0.0234) 0.661 (0.013)
 Low Duloxetine
 High Furosemide Metoprolol Quetiapine 0.322 (0.0091) 0.445 (0.0102)
 Low Aripiprazole
 High Lisinopril Metoprolol Levodopa 0.623 (0.021) 0.623 (0.0153)
 Low Ropinirole

Opioid-related ADE
 High Amlodipine Levetiracetam Atorvastatin 0.324 (0.0021) 0.364 (0.0003)
 Low Nifedipine Gabapentin Simvastatin
 High Lisinopril Atorvastatin Levodopa 0.656 (0.0126) 0.478 (< 0.0001)
 Low Ropinirole
 High Gabapentin Baclofen Atorvastatin 0.659 (0.0388) 0.573 (0.0102)
 Low Cyclobenzaprine Simvastatin
 High Omeprazole Donepezil Escitalopram 0.537 (0.039) 0.376 (0.0005)
 Low Paroxetine
 High Donepezil Brimonidine Timolol 0.267 (0.0007) 0.476 (0.0038)
 Low Diclofenac Metoprolol
 High Metformin Metoprolol Risperidone 0.231 (0.002) 0.322 (0.0034)
 Low Prochlorperazine
 High Amlodipine Lisinopril Levodopa 0.587 (0.0048) 0.654 (0.0171)
 Low Ropinirole
 High Losartan Donepezil Atorvastatin 0.638 (0.0042) 0.614 (0.0038)
 Low Pravastatin
 High Donepezil Atorvastatin Mirabegron 0.28 (0.0006) 0.543 (0.0494)
 Low Pravastatin Oxybutynin
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Second, the Anatomical Therapeutic Chemical (ATC) 
Classification-based mining reveals that some high-order 
drug combinations associated with an increased risk of 
ADE have low-risk alternative drug combinations, where 
the low-risk drug combinations have similar drug classes 
as their corresponding high-risk combinations. Such a find-
ing is naturally followed by the heterogeneous risk patterns 
of the drug combinations characterized by the MDRM. In 
this study, we searched low-risk alternative drug combina-
tions with respect to ATC level three classes (e.g., chemi-
cal, pharmacological, or therapeutic subgroups). Certain 
high-order drug combinations associated with an increased 
risk of ADE often include a drug that may cause the ADE 
alone and concomitant drugs that are less likely to cause the 
ADE alone (Tables 1 and 2). Our search reveals that the risk 
of ADE can be reduced by either switching the drug that 
may cause the ADE alone, or substituting a drug that is less 
likely to cause the ADE alone (Tables 1 and 2). For instance, 
warfarin could cause GI bleeding alone. In our exemplified 
analysis, among all low-risk drug combinations of high-risk 
drug combinations involving warfarin, majority of the low-
risk drug combinations have warfarin been replaced by other 
antithrombotic agents (e.g., clopidogrel, apixaban, rivar-
oxaban, cilostazol or dabigatran), while 0.5% of the low-
risk drug combinations have other concomitant drugs been 
replaced and warfarin not been replaced. Interestingly, the 
aforementioned 0.5% of the low-risk drug combinations also 
have same five-digit ATC classes as the high-risk drug com-
binations. Such a finding provides real-world evidence for 
avoiding harmful high-order drug combinations without a 
significant change on the management of comorbidities. Full 
list of low-risk drug combinations with same drug classes 
(five-digit ATC codes) as the high-risk drug combinations 
are given in ESM #2 Table S6.

The MDRM assumes the ADE risks to follow a constant 
curve (i.e., ADE risk remains same as the number of drugs 
in the combination increases) or a dose response curve (i.e., 
ADE risk increases as the number of drugs in the combi-
nation increases). The rationale of the MDRM is closely 
related to drug–drug interaction (DDI). The constant risk 
curve and the drug-count response curve may represent drug 
combinations with and without a DDI, respectively. Some 
of our findings are in agreement with existing knowledge 
on DDI. For instance, pharmacology study on warfarin and 
proton pump inhibitors (PPIs) suggested: (1) pantoprazole 
had no significant interaction with warfarin, and (2) ome-
prazole and esomeprazole could decrease the clearance of 
warfarin [28]. In our study, we identified certain high-order 
drug combinations including omeprazole and warfarin or 
including esomeprazole and warfarin had a higher risk of GI 
bleeding, while the GI bleeding risk for the aforementioned 
high-risk combinations can be reduced by replacing omepra-
zole or esomeprazole with pantoprazole (ESM #2, Table S3, 

Table S5). For all three potential ADEs, we identified the 
majority of high-order drug combinations to have risk of 
ADE following a constant curve (Fig. 1), which implies DDI 
occurs only in a small portion of high-order drug combina-
tions. Additionally, our study identified more high-risk drug 
combinations for potential anticoagulant-induced ADEs than 
potential antidiabetic/opioid-induced ADEs. Such a finding 
could be contributed by: (1) more drugs are associated with 
increased risk of GI-bleeding; and (2) a higher likelihood of 
DDI to induce GI bleeding.

The primary limitation of this approach is the need to 
ensure clinically relevant replaceability rather than replace-
ment simply based on drug class. For example, for the 
majority of clinical indications clopidogrel, an antiplatelet 
agent, is not an appropriate substitute for warfarin, a sys-
temic anticoagulant. In some cases, the algorithm recom-
mends a topical medication replace a systemic medication 
(e.g., betamethasone for prednisone). Nevertheless, these 
results demonstrate a large number of potential clinically 
relevant substitutions. A rigorous clinical review of all com-
binations will be to allow for clinical application will be 
conducted and will be reported in a subsequent manuscript.

Our study has a number of additional limitations. First, 
despite we used algorithms developed by subject matter 
experts to identify ADE cases [27], the cases and controls 
could be misclassified. However, we conservatively defined 
cases as an ED visit with an ADE-related ICD codes on the 
first diagnosis position to improve the specificity. We would 
like to point out that an improvement on specificity is associ-
ated with a compromise on sensitivity, as ADE cases with-
out an ADE-related ICD codes on the first diagnosis position 
were misclassified under our ADE phenotyping approach. 
Second, the drug exposure data were derived from pharmacy 
claims, which may not represent the underlying drug consump-
tion records. Pharmacy claims are also inadequate to capture 
drugs that have been administered in certain facilities (e.g., 
inpatient drug administration) and/or obtained without insur-
ance claim. We largely assume the drug consumption records 
can be characterized by pharmacy claims. All the aforemen-
tioned limitations are associated with the intrinsic properties 
of insurance claim datasets. Third, the potential high-risk drug 
combinations are subjected to confounding bias. The purpose 
of this study is to generate signals of high-risk drug combina-
tions and their low-risk alternative combinations. Our find-
ings shall facilitate more rigorous pharmacoepidemiology 
studies. For instance, the comparative risk of a high-risk drug 
combination and its low-risk alternative combination can be 
tested naturally under the active comparator design [29, 30], as 
both drug combinations have similar drug-class combinations. 
Forth, our study doesn’t investigate the impact of strength of 
drug exposure (e.g., doses of drugs) on ADE and the potential 
pharmacologic mechanism of the high-risk drug combinations 
(e.g., pharmacokinetics or pharmacodynamics properties). 
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These are both important future research directions. Both rig-
orous pharmacoepidemiology study and pharmacology study 
are warranted to validate the high-risk drug combinations, as 
polypharmacy will continue to be a reality of medical care 
for older adults. Last, the study datasets included Medicare 
beneficiaries and retirees with employer-paid Medicare sup-
plemental insurance plans. Even if our datasets represent a 
geographically diverse US older adult population, the results 
may not be generalizable to other populations.

5 � Conclusion

In this study, we highlighted the power of data mining meth-
ods on revealing real-world evidence for safe polypharmacy 
practice in older adults. We identified adverse high-order drug 
combinations (e.g., three-drug combinations and four-drug 
combinations) associated with a higher ADE risk. Addition-
ally, we identified alternative low-risk drug combinations for 
the high-risk, high-order drug combinations without chang-
ing the therapeutic classes of the high-risk drug combinations. 
This work provides a more nuanced description of the risks of 
polypharmacy and potential strategies to test safer prescribing 
strategies.
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