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Abstract
Introduction  Detection of adverse reactions to drugs and biologic agents is an important component of regulatory approval 
and post-market safety evaluation. Real-world data, including insurance claims and electronic health records data, are increas-
ingly used for the evaluation of potential safety outcomes; however, there are different types of data elements available within 
these data resources, impacting the development and performance of computable phenotypes for the identification of adverse 
events (AEs) associated with a given therapy.
Objective  To evaluate the utility of different types of data elements to the performance of computable phenotypes for AEs.
Methods  We used intravenous immunoglobulin (IVIG) as a model therapeutic agent and conducted a single-center, retrospec-
tive study of 3897 individuals who had at least one IVIG administration between 1 January 2014 and 31 December 2019. We 
identified the potential occurrence of four different AEs, including two proximal AEs (anaphylaxis and heart rate alterations) 
and two distal AEs (thrombosis and hemolysis). We considered three different computable phenotypes: (1) an International 
Classification of Disease (ICD)-based phenotype; (2) a phenotype-based on EHR-derived contextual information based on 
structured data elements, including laboratory values, medication administrations, or vital signs; and (3) a compound phe-
notype that required both an ICD code for the AE in combination with additional EHR-derived structured data elements. We 
evaluated the performance of each of these computable phenotypes compared with chart review-based identification of AEs, 
assessing the positive predictive value (PPV), specificity, and estimated sensitivity of each computable phenotype method.
Results  Compound computable phenotypes had a high positive predictive value for acute AEs such as anaphylaxis and 
bradycardia or tachycardia; however, few patients had both ICD codes and the relevant contextual data, which decreased 
the sensitivity of these computable phenotypes. In contrast, computable phenotypes for distal AEs (i.e., thrombotic events 
or hemolysis) frequently had ICD codes for these conditions in the absence of an AE due to a prior history of such events, 
suggesting that patient medical history of AEs negatively impacted the PPV of computable phenotypes based on ICD codes.
Conclusions  These data provide evidence for the utility of different structured data elements in computable phenotypes for 
AEs. Such computable phenotypes can be used across different data sources for the detection of infusion-related adverse 
events.

1  Introduction

Detection and evaluation of adverse events (AEs) are critical 
components of the regulatory approval pathway for medical 
therapies and products, both during the prospective clini-
cal trials stage and in post-market monitoring. The United 
States Food and Drug Administration (FDA) defines an AE 
as any undesirable experience associated with the use of a 

medical product in a patient [1]. Real-world data sources 
are increasingly used for post-market surveillance of AEs, 
including health insurance claims and electronic health 
record (EHR) data, with each of these sources presenting 
different strengths and weaknesses [2]. Insurance claims 
typically include large numbers of patients and capture all 
of a given individual’s healthcare interactions, regardless of 
setting. Importantly, insurance claims data primarily provide 
information related to the types of procedures and diagno-
ses for which an insurer was charged, but do not include 
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Key Points 

Detection of adverse reactions to therapies is an impor-
tant component of regulatory approval and post-market 
evaluation of pharmacotherapies.

Adverse event surveillance frequently uses real-world 
data sources, including insurance claims and electronic 
health records data, and there is a need for computable 
phenotypes to identify acute adverse events.

Different structured data elements found in electronic 
health records data can inform and improve the perfor-
mance of computable phenotypes for common adverse 
events.

contextual details that may provide insights into the rela-
tionships between different clinical events. In contrast, EHR 
data only provide information related to clinical care that 
occurs within a given health system and do not include data 
for healthcare encounters that occur outside of that system. 
However, EHR data provides a vast amount of clinical infor-
mation about diagnoses, laboratory analyses, procedures, 
and medication administrations that occur during a given 
encounter, allowing incorporation of additional contextual 
information to infer associations between clinical events. 
Given the contrasting strengths and weaknesses of these data 
sources, it is important to have a clear understanding of the 
relative utility of data elements contained within each source 
when designing strategies to detect AEs.

Computable phenotypes are used to define a specific 
condition, clinical characteristic, or medical event from 
health data and can use a variety of approaches, ranging 
from the simple presence or absence of a diagnostic code 
to machine learning approaches that can analyze multiple 
forms of data to create trained classifiers [3]. Many com-
putable phenotypes consist of Boolean algorithms that are 
built using one or more structured data elements such as 
International Classification of Disease (ICD) codes, labo-
ratory results, or medication orders, wherein the algorithm 
identifies a phenotype based on the presence, absence, or 
specific value of the different data elements. The appeal 
of such algorithms is that they are a relatively simple 
approach to identify cohorts with specific conditions or 
clinical features for inclusion in comparative outcomes 
research, disease registries, and studies of population 
health [4]. Many existing computable phenotypes have 
been developed for the identification of chronic conditions 
[5, 6]. Phenotypes for chronic diseases tend to have good 
specificity, but variable sensitivity [7]. It is rare for an 
individual who does not have a chronic condition to have 

data elements associated with that condition, though it 
is possible to misclassify individuals as being unaffected 
with a chronic disease if, for example, they do not have 
recent clinical encounters that indicate the presence of 
the condition. In contrast, acute events represent a par-
ticular challenge for computable phenotype development 
as they are temporally circumscribed and only applica-
ble to a given patient within a specific time period. Thus, 
there is a need to develop computable phenotypes that 
are applicable to acute conditions that appear and resolve 
over different time horizons, and to evaluate associations 
between these conditions and other events within a clini-
cal encounter. Given the increasing availability and use 
of EHR data for these analyses, there is a particular need 
to assess the utility of different types of data elements to 
computable phenotypes for acute clinical events, and to 
evaluate their impact on the sensitivity and specificity of 
a given phenotype [8].

The objective of this study was to evaluate the utility of 
different types of data elements to the performance of com-
putable phenotypes for the detection of four AEs after medi-
cation administration using EHR data. We used intravenous 
immunoglobulin (IVIG) as a model therapy, as administra-
tion occurs in a clinical setting and receipt can be verified 
within the EHR. A diverse set of AEs are associated with 
IVIG administration [9–14], including proximal or immedi-
ate infusion-related AEs such as headache, backache, chills, 
nausea, cardiac arrhythmia, muscle pain, and anaphylaxis, 
and distal AEs, which occur several days to a week or more 
after infusion, such as thrombotic events, hemolysis, and 
urticaria. We specifically evaluated the utility of data ele-
ments that are available in EHRs but not in health insurance 
claims data, including laboratory values and clinical events. 
Below, we assess the utility of these data elements to the 
performance of computable phenotypes for different AEs.

2 � Methods

2.1 � Data Source and Extraction

The study was conducted using retrospective EHR data from 
Duke University Health System (DUHS). DUHS consists of 
one tertiary care and two community-based hospitals, and a 
network of primary-care and specialty clinics that have uti-
lized a single EHR system since 2014. We extracted clinical 
data through Duke’s Clinical Research Datamart, a PCORnet 
common data model-based EHR database, from 1 January 
2014 to 31 December 2019 [4].
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2.2 � Identification of Intravenous Immunoglobulin 
(IVIG) Administrations

We used RxNorm Concept Unique Identifier (RxCUI) codes 
(see Online Supplemental Material (OSM), Resource 1, Sup-
plemental Table 1) to identify patients who were adminis-
tered an IVIG product, extracting time stamps for infusion 
start times and the location of the administration, classi-
fied as either inpatient (IP) or outpatient (OP). For patients 
who underwent more than one IVIG administration dur-
ing the study period, we assessed the median number of 
days between the administrations (administration cadence). 
Indication for IVIG administration was determined based on 
the primary ICD code associated with the encounter during 
which IVIG was administered, and indications for adminis-
tration were grouped as described in Supplemental Table 2 
(see OSM Resource 1). We extracted age at time of admin-
istration, sex, race/ethnicity, and insurance status at the time 
of administration.

2.3 � Development of Computable Phenotypes

Computable phenotypes for anaphylaxis, bradycardia, tachy-
cardia, thrombosis, and hemolysis are detailed in Supple-
mental Table 3 (see OSM Resource 1); the development of 
these computable phenotypes is described below. For each 
of the five AEs, we considered an ICD-based phenotype, a 
phenotype based on EHR-derived contextual information, 
such as laboratory values, medication administrations, or 
vital signs, and a compound phenotype that required an ICD 
code for the AE in combination with EHR-derived contex-
tual information. For the three proximal AEs (anaphylaxis, 
tachycardia, and bradycardia), the ICD code for the AE was 
required to occur within the same encounter as the IVIG 
administration, and any EHR-derived contextual information 
used for the phenotype had to occur within 6 h of the IVIG 
administration. For the two distal AEs (thrombosis, hemoly-
sis), the AE had to occur within 7 days of IVIG administra-
tion. R scripts were created for each computable phenotype 
and run against the dataset to create sub-cohorts that were 
evaluated as described below.

2.4 � Chart Review Validation of Computable 
Phenotypes

To assess the validity of different computable phenotypes, 
we conducted a chart review of a subset of patient charts. 
Chart review was conducted by a group of six medical stu-
dents and subspecialty fellows. For each chart, reviewers 
were provided with the encounter date for the IVIG adminis-
tration and the type of AE that was expected to have occurred 
based upon the computable phenotype. The reviewers were 
asked to select the indication for IVIG administration, 

whether they thought the AE had occurred based on their 
review of the information in the chart. If the reviewer deter-
mined that the AE had not occurred, they were asked to 
record their reasoning to help inform further refinement of 
the computable phenotypes. To ensure concordance among 
reviewers, all reviewers completed a review of a random 
sample of 20 charts. We determined areas of discordance 
and reviewed results to ensure that all reviewers understood 
the criteria for each aspect of the chart review. Additionally, 
results were reviewed at study team meetings to ensure that 
the team agreed on the findings for the chart review.

2.5 � Statistical Analysis

We summarized characteristics of the study population with 
medians (interquartile range (IQR)) for continuous varia-
bles and counts (percentiles) for categorical variables. The 
population-level rate of administrations per person-year was 
defined as the total number of IVIG administrations that 
occurred between the patient’s first and last IVIG adminis-
tration within the study window, divided by the total person-
time contributed by each patient between their first and last 
IVIG administration.

The sample of patients selected for chart review was 
based on unique IVIG administration encounters drawn at 
random without replacement. The sampling was stratified 
by encounter setting (IP vs. OP) and phenotyping approach 
for each AE, except for anaphylaxis, for which all putative 
events were reviewed. We treated the chart review results as 
the true value and report positive predictive value (PPV) as 
a measure of phenotype accuracy. While we cannot calculate 
true measures of sensitivity because we did not review charts 
of phenotype-negative individuals, we generated estimates 
of phenotype sensitivity. Specifically, we assumed that the 
different computable phenotype approaches captured all 
true events in the data. The number of true events was esti-
mated by the product of the PPV and number of computable 
phenotype-identified AEs. The estimated sensitivity of each 
computable phenotype for a given AE was calculated as the 
proportion of estimated true events that were captured by 
the phenotype. All analyses were performed in R 4.0.2 [15].

3 � Results

3.1 � Study population

We identified 3,897 individuals who had at least one IVIG 
administration between 1 January 2014 and 31 December 
2019, and a total of 29,968 IVIG administrations (Table 1). 
The median age at the earliest encounter was 47 (IQR 16, 
64) years, 49% of the cohort was female, and 47% had public 
insurance (i.e., Medicaid and/or Medicare). The majority 
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of IVIG administrations (68%) occurred in an OP setting. 
The most common indications for IVIG administration (as 
determined by ICD codes associated with IVIG administra-
tion encounters; more than one code could be associated 
with an encounter) was immunodeficiency (45%), followed 
by transplant (40%, including solid organ and hematopoietic 
transplant), autoimmune disorder (38%), and hematologic 
malignancy (17%). We found that 54% of patients received 
two or more IVIG administrations, with a median time 
between administrations of 28 days (IQR: 7, 38), and 11.92 
unique administrations per person year, suggesting that most 
patients with multiple administrations received IVIG on a 
monthly basis.

3.2 � Identification of Potential Adverse Events (AEs) 
Across Computable Phenotypes

Among 29,968 IVIG administrations, we identified 6,692 
potential AEs for anaphylaxis, tachycardia, bradycardia, 
thrombosis, and hemolysis across OP and IP encounters 

that included an IVIG administration (Table 2). Anaphy-
laxis was the rarest AE, with only 18 potential events 
identified. Potential tachycardia or bradycardia was iden-
tified in 5,743 encounters. We also evaluated two distal 
AEs, thrombosis (including myocardial infarction, stroke, 
and embolism) and hemolysis. In contrast to the potential 
proximal AEs, the majority of potential distal AEs were 
identified in patients who received IVIG in an IP setting, 
including 70% of thrombotic events and 73% of potential 
hemolytic events. Most potential thrombotic events (70%) 
were identified with ICD codes alone, whereas potential 
hemolytic events were largely identified through the pres-
ence of abnormal laboratory values (67%). Few potential 
distal AEs were identified with the presence of both an 
ICD code and laboratory values.

3.3 � Validation of Computable Phenotypes

We assessed the accuracy of different phenotyping strategies 
by comparing the results of different computable phenotypes 

Table 1   Characteristics of 
patients receiving intravenous 
immunoglobulin (IVIG), 2014-
2019

IQR interquartile range, IVIG intravenous immunoglobulin
a Numbers do not sum to total because patients may have had more than one coded indication. Percentages 
are based on the total number of unique patients and therefore their sum exceeds 100%

Characteristic Value

Total unique patients receiving IVIG, N 3897
Age at first encounter during study period, years (median, IQR) 47 (16, 64)
Sex, N (%)
 Male 1979 (51%)
 Female 1918 (49%)

Race/ethnicity, N (%)
 Non-Hispanic white 2541 (65%)
 Non-Hispanic black 914 (23%)
 Hispanic/Latinx 188 (5%)
 Other 202 (5%)
 Missing 52 (1%)

Insurance status, N (%)
 Public 1836 (47%)
 Private 1681 (43%)
 Other 380 (10%)

Indication for IVIG, N (%)a

 Transplant (solid organ or hematopoietic) 1540 (40%)
 Immunodeficiency 1753 (45%)
 Hematological malignancy 656 (17%)
 Autoimmune disorder 1485 (38%)
 Other indications 1248 (32%)

Total encounters with IVIG administration, N 29,968
Inpatient IVIG administrations, N (%) 9479 (32%)
Patients with 2 or more IVIG administrations, N (%) 2100 (54%)
Cadence of IVIG administrations, days (median, IQR) 28 (7, 38)
Number of unique administrations/person year, N 11.92
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to the results of a manual chart review (Table 3). The ana-
phylaxis phenotype based only on ICD codes had a PPV 
of 57% and an estimated sensitivity of 29%. In contrast, a 
computable phenotype based on the intramuscular (IM) or 
subcutaneous (SQ) administration of epinephrine (a typi-
cal treatment for anaphylaxis) had a higher PPV (90%) and 
higher estimated sensitivity (64%), as epinephrine IM/SQ 
has few other indications, making the route of administration 
highly specific for anaphylaxis. Of note, epinephrine admin-
istration by any route had a lower PPV of 37% (data not 
shown), consistent with the use of this medication for other 
indications. The compound phenotype for anaphylaxis was 
highly predictive; however, we identified only one patient 
with both a diagnosis of anaphylaxis (as indicated by the 

presence of an ICD code) in EHR data confirming receipt 
of epinephrine IM or SQ; the estimated sensitivity of this 
phenotype was 7%.

The compound phenotype for tachycardia or bradycardia 
had the highest PPV (80%), and the vital signs-based phe-
notype had the highest estimated sensitivity (71%). Notably, 
these potential AEs are inherently defined by quantitative 
measures; thus, it is expected that vitals sign-based pheno-
types will have both a high PPV and sensitivity. Moreover, 
we observed that in several cases, patients had documented 
changes in heart rate that were adjudicated by chart review 
as tachycardia or bradycardia, but were not accompanied 
by an ICD code, suggesting the change in heart rate may be 
due to other patient characteristics or clinical events such 

Table 2   Prevalence of potential adverse events among patients receiving intravenous immunoglobulin (IVIG), 2014–2019

ICD International Classification of Disease

Adverse event Total events (all phe-
notyping methods)
N (%)

ICD code only
N (%)

Non-ICD data elements (i.e., laboratory val-
ues, vitals, or medication administrations)
N (%)

Both ICD and non-
ICD data elements
N (%)

Proximal events
 Anaphylaxis 18 7 (39%) 10 (56%) 1 (6%)
  Outpatient 10 (56%) 0 (0%) 10 (100%) 0 (0%)
  Inpatient 8 (44%) 7 (88%) 0 (0%) 1 (12%)

 Tachycardia/bradycardia 5743 429 (7%) 5176 (90%) 138 (2%)
  Outpatient 4372 (76%) 3 (0%) 4369 (100%) 0 (0%)
  Inpatient 1371 (24%) 426 (31%) 807 (59%) 138 (10%)

Distal events
 Thrombosis 407 283 (70%) 106 (26%) 18 (4%)
  Outpatient 122 (30%) 85 (70%) 36 (30%) 1 (1%)
  Inpatient 285 (70%) 198 (69%) 70 (25%) 17 (6%)

 Hemolysis 524 165 (31%) 351 (67%) 8 (2%)
  Outpatient 141 (27%) 109 (77%) 31 (22%) 1 (1%)
  Inpatient 383 (73%) 56 (15%) 320 (84%) 7 (2%)

Table 3   Positive predictive value and sensitivity of acute adverse event (AE) phenotypes

bpm beats per minute, her electronic health record, ICD International Classification of Disease, PPV positive predictive value

AE not 
present
N

AE present
N

PPV
%

Number of unique 
encounters/% patients 
with AE

Estimated 
sensitivity
%

Anaphylaxis phenotypes
 ICD code alone 3 4 57% 7 (0.18%) 29%
 EHR-derived data: Medication administration (subcutaneous or intra-

muscular administration of epinephrine alone)
1 9 90% 10 (0.26%) 64%

 Compound phenotype (ICD code + EHR-derived data) 0 1 100% 1 (0.03%) 7%
Tachycardia/Bradycardia phenotypes
 ICD code alone 16 24 60% 436 (10.8%) 20%
 EHR-derived data: Vital signs (mean heart rate < 60 bpm or > 100 bpm) 33 7 18% 5176 (35.5%) 71%
 Compound phenotype Compound phenotype (ICD code + EHR-derived 

data)
4 16 80% 138 (3.4%) 9%
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as fever, anxiety, or use of other medications that contrib-
ute to heart rate differences. Thus, some AEs may be cap-
tured through other coding methods that encompass that AE 
along with other clinical features or may not be coded due to 
patient characteristics that account for the event, such as the 
duration of the AE or other parameters that are not typically 
captured in individual structured data elements [16].

We similarly evaluated PPV and estimated sensitivity for 
the two distal AEs, thrombosis and hemolysis (Table 4). Of 
50 encounters identified as having a potential thrombotic 
event by ICD-based computable phenotype, 23 were con-
firmed to have a thrombotic event by chart review. Using a 
laboratory test-based computable phenotype, we found that 
of the 45 patients who had abnormal laboratory values for 
troponin or D-dimer, 6 were confirmed to have a thrombotic 
event (PPV of 13%). Only 2.5% of all patients in our cohort 
had abnormal laboratory values, making the estimated sen-
sitivity of this phenotype 9%. The compound phenotype for 
thrombosis, which used both ICD codes and laboratory val-
ues, had a PPV of 89%; however, the estimated sensitivity 
was low (10%). The ICD code-based phenotype for hemoly-
sis had a relatively low PPV of 24%. We next evaluated the 
PPV for abnormal laboratory values for hematocrit and hap-
toglobin. Of note, multiple laboratory tests are used in com-
bination to help identify hemolysis, including hematocrit 
and haptoglobin (Supplemental Table 4; see OSM Resource 
1) [17]. Abnormal hematocrit values had a low PPV for 
hemolysis (11%); however, abnormal haptoglobin values had 
a comparatively high PPV of 67%. Compound phenotypes 
including an ICD code for hemolysis and an abnormal labo-
ratory value (either hematocrit or haptoglobin) had PPVs of 

100%; however, only one patient had both an ICD code for 
hemolysis and an abnormal laboratory value for hematocrit 
and only four patients had an ICD code and an abnormal 
haptoglobin, resulting in sensitivities of 15% or less.

3.4 � Accounting for Prior Medical History in Acute 
Event Phenotypes

During the chart review of distal AEs, reviewers noted that 
many patients who were identified as having an ICD code 
for an AE of interest did not experience the AE during the 
encounter under review; rather many patients had a prior 
history of the specific AE that was relevant for patient care 
in subsequent encounter(s). We therefore evaluated the effect 
of prior medical history on detection of AEs to determine 
if a history of these events negatively impacted the PPV of 
ICD-based computable phenotypes (Table 5). A patient was 
determined to have a prior medical history of a given AE if 
they had an ICD code associated for that AE during the time 
period from the beginning of the study period or the date 
of the patient’s first encounter within the dataset until their 
IVIG administration encounter.

We found that we were more likely to detect a true AE 
(i.e., verified by chart review) in patients without a prior his-
tory of either thrombosis or hemolysis. For example, among 
30 potential thrombosis AEs identified with an ICD-based 
computable phenotype in patients with no prior history of 
thrombosis, a manual chart review found that 76% of pheno-
typed AEs did in fact occur after the infusion encounter of 
interest, compared to a PPV of 33% in patients with a prior 
history of thrombosis. Similarly, among potential hemolysis 

Table 4   Positive predictive value and sensitivity of distal adverse event phenotypes

AE adverse event, EHR electronic health record, ICD International Classification of Disease, PPV positive predictive value

AE not present
N

AE present
N

PPV
%

Number of unique 
encounters/% patients 
with AE

Estimated 
sensitivity
%

Thrombosis phenotypes
 ICD code alone 27 23 46% 283 (5.9%) 81%
 EHR-derived data: Abnormal laboratory values for troponin or 

D-dimer
39 6 13% 106 (2.5%) 9%

 Compound phenotype (ICD code + EHR-derived data) 2 16 89% 18 (0.5%) 10%
Hemolysis phenotypes
 Hematocrit value-based phenotype
 ICD code alone 25 8 24% 165 (1.8%) 46%
 EHR-derived data: Abnormal laboratory value for hematocrit 8 1 11% 351 (8.3%) 45%
 Compound phenotype (ICD + abnormal laboratory values for 

hematocrit)
0 1 100% 8 (0.2%) 9%

 Haptoglobin value-based phenotype
 ICD code alone 25 5 17% 154 (1.6%) 21%
 EHR-derived data: Abnormal laboratory value for haptoglobin 1 2 67% 117 (2.7%) 64%
 Compound (ICD + abnormal laboratory values for haptoglobin) 0 4 100% 19 (0.4%) 15%
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AEs phenotyped with ICD codes, the PPV of the comput-
able phenotype was 8% among patients with a prior history 
of hemolysis and 78% among patients with no prior history. 
Of note, 85% of prior ICD codes for thrombotic events and 
96% of ICD codes for hemolysis were documented within 
the year prior to the IVIG administration encounter associ-
ated with that AE (data not shown). These findings indicate 
that prior medical history likely impacts the specificity of 
computable phenotypes based on ICD codes, particularly 
for conditions in which past medical history may influence 
subsequent patient care.

4 � Discussion

Real-world data, including health insurance claims and 
EHR data, are increasingly being used to support pharma-
covigilance processes [18]. This study evaluated the utility 
of different types of EHR-derived structured data elements 
to computable phenotype specificity and sensitivity for AEs 
linked to a medication administration, with a focus on data 
elements that are not generally available in insurance claims 
data. Unlike chronic conditions, some AEs occur and then 
resolve within a relatively short time period, making it chal-
lenging to construct computable phenotypes with high accu-
racy. We found that the compound computable phenotypes 
using both ICD codes and contextual information, including 
medication administration and vital signs, had high PPV 
for proximal events such as anaphylaxis and bradycardia or 
tachycardia; however, few patients had both ICD codes and 
the relevant EHR-derived contextual data, thereby decreas-
ing sensitivity. In contrast, computable phenotypes for distal 
AEs (i.e., thrombotic events or hemolysis) frequently had 
ICD codes for these conditions, even in the absence of an 
AE during that particular encounter due to a prior history 
of such events. Therefore, patient medical history of distal 
AEs negatively impacted the PPV of computable phenotypes 
based on ICD codes. Taken together, we demonstrate the 
utility of different types of structured data in computable 
phenotypes for AEs linked to IVIG administration.

Most prior work in the development of computable phe-
notypes to detect IVIG-associated AEs has been performed 
using manual chart reviews for specific patient populations, 
though insurance claims and EHR data are increasingly 
being used for such studies [11]. Martinez and colleagues 
used the US Premier Healthcare Database to evaluate associ-
ations between different IVIG formulations and anaphylaxis 
in 24,919 hospitalized patients over a 9-year period based 
on administration of epinephrine on the same day as IVIG 
administration. Manual chart review identified 128 episodes 
of anaphylaxis among the 494 cases of epinephrine admin-
istration [19]. We did not identify any prior studies that ret-
rospectively identified tachycardia or bradycardia associated 
with IVIG administration, though several prospective studies 
reported this AE in association with IVIG administration 
for specific indications [20–22]. Notably, these prior studies 
have been conducted in patients who were directly observed 
as inpatients or through clinical trials, increasing the likeli-
hood that all relevant data required to identify an acute AE 
would be recorded. Manual chart review allows investigators 
to account for multiple forms of data that are not available 
within insurance claims or in structured EHR data, including 
clinical notes. Such unstructured data frequently includes the 
interpretations of the provider that specifically address the 
relationships between different clinical events. For exam-
ple, we observed that tachycardia and bradycardia often 
occurred but were not reported using diagnostic coding, sug-
gesting that other patient characteristics or clinical events 
may explain these changes in heart rate, including individ-
ual physiologic changes, medications (i.e., beta blockers), 
changes in blood volume resulting from the IVIG infusion 
itself, or the presence of other acute or chronic conditions 
that could account for a change in heart rate. Future studies 
will be required to develop methods that can accurately iden-
tify changes in baseline heart rate to more reliably attribute 
specific vital signs to drugs or other exposures of interest.

Unlike anaphylaxis or cardiac arrhythmia, thrombotic 
events and hemolysis may occur several days after IVIG 
administration and would generally only be detected if a 
patient remained under medical care (i.e., was hospitalized) 

Table 5   Prior medical history 
and detection of adverse events 
(AEs)

ICD International Classification of Disease

Adverse event Detected by ICD-based comput-
able phenotype (N, %)

AE occurred (N, %) AE did not 
occur (N, 
%)

Thrombosis N = 68 N = 39 N = 29
 Prior history of AE 30 (44%) 10 (33%) 20 (67%)
 No history of AE 38 (56%) 29 (76%) 9 (24%)

Hemolysis N = 34 N = 9 N = 25
 Prior history of AE 25 (74%) 2 (8%) 23 (92%)
 No history of AE 9 (26%) 7 (78%) 2 (22%)
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or returned for medical care to the same institution within 
the specified time frame. A study by Jin and colleagues 
used the State Inpatient Databases and State Emergency 
Department Databases from three states [23] to identify 
thrombotic events among patients who had received IVIG 
within 120 days prior to the event based on ICD-9 codes. By 
comparison, we used a 7-day window to detect thrombotic 
events after IVIG exposure, potentially limiting our ability 
to capture this AE, but also making it less likely that we 
would identify events unrelated to treatment. Other stud-
ies have reported that the highest incidence of thrombotic 
events after IVIG exposure occurs within one week of treat-
ment, though incidence has typically been reported as less 
than 1% and risk of thrombosis is likely to differ among 
the various patient populations receiving IVIG for differ-
ent indications [24]. A study by Amman and colleagues 
used the FDA-sponsored Sentinel Distributed Database to 
assess risk of venous thromboembolism (VTE) after IVIG 
administration [25]. VTE cases were identified using ICD-9 
codes associated with hospitalizations, and patient charts 
identified as cases by ICD-9 codes were then reviewed to 
determine validity of the ICD-9-based diagnosis. The inves-
tigators identified 75 post-IVIG VTE cases over a 6-year 
period, 38 of which were confirmed by chart adjudication. 
The authors found that patient history of VTE reduced the 
PPV of ICD-9 codes for VTE. Similarly, we also determined 
that a significant proportion of thrombotic events identified 
by ICD codes were not confirmed by manual adjudication, 
and that patient past history of thrombosis was common 
among potential events not confirmed by chart review. The 
inclusion of imaging studies such as ultrasound, computed 
tomography pulmonary angiography (CTPA), or ventilation/
perfusion (V/Q) scans could potentially improve detection 
of thrombotic events; however, the evaluation of such stud-
ies would likely require analysis of text reports describing 
the findings to delineate positive and negative findings. The 
detection of hemolytic disease as an AE after IVIG admin-
istration is complicated by the many indications for IVIG 
administration are associated with baseline hemolysis [26]. 
As with thrombosis, hemolytic disease is a rare side effect of 
IVIG administration, and it is likely that sensitive comput-
able phenotypes for this AE will have relatively low specific-
ity [27]; however, because thrombosis and hemolytic anemia 
are serious AEs that can result in significant morbidity and 
mortality, it may be desirable to have a highly sensitive com-
putable phenotype. Ultimately, the tradeoff between sensitiv-
ity and specificity must be determined by the goal of a given 
study (i.e., screening, identification of definite cases), with 
computable phenotype performance adjusted accordingly.

Given the potential applications of real-world data 
sources in post-market surveillance and effectiveness anal-
yses, there is a growing need for computable phenotypes 
that can be used across different datasets, including EHR 

data from various health systems [28]. The ability to share 
phenotypes across data sources allows for the creation of 
the large patient cohorts necessary for the identification of 
AEs. Health data networks that utilize common data mod-
els, such as the National Patient-Centered Research Net-
work (PCORnet) and the Observational Medical Outcomes 
Partnership (OMOP), provide expanded opportunities to 
integrate EHR data from multiple sources and additional 
motivation to develop phenotypes that can be easily applied 
across data from different institutions that rely on structured 
data elements that are regularly captured at all partnering 
facilities [29, 30]. Notably, Boolean algorithms that rely on 
structured data elements are of particular interest because 
they are readily applicable to nearly all institutions and do 
not require the organization of unstructured data elements 
or the substantial computing power that is often necessary 
for machine learning-based approaches. Such Boolean 
algorithm-based phenotypes can be used to create scripts 
to automate capture of clinical events of interest for patient 
populations that receive care in a variety of settings, thereby 
enhancing post-market surveillance.

4.1 � Strengths and Limitations

Our study has several strengths and limitations. A strength 
of the study is that it included a relatively large number 
of patients with detailed EHR data. Moreover, the study 
included patients receiving IVIG for a variety of indications 
in multiple inpatient and outpatient settings. The size and 
diversity of this cohort enhances the generalizability of the 
computable phenotypes to multiple patient populations. A 
limitation of this study is that it evaluated a limited number 
of AEs in individuals receiving a particular class of biologic 
product and at a single institution. Future studies will be 
required to evaluate the utility of these AE computable phe-
notypes associated with other therapies and across different 
sites with different coding and practice patterns. Moreover, 
given the limited size of the cohort and the nature of the 
analysis, we were only able to estimate the sensitivity of 
the phenotypes developed in this study. Future studies will 
need to evaluate phenotype sensitivity through chart review 
of patients who are negative for the phenotype of interest.

5 � Conclusions

In conclusion, we evaluated methods for creating com-
putable phenotypes for four AEs based ICD codes and 
on structured data elements from the EHRs. We observed 
that positive predictive value of acute AEs was enhanced 
by the inclusion of additional contextual information (i.e., 
vital signs, treatment administration); however, sensitivity 
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was significantly reduced by the requirement for multiple 
data elements. Detection of distal AEs (i.e., thrombosis and 
hemolysis) using ICD codes was highly sensitive; however, 
specificity was markedly reduced due to the inclusion of 
these codes for patients who had a history of these AEs. 
Taken together, our results provide evidence for the utility 
of different structured data elements in deriving comput-
able phenotypes for AEs. Such computable phenotypes can 
be used across different data sources for the detection of 
infusion-related AEs.
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